What else is decidable about integer arrays?
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Abstract. We introduce a new decidable logic for reasoning about itefimirays
of integers. The logic is in the*v* first-order fragment and allows (1) Presburger
constraints on existentially quantified variables, (2jedénce constraints as well
as periodicity constraints on universally quantified irdicand (3) difference
constraints on values. In particular, using our logic, oae express constraints
on consecutive elements of arrays (&ig.0 <i <n— afi+1] =a[i] — 1) as well
as periodic facts (e.g/i . i =2 0 — a[i] = 0). The decision procedure follows the
automata-theoretic approach: we translate formulae isfmeaial class of Biichi
counter automata such that any model of a formula corresptmndn accepting
run of the automaton, and vice versa. The emptiness probberthis class of
counter automata is shown to be decidable, as a consequiesaedier results on
counter automata with a flat control structure and transstivased on difference
constraints. We show interesting program properties esjiske in our logic, and
give an example of invariant verification for programs thatdile integer arrays.

1 Introduction

Arrays are a fundamental data structure in computer scifiie®y are used in all mod-
ern imperative programming languages. To verify softwanetvmanipulates arrays, it
is essential to have a sufficiently powerful logic, which eapress meaningful program
properties, arising as verification conditions within,.eigductive invariant checking,
or verification of pre- and post-conditions. In order to hameautomatic decision pro-
cedure for the program verification problems, one needs idalgle logic.

In this paper, we develop a logic of arrays indexed by integenbers, and having
integers as values. To be as general as possible, and alsmddaving to deal explic-
itly with expressions containing out-of-bounds array ases, we interpret formulae
over both-ways infinite arrays. Bounded arrays can then bearoently expressed in
the logic by restricting indices to be within given bounds.

Properties that are typically expressed about arrays imgram are (existentially
quantified) boolean combinations of formulae of the forilG — V, whereG is a
guard expressiorontaining constraints over the universally quantifieceidariables
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i (which often range in between some existentially quantifiednds), an¥ is avalue
expressiorcontaining constraints over array values. Based on exampte identified
two types of array properties which seem to appear quiteafterograms: (1) proper-
ties relating consecutive elements of an array,¥.gls <i <l — ali+ 1] =ai]— 1,
which states the fact that each valueaobetween two boundg andl; is less than
its predecessor by one, (2) properties stating periodisfacg.Vvi . i =2, 0— ali] =0,
stating that all even elements of arragre equal to O.

In the absence of specific syntactic restrictions, a logith wuch an expressive
power can be easily shown to be undecidable, as one can etieotiestories of a 2-
counter machine [12] as models of a formula over arrays. Rhosireduction, one can
derive two restrictions leading to decidability. The firsstriction forbids references to
a(i] anda(i + 1] in the same formula, which is considered in the work of Bradiéanna,
and Sipma [5]. The second restriction, considered in thiepaallows only array for-
mulaevi.G — V in whichV does not contain disjunctions. We have chosen the second
option, mainly to retain the possibility of relating conaéee arrays elements, i.ali]
andali + 1], which appears to be important for expressing propertiggagrams.

We introduce a new logi€IA (Logic on Integer Arrays) in thé*v* first-order
fragment. The logid.IA is essentially the set of existentially quantified booleame
binations of (1) array formulae of the form . ¢(k,i) — W(k,i,a), wherei is a set of
index variablesa (respk) is a set of existentially quantified array (respray-bound
variables;p is a formula on index variables with difference as well asquécity con-
straints on variableiswrt. the array-boundls, andy is a difference constraint on array
terms, and (2) Presburger Arithmetic formulae on arrayroluariables. We give an ex-
ample program showing the usefulness of this logic to exgwesfication conditions.

In this paper, we prove the decidability of the logi& using the classical idea of
the connection between logic and automata [17]: from a féapof the logic, we build
an automatory, such thatp is satisfiable if and only i\, is not empty. Decidability
of the logic follows from the decidability of the emptinegeblem for the class of au-
tomata that is deployed. To this end, we define a new classurftepautomata, called
FBCA (bi-infinite Flat Buchi Counter Automata). These aceioter automata running
to the infinity in both left and right directions, equippedhva Biichi acceptance condi-
tion. For an arbitrary formulé of LIA , we give the construction of an FBCRy whose
runs correspond to models ¢f the value of the counteg, at a given point in an exe-
cution of Ay corresponds to the value afi] in a model ofp. We prove the decidability
of LIA by showing that the emptiness problem for FBCA is decidallextending
known results [6, 4] on flat counter automata with differeboand constraints.

Related work. In the seminal paper [11], the read and write functions ftorafrays
and their logical axioms were introduced. A decision pracedor the quantifier-free
fragment of the theory of arrays was presented in [9]. Sihem,tvarious decidable
logics on arrays have been considered—e.g., [16, 10, 8, Ih, These logics include
working with various predicates (reasoning about sortegiq@germutations, etc.) and in
terms of various arithmetic (usually Presburger) constsain array indices and/or val-
ues of array entries. However, unlike our logic, most of ¢heerks consider quantifier
free formulae. In these cases, nested array readsa(li@]) are allowed, which is not
the case in our logic.



In [5], an interesting logic, within thé*v* fragment, is developed. Unlike our deci-
sion procedure based on automata theory, the decisionguoeef [5] is based on the
fact that the universal quantification can be replaced byite faonjunction. The result
is parameterised in the sense of allowing an arbitrary @ecjgrocedure to be used for
the data stored in arrays. However, compared to our re§b]tdpes not allow modulo
constraints (allowing to speak about periodicity in thegvalues), general difference
constraints omuniversallyquantified indices (only— j < 0 is allowed), nor reasoning
about array entries at a fixed distance (i.e. reasoning ajgwtndali + k] for a con-
stantk and a universally quantified indéx The authors of [5] give also interesting
undecidability results for extensions of their logic. Feample, they show that relating
adjacent array valuesg|{] anda]i + 1]), or having nested reads, leads to undecidability.

Arestricted form of universal quantification withitiv* formulae is also allowed in
[2], where decidability is obtained based on a small modeperty. Unlike [5] and our
work, [2] allows a hierarchy-restricted form of array nagti However, similar to the
restrictions presented above, neither modulo constramisdices nor reasoning about
array entries at a fixed distance are allowed. A similar ie&in not allowing to express
properties of consecutive elements of arrays then appésvsira[3] where a quite
generaB*v* logic on multisets of elements with associated data vakiesnsidered.

2 Counter Automata

Given a formulap, we denote byFV () the set of its free variables. If we denote a
formula asp(xq, ..., Xn), we assume&V (¢) C {xy,...,Xn}. Ford(x), we denote byp[t/x]
the formula in which each occurrence »fs replaced by a terrh Given a formula
¢, we denote by= ¢ the fact thatp is logically valid, i.e. it holds in every structure
corresponding to its signature. By: Z — Z, a(n) = n+ 1, we denote the successor
function on integers. In the following, we work with two setsarithmetic formulae:
difference bound matrices (DBM) and Presburger Arithm@).

A difference bound matri(DBM) formula is a conjunction of inequalities of the
formx—y<c,x<c,orx> ¢, wherec € Z is a constant. If there is no constraint between
x andy, we may explicitly writex — y < co. In the following,Z* denoteZ U {«}. Let
z={z,...,zn} be a designated set of variables, calbedametersA parametric DBM
formula is a conjunction of a DBM formula with atomic propiasins of the forms <
f(z) orx > f(z), wheref is a linear combination of parameters, ife= ag+ ¥ ; aiz
for somea; € Z,0<i <n.

A Presburger arithmetiqPA) formula is a disjunction of conjunctions of either
linear constraints of the forrfi{; aix; +b > 0 or modulo constraint{_; aixi +b=c
modd, wherea;,b,c,d € Z, ¢ > 0 andd > 0, are constants. It is well-known that every
formula of the arithmetic of integers with additid#, >, +,0,1) can be written in this
form, by quantifier elimination [14]. Clearly, every DBM fmula is also in PA.

A counter automatois a tupleA = (x,Q,—), wherex is a finite set of counters,

ranging overZ, Q a finite set of control states, and the transition relation, given by

!
rulesq LN g, where¢ is an arithmetic formula relating current values of cousiter
x to their future valuex’. A configurationof a counter automatoA is a pair(q,v)



whereq € Q is a control state, and : x — Z is a valuation of the counters i For
a configuratiorc = (q,v), we designate byal(c) = v the valuation of the counters in
c. A configuration(d',v') is animmediate successaf (qg,v) if and only if A has a

transition ruleq LLLIN g such that= ¢ (v(x),V'(x’)). A configurationc is asuccessor

of another configuratiod if and only if there exists a sequence of configuratiorss
CoC1...Ch = ¢ such that, for all 6X i < n, ¢i;1 is an immediate successor @f Given
two control states, g’ € Q, arun ofAfromgto ¢ is a finite sequence of configurations
CoC1 - .- Cn With co = (q, V), cn = (¢, V') for some valuations, V' : x — Z, andci1 is an
immediate successor of, forall 0 <i < n.

Let Sbe a set. Abi-infinite sequencef Sis a functionp : Z — S* We denote by
“S» the set of all bi-infinite sequences o\&rA bi-infinite Blichi counter automatois
atupleA= (x,Q,L,R,—), wherex is a finite set of counter§) is a finite set of control

states|,R C Q are the left-accepting and right-accepting states,-and a transition

relation, defined in the same way as for counter automata.

A run of a bi-infinite Biichi automatoA is a bi-infinite sequence of configurations
...C_2C_1CpC1Cz... such that, for alli € Z, ¢;j.1 is an immediate successor af A
runr is left-acceptingff there exists a statgq € L and an infinite decreasing sequence
of integers... < iz < iy < 0 such that for allj € N, we haver(ij) = (q,v;) for some
valuationsv; of the counters oA. Symmetrically, a run isight-acceptingff there ex-
ists a state] € R and an infinite increasing sequence of integetsig < i1 <ix < ...
such that for allj € N, we haver(ij) = (q,vj), for some valuations; of the coun-
ters of A. A run is acceptingiff it is both left- and right-accepting. The set of all
accepting runs of\ is denoted ax (A). If r € & (A) is a run of A, we define by
val(r) = ...val(r(—21))val(r(0))val(r(1))... the bi-infinite sequence of valuations in
r,andv (A)={val(r) | r ez (A)}.

Lemma 1. For any FBCA A, we have« % (A) ifand only if roo € & (A).

Proof. Let A= (x,Q,L,R,—). “=" r is left-accepting iff there exists an infinite de-

creasing sequence.iz < iz < i1 < 0 of positions inr, visiting a control state from
L. This implies thaiz —1 < i —1 < i1 — 1 < 0 visits the same control state, hence
r osis left-acceptingr is right-accepting iff there exists an infinite increasiegsence
0< j1 < j2< js<...of positions inr, which visits a control state fromR. But this
implies that O< jo— 1< js— 1< ... visits the same state froR hencer o sis right-
accepting. =" This direction follows a similar argument. a

A control pathin a counter automatoA is a finite sequencegoqs . ..y of control
states such that, for all @ i < n, there exists a transition rutg — g 1. A cycleis

a control path starting and ending in the same control sfateelementary cyclés a
cycle in which each state, except the first one, appears owlg.d\ counter automaton
is said to bdlat iff each control state belongs to at most one elementanecycl

4n the early literature [13], a bi-infinite sequence is dedirees the equivalence class of all
compositiongoa" oo™ for arbitraryn,me N. This is because a bi-infinite sequence remains
the same if shifted left or right. For simplicity reasonsreneve formally distinguish the bi-
infinite sequenceg, Boao", andBoo .



Decidability and Closure Properties of FBCA We consider in the following the class
of bi-infinite Buchi counter automata which are flat, and s&e@lementary cycles are
labelled with parametric DBM formulae. We call this class@in the following. We
prove that the emptiness problem for FBCA is decidable gis#sults of [4], and their
extensions, that can be found in Appendix A.

Lemma 2. The emptiness problem is decidable for the class of FBCA.

Proof. The proof uses the results of Appendix A, namely Lemmas 1QldntletA =
(x,Q,L,R,—) be a FBCA. W.l.o.g. we can assume that any control satel. UR

belongs to exactly one elementary cycle. Fog does not belong to a cycle, it cannot
occur infinitely often on a run. Moreoverdfbelongs to two or more elementary cycles,
thenA is not flat, in contradiction with the definition of FBCA. LétE L andr € R
be fixed for the rest of this proof. We construct a Presburganiéila®, , which is
satisfiable if and only if there exists a bi-infinite run thaits | infinitely often on the
left andr infinitely often on the right.

Lety be the elementary cycle to whidtbelongs, andT/ be the cycle obtained by
reversing each transitioqlﬂ q into o LN g, where¢’ is obtained fromp by inter-
changing the occurrences of the counters iwith x’, and vice versa. Lett V(X) be
the Presburger formula defining the set of valuatiofsr which there exists an infinite
computation alongy starting in(l,v).

Let & be the elementary cycle to whighbelongs, and, 5(x) be the Presburger
formula defining the set of valuationsfor which there exists an infinite computation
alongd starting in(r,v). The formula encoding the existence of a bi-infinite run that
visits| infinitely often on the left and infinitely often on the right, is the following:

P I3 S0 A Rir(x,x') Al 5(X)
The proof thatd; , is satisfiable if and only ik (A) # 0 comes as an immediate conse-
quence of the meaning of trhlev, R andl, 5 formulae. a

The FBCA class is also effectively closed under the opemataf union and inter-
section. However, before proceeding, we need to elucitiateneaning of these opera-
tions for counter automata.#fC x is a subset of the countersinletv |, denote the re-
striction ofv to the domairz. For some subsetC x of the counters of\, ands € v (A),
we define the restriction operator on sequerggs= ...val(s(—1)) |, val(s(0)) |
val(s(1)) |z ..., andv (A) |,= {s]; | s€ v (A)}. Symmetrically, forz > x, we de-
fine the extension operator on sequeneés) 1,= {ve Yz— Z)® | v|xc v (A)}.

A class of counter automata is said to dlesedunder union and intersection if
there exist operations and ® such that, for any two FBCA = (x,Qi,Li, R, —i),

i =1,2, we have that (AW A2) = v (A1) Txqux, U ¥ (A2) Txyux, andv (AL ® Ag) =
v (A1) Txqux, N 7 (A2) Txyux,, respectively. The class is said to bfectivelyclosed
under union and intersection if these operators are effedgtcomputable.

Proposition 1. Let A= (x,Q,L,R,—) be a FBCA. Let A= (x,Q,L¢ R¢,—) be the
FBCA such that (1) for all ¢ L and d € Q, d belongs to the same elementary cycle as



qiffq €LC (2) forallge Rand g€ Q, d belongs to the same elementary cycle as q
iff g’ € R°. Then we have that (A) = &z (A®).

Proof. The directionz (A) C % (A®) is trivial, sinceL C L® andR C R®. To prove the
factthatz (A) 2 % (AS), letr be an accepting run &°. Then there exists a stages L¢
that repeats infinitely often on the left m There are two situations: eithgre L, in
which case is directly left-accepting foA, or there exists a statg € L which belongs
to the same elementary cycle @sn A. By the flatness of\, this means thadq/ will
be visited infinitely often on the left as well. Analogougahyie proves that is a right-
accepting run oA. a

Assuming w.l.0.g. tha®; N Q2 # 0, the union is defined a& WAy = (X1 UX2,Q1U
Q2,L1 UL2,Ri URz,—1 U —2). The product is defined a& ® Ay = (X1 UX2,Q1 X

Qo,L§ x LS, RS x R, —), where— is as follows:(q1, ;) LINALE (G2, 0p) iff g1 LR Qs

atransition rule of\; anda; 9, q, is a transition rule of,. HereL{ andR’, denote the
extended left-accepting and right-accepting set4; pfrom Proposition 1, for = 1,2.

Lemma 3. The class of FBCA is effectively closed under union andsetetion.

Proof. The proof for closure under union is trivial. We will give tpeoof for closure
under intersection in the following.

Let A = (x;,Qi,Li,R,—i), i = 1,2 be two FBCA, andA = (x,Q,L,R —) be their
product, i.eA=A; ® A;.

1. We first prove tha®A belongs to the class FBCA. For this we need to show that
each control state ok belongs to at most one elementary cycle. For an arbitratg sta
(09,9) € Q1 x Qq, let pr1((a,9")) = q, pr2((g,q)) = g and for an arbitrary cyclgin
A, let pri(y) denote the corresponding cyclesAn obtained by projection of thieth
control statej = 1,2. Suppose that there is a control st@gy) € Q1 x Q. that belongs
to (at least) two different elementary cyclgsand d. Thenq belongs topri(y) and
pr1(8) in A1, andd belongs topry(y) and prz(d) in Ay. Since, by the hypothesis
andA; are flat, therpr;(y) andpri(8) must be (possibly trivial) unfoldings of the same
elementary cycle; in A;, fori = 1,2, respectively. In other wordgyi(y) = ki - & and
pri(d) =Il;-g, fori = 1,2 andk;,l; € N.

Let m be the least common multiple ¢f;| and|ez|, andn; = % fori=1,2. Let
a be the cycle imA obtained by the composition of the two cycles obtained naiteg
€1 np times, andez ny times, respectively, i.epri(a) = n; - €, i = 1,2. Sinceg; are
elementary cycles o, it follows thata is the smallest cycle oA with the property
thatpr;(a) is an unfolding of;. Hencey andd, must both be eithex or unfoldings of
a, contradicting the assumption that they were differenneletary cycles oA.

To prove that the elementary cyclesAfire labelled with (parametric) DBM for-
mulae only, notice that any cycle éfis a composition of two (unfoldings of) cycles
in A; andAy. Since both component cycles are labelled with DBM formpuéasl the



label of the transitions oA is the conjunction of the labels of the transitionstn Ay,
it follows that the resulting cycle is labelled with DBM foutae as well.

2. Second, we prove that (A) = v (A1) Tx;ux, NV (A2) Txguxs-

Letse v (A1) Txux, N (A2) Tx,ux, be abi-infinite sequence of counter valuations.
From the definition o’ (.), there exist1 € (A1) andry € & (A2) such thaval(r1) =
Slx, andval(rz) =s|y,.

Leti € Z be an arbitrary position, and (i) = (q1,v1), r1(i +1) = (g, V), r2(i) =
(a2,v2), r5(i+1) = (g5,V5) be successive configurations f andrz, respectively,
wherevy,V] : X1 — Z andvy,V,, : X — Z are valuations oK1, Xo. Then there exist

(X1,%]

transition rulesy; q>1—1)> ; in Ag, andap M a, in A, such that1(v1(x1),v4(X}))

anddo(va(x2),V5(x5)) are both valid. Hence, by constructionAfthere exists a tran-
sition rule (qi1,02) Binby, (d,095), such thatds A ¢ is satisfied by(viUV]) Tx,ux,

N(V2UV5) Tx,ux,- In this way, one can build a bi-infinite rurof A, such thaval(r) =s.
It remains to be proven that this run is an accepting ru.of
Sincer; is an accepting run o, then by Proposition 1, it is also an accepting

run of AY, for i = 1,2. By the flatness oA, and, implicitly of Aj, there exist a se-
quenceo; of states fromL§ that repeats infinitely often to the left of, i.e. there
exists a positiork; € Z, such that the restriction af; to (—,k1] is of the form
...0101. Analogously, there exists a sequermeof states fromLS, and a position
ko € Z such that the restriction af to (—o, ko] is of the form...0202. Then, the
restriction ofr to (—co,min(ky,ky)] is of the form...oo, whereo is a sequence of
pairs(qg,q’) € L§ x LS. Hence there exists such a pair repeating infinitely oftetnéo
left in r, i.e. r is left-accepting. Analogously, one proves thais right-accepting.
We have proved that (A) O v (A1) Tx;ux, N v (A2) Txyux,- The directiony (A) C
v (A1) Txqux, N7 (A2) Tx,ux, IS proved using a similar argument. o

3 A Logic for Integer Arrays

In this section we define the Logic of Integer ArraydA ) that we use to specify
properties of programs handling arrays of integers.

3.1 Syntax

We consider three types of variables. Téreay-bound variablegk,l) appear within
the so-called array-bound terms. These terms can be useefite dhe intervals of
the indices, and also as static references inside arragsan@bx(i, j) andarray (a,b)
variablesare used to build array terms. Fig. 1 shows the syntax of tfie ldA . We use
the T symbol to denote the boolean valuee. In the following, we will usef <i <g
instead off <i A i<g, i< finstead ofi < f—1, andi = f instead off <i < f.
Intuitively, our logic is the set of existentially quantifioolean combinations of:

1. Array formulae of the fornvi . ¢(k,i) — P(k,i,a), wherek is a set of array-
bound variablesi is a set of index variables, is a set of array variableg, is



nmst...c¢ Z constant§0 <t < s)
kl,... € BVar array-bound variables
ij,.. e IVar index variables

a,b,. € AVar array variables

B =n|k|B+B|B-B array-bound terms

I =i|l+n index terms

A = a[l] | a/B] array terms

G =B<I|I<B|l-1<n|l=st|GVG|GAG guard expressions

\Y =A<B|B<A|A-A<n|VAV value expressions

C ‘=B<n|B=st array-bound constraints
P =T—->V|G-V|Vi.P array properties

u =P|C|-UJUVU|UAU universal formulae

F =P|3k.F|3Ja.F LIA formulae

Fig. 1. Syntax of the logid_IA

an arithmetic formula on index variables, aipds an arithmetic formula on array
terms. In particulanp is a DBM formula, and is composed of atomic propositions
of the form eitherf <i,i < f,i—j <n,i=st, wheref is a linear combination of
array-bound variables, € Z, and 0<t < s. Bothk anda variables are free in the
array formulae, but they can be existentially quantifiedhattbp-most level.

2. PA formulae on array-bound variables.

3.2 Examples

To accustom the reader with the logic, we consider seveoglegties of interest that
can be stated about arrays. For instance, a strictly incigasdering ofa up to a
certain bound is defined a%k Vi . 0 <i < k — afi] — ali + 1] < —1. The fact that
the firstk elements of arrayp are below the first elements of arrap at distance 5

is defined asik,| Vi,j .0<i<k A 0<j<I| — afi]—b[j] <-5. Equality of two
arrays up to a certain bound can be expressethdis. 0 < i < n— a[i] = bli]. The use

of modulo constraints as guards for indices allows one toesgperiodic facts, e.qg.
Vi,j.i=20 A j=21— ai] <alj], meaning that any value at some even position is
less than or equal to any value at some odd positian ithe following section shows
that to prove the correctness of an array merging prograch, groperties are needed.

Verification Conditions for an Array Merging Example Consider the following pro-
gram that takes two arraysandb, and merges their first elements by alternating el-
ements froma with elements fronb. Suppose, moreover, that the firstlements o
are less than or equal to the firstlements ob. The resulting array will have all its first
n elements on even positions less than or equal to thenfelments on odd positions.



{An>0AVi,j.0<i,j<n—ali]<b[j]}}
for (k=0, I=0; k< n; k++, [+=2)
{{n>0Ak<nAl=2kA
Vi .0<i,j <2k Ai=20Aj=21—cfi]<c[j]A
Vi,j.0<i,j <n—ali] <bfj]}}
{ o] = alK];
c[l + 1] = b[Kk]; }
ANn>0AVi,j.0<i,j<2n Ai=20Aj=1-cli]<c[j]}}

The pre-, post-condition, and loop invariant needed forgieof of this program are
annotated directly into the program text using double cbrigces. We show in the
following that the verification conditions to be checked toye the correctness of the
program fall into our logic, and so they are decidable.

We need to check three verification conditions correspanttirthe initialisation of
the loop, the loop body, and the finalisation of the loop.

Theinitialisation consists of the two unconditional assignment statemerisake
I=0. We need to check that the following formula is logicallglid (we use primed
names of variables to distinguish the current and futureasbf the variables):

Vaa,b,b,cc nn kk,I1I.
Nn>0A (Vi,j.0<i,j<n—ali]<b[ih) AK=0AI"=0AnNn=nA
(vi.d[ij=ali]) A (Vi.W[i]=Db[i]) A (Vi.c[i]=Cc]i])
Nn>0AK<nAI'=2KA
(Vi,j.0<i,j<2k ANi=20A j=21-Ci|<C[j]) A
(vi,j.0<i,j<n—a[]<blj])

However, checking the validity of the above formula is egoathecking that its nega-
tion, which clearly fits our logic, is unsatisfiable:

Jad, b/, c,d,nn kK, II.
n>0A (Vi,j.0<i,j<n—ali]<b[j) AK=0A1I"=0AN=nA
(vi.dfi]=ali]) A (vi.b[i]=hli]) A (Vi.c]i]=c[])
A
(M<ovKkK>nvli<2k vI'>2Kv
(Fi,j . 0<i,j<2k Ai=20A j=21AC[i]>C]j])V
(3i,j.0<i,j<nA&[i]>D][j])

To see this, note that the existentially quantified indexaldes in the last two lines of
the above formula can be given unique names and the appmqtiantifiers moved to
the prefix of the formula.

To check the effect of thivop body i.e. the assignments c[l] = a[k], c[l+1] = b[K],
k++, and I+=2 which are executed provided thatrk we have to prove that the follow-
ing holds:

vaa, b, b,cc. nn kKk,II.



N>0AKk<nAIl=2kA

(Mi,j.0<i,j<2k Ai=20A j=21—c[i]<C[j]) A
(vi,j.0<i,j <n— afi] <b[j]) A
k<nAK=k+1lAl=1+2AN=nA
(Vi.dfi]=ali]) A (Vi.b[i]=Dh[i]) A
(Vi.i<l—=Cdi]=cfi]) A Vi.i>l+1=C]i]=c[i]) A
c[l]=alk] A c/[I+1] =Db[K
N"n>0AK<nAlI'=2KA

(Vi,j .0<i,j<2k Ai=20 A j=21-Ci| <) A
(¥i,j.0<i,j<n—ali] <Bj])

Again, checking the validity of the above formula is equathecking that its negation,
is unsatisfiable:

Jad,b,b,c,d,nn kK,II.
N>0AKk<nAIl=2kA
(Vi,j.0<i,j<2k Ai=20A j=21—cfi]<c[j]) A
(vi,j.0<i,j <n—afi] <b[j]) A
k<nAK=k+1AlI'=l+2ANn=nA
(vi.a[ij=ali]) A (Vi.D[i]=Dh[i]) A
VMi.i<l=Cij=cfi]) A Vi.i>l+1-=Cc[i]=c[i]) A
c[l]=alk] A [l +1] =b[K
A
(M<ovkK>nvli<2k vI'>2Kv
(Fi,j . 0<i,j<2k Ai=20A j=21ACi]|>C]j])V
(Fi,j.0<i,j<nAd[i]>b]j])

Finally, in order to check th&nalisation of the loogi.e. the exit of the loop when k
n), one has to check the validity of the following formula:

vaa,b,b,cc. nn kKk,I1I.
N>0AKk<nAIl=2kA
(Mi,j.0<i,j<2k ANi=20A j=21—c[i]<C[j]) A
(Vi,j.0<i,j<n—ali] <b[j]) A
k>nAK=kAl'=l An=nA
(vi.d[ij=ali]) A (Vi.W[i]=D[i]) A (Vi.c[i]=c]i]) A

N>0A (Vi,j.0<i,j<2n Ai=0 A j=21—c[i]<c]j])

Like in the previous cases, checking the validity of the ablmymula is equal to check-
ing that its negation is unsatisfiable:

Jad,b,b,c,c.nn kK,II.
N>0AK<nAI=2kA
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(Vi,j .0<i,j<2k Ai=20A j=21—cfi]<c[j]) A
(i,j.0<i,j <n—afi] <bj]) A
kznAk:k/\I’—IAn_n/\

(vi.d[ij=ali]) A (Vi.W[i]=D[i]) A (Vi.c[i]=c]i]) A

A

("<0ov (3i,j.0<ij<2n Ai=20A j=21 A Ci]>C]j])

3.3 Semantics

The logicLIA is interpreted orboth-ways infinite arraysThis allows to conveniently
deal with out-of-bound reference situations quite comnmqurograms handling arrays.
One can prevent and/or check for out-of-bound referencastiyyducing explicit exis-
tentially quantified array-bound variables for array valés. Letp(k,a) be any formula
of LIA . A valuationis a pair of partial functiorss(i, ), with 1 : BVarulIvar — 7,
associating an integer value with every free integer végiamdy : AVar — “Z®, asso-
ciating a bi-infinite sequence of integers with every arnayisola € a. The valuation

1 is extended in the standard way to array-bound tenfB®)) and index termsi(l)).
By 1, u(A), we denote the value of the array tefgiven by the valuatiort, . The
semantics of a formuld is defined in terms of the forcing relati¢a as follows:

LWEA<B < n®) <1(8)
nu@l]) = p@Etl) (LW EA-A <N <= nu(A) - np(Ar) <
ny(aB)) =wa,1(B)) (L,WkEYI.G—=V < VneZ. <[I<—n],p>':G~>V

(WWEF.W = FBeZ”. (LHa—B) =y

For space reasons, we do not give here a full definition. Hewelwe missing rules are
standard in first-order arithmetic. modelof ¢ (k,a) is a valuation(1, ) such that the
formula obtained by interpreting each variakle k asi(k), and each array variable

ac aasy(a) is logically valid: (1,) = ¢. We define[[¢]] = {(1,1) | (I,KW) E=¢}. A
formula issatisfiablaf and only if [¢] # 0.

3.4 An Undecidability Result

The reason behind the restriction that array terms may notrogithin disjunctions
in value expressions (cf. Fig. 1) is that, without it, theitolgecomes undecidable. The
essence of the proof is that an array formidl&s — V1 Vv ... V V, forn> 1, corre-
sponds tan nested loops in a counter automaton. Undecidability is shimywreduction
from the halting problem for 2-counter machines [12].

Lemma 4. The logic obtained by extendindA with disjunctions within the value
expressions is undecidable.

5 The symbolL is used to denote that a partial function is undefined at angieint.
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Proof. This can be proven by a reduction from the halting problen?faounter au-
tomata [12]. A 2-counter machine with non-negative cowstgr, is a sequential pro-
gram:

O0:insg;l:insq;---;Nn: insp;

wherei nsy, is ahal t instruction and ns; with i = 0,1,---,n are instructions of the
following two types, for 0< k, ki, ke, < n,and 1< j < 2:

1. ¢cj=cj+1;g0to0 k;
2.if cj=0then gotk; else(cj = cj—1; gotoky);

We give a formulad such that the machine halts iff the formula is satisfialple.
uses three arrays, ap andag. a; (resp.az) contains values of counter 1 (resp. 2) and
ag contains the control location. Each instructionins, is translated into a formula
¢« (i) having a parametér We give the translation for instructions concerning ceunt
c:1. Instructions concerning counter are encoded in a similar way. Instructions of the
formk:cy =c;+1;goto K are translated into:

ok(i) ragfil =kAaifi+ 1] = afi] + 1nagi + 1] = agfi] Aagfi+ 1] = K

Instructions of the fornk:i f ¢; =0 then gotd; else(c; = cj — 1; gotoky) are trans-
lated into:

o(i) : (agli] =knai]i] =0Aa1fi+ 1] = agfi| Aagfi + 1] = agfi] Aagli + 1] = kq)
V(agfi] =kAayfi] > 0Aayfi + 1] =ayfi] — 1A agfi+ 1] = agfi] Aagli +1] = ko)

Now the formulab is given as

n—1
Jag,ap,83IMVi.((0 < i <m—1) — (a3[0] =0A \/ ¢;(i) Aaz[m] =n))
j=0

The models of the formula are exactly the halting runs of thenter machine in
m steps.ay[i] (resp.ayli]) is the value of counter; (resp.c,) afteri steps andg[i] is
the corresponding control locatica[0] = 0 andaz[m] = n make sure that the machine
starts at the initial control location 0 and goes to the hgltocationn and T;é'q)j (i)
insures that counter values and control locations storédarconsecutive positions (
andi + 1) in the arraysy, a; andag correspond to values in a run of the machine. Then
it is clear, that the machine halts #fis satisfiable.

Note that one can easily give a formula using just one arrhig i done by inter-
leaving the three arrays and using the modulo constrairasdess the counter values
and the control locations. O

Note that having more than one nested loop is a necessarjtioonir undecid-

ability of 2-counter machines since a flat 2-counter mactioeld trivially fall into the
class of decidable counter machines from [6, 4].
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4 Decidability of the Satisfiability Problem

The idea behind our method for deciding the satisfiabilitypem forLIA is that, for
any formula ofLIA , there exists an FBCA such thathp has a model if and only if
Ay has an accepting run. More precisely, each array varialpehias a corresponding
counter inAy, and given any model @f that associates integer values to all array entries,
Ay has a run such that the values of the counters at differentsgof the run match the
values of the array entries at corresponding indices in tbdah Since, by Lemma 2,
the emptiness problem is decidable for FBCA, this leads tidadility of LIA .

In order to build automata fromlA formulae, we first normalize them into existen-
tially quantified positive boolean combinations of simpteagt property formulae (cf.
Fig. 1). Second, each such array property formula is tréesiato an FBCA. The final
automatordy is defined recursively on the structure of the normalizechidee, with
thew and® operators being the counterparts for thandA connectives, respectively.

4.1 Normalization of Formulae

The goal of this step is to transform any formula written gdine syntax of Figure 1
into a formula of the following normal form.

Ik3a. \/ ( /\cppq(a,k)) A Bp(K) (NF)
q

p
wherea s a set of array variablek,is a set of integer variables, and

— Bp is a conjunction of terms of the forms: @k) > 0, or (ii) g(k) =st, with g
being a linear combination of the variableskinand 0<t < s,
— @pq is a formula of the following forms, for somec N, 0<t <s, 0<v<u,and
peZ,qeZ”:
K L
viio Afc<iA \i<g Ai=st—ali]~hk) (F1)
k=1 =1
The (F1) formulae bind all values afin some interval by some linear combination
h of variables irk.
K L
vii Afc<iAn Ai<g Ai=st—ali]—bli+p~q (F2)
k=1 =1

The (F2) formulae relate all values afandb in the same interval such that the
distance between the indicesa&ndb, respectively, is constant.
NG R STANST <G AN RSTANZTSEA g
i—j<pAi=stAj=yv—ai]—blj]~q

The (F3) formulae relate all values afwith all values ofb within two (possi-
bly equal) intervals. The case whgn= o corresponds to the situation when no
constraini — j < pwith pe Z is used.
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Lemma 5. A formula ofLIA can be equivalently written into the form (NF).

Proof. We show how a formula, written in the syntax of Figure 1, cartrbasformed
into an equivalent formula of the form (NF), by applying theps below:

1. Put the left-hand sides of the subformutée ¢ (i) — (i) into disjunctive normal
form, and then split both the left-hand and right-hand sioespplying exhaus-
tively the following equivalence preserving transforroas:

Vi.drVor = <= Vi.op1 > P AVi.d2—
Vi.d oA <= Vi.do—=PY1 AVi.d— U

The resulting formula will have only conjunctions of atonidemulae on the left-
hand side of the implications and only atomic formulae onrtgkt hand side of
the implications.

2. Putthe entire formulainto disjunctive normal form, tieg the implication®i . (i) —
Y as atomic propositions, and distribute the existentiafipte each disjunctive
clause.

3. Eliminate negated implications using the equivalentd . ¢ — ) <= 3k . dA
(T — —y[k/i]). Notice that, because of the previous stépis an atomic DBM
formula involving array terms, henegp can be written equivalently without nega-
tion. We move the existential quantifier to the prefix of extidial quantifiers of
the formula, renaming the index variablieby some fresh array-bound variables
k. We makep a part of@p. The newly introduced implication is not preceded by a
universal quantifier (as expected by the normal form we e )this will be taken
care of by the next step.

4. For each implication of the forivi . ¢(k,i) — W(a,k,i), such thatp contains an
array terma[f (k)] where f(k) is a linear combination of array-bound variables,
introduce a fresh universally quantified index variapleand rewrite the whole
implication asviu{j} . ¢ A j = f(k) — w[j/f(k)]. This step ensures that array
terms are indexed only by universally quantified index \a&a.

5. Normalise all DBM subformulae of the premigesf the array subformulaé . ¢ —

Y. This step computes also the transitive closure of the DBveing explicit all
dependencies between indices. For each pair of constraints nandj—i < —m
occurring in a conjunction within the premise of an implioatof the formvi . ¢ —

Y, either it is the case that-m< 0, in which case replace the whole implication by
true, or elsen—m> 0, in which case replace both constraints\Qymq i — j = 6
and eliminata from the implication subformula, by replacing each occocesof

i by j+1. This step ensures that no constraints of the forma i — j < n are left
within the formula.

6. Rename the universally quantified index variables suatetéich array constraint of
the form (i)a[i +n] ~ g(k), (i) a[i +n] —b[i +m] ~ p, or (iii) afi +n] —b[j+m] ~ p,
n,m,p € Z, uses index variables that are distinct from the other. énftilowing,
we distinguish three cases:

8 BY Vc[ap ®(1) We denote the disjunctiop(a) v d(a+1) V...V (b).
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(i) For subformulae of the forr[i + n] ~ g(k), replace with i — nthroughout the
formula. In particular, the array ternad + n] are substituted withli].

(i) For subformulae of the forna[i + n] — b[i + m] ~ p, suppose that < m, the
other case being symmetric. We replaedgth i — n throughout the formula. In
particular, the array termei + n| are substituted wit[i], andali + m] with
ali + m—n|, respectively.

(iii) For subformulae of the forna[i + n] — b[j +m] ~ p, replace with i —n andj
with j —m. In particular, the array termei 4+ n] andb[j + m] are substituted
with a[i] andblj], respectively.

This step ensures that the only constraints involving ateams are of the form

afi] ~ g, ali] — b[i + n] ~ manda]i] — b[j] ~ m, whereg is a linear polynomial in

bound variablesy-€ {<,>},ne Nandme Z.

7. Normalise the atomic propositions in all the premiseseiinplications/i . ¢ —
by applying the following substitutions:

(@ f~i+nwith f —n~ifor~e {< >},

(b) i—j+n<pwithi—j<p-n,

(c) i+n=stwithi=st',where 0<t' <tandt’' =st+n.

It can be easily checked that the formula obtained afteryapgpthe normalisation steps
is in the form (NF), and that is equivalent to the initial farka, since every transforma-
tion preserves logical equivalence. a

In the following, we refer to thenatrix of ¢ as to the formula obtained by forgetting
the existential quantifier prefix from the (NF) form ¢f

4.2 Formulae and Constraint Graphs

In [6, 4], the set of runs of a flat counter automaton is represeby an unbounded
constraint graph. Here, we view the models of a formula asrestcaint graph both
left- and right-infinite. These constraint graphs are thegnsas executions of FBCA,
relating in this way models of formulae to runs of automata.

Let ¢(k,a) be a formula of type (F1)-(F3), and k — Z a valuation of its array-
bound variableg. For the rest of this section, we fix the valuatignd we denote by
¢, the formula obtained frorh by replacing each occurrencelof k by the valua (k).

The formulag, can be thus represented by a weighted directed geaphin which
each nodéa,n) represents the array entajn], for somea € a andn € Z, and there is
a path of weightv between node&, n) and (b, m) iff the constraint@ajn] — b[m] < wis
implied by ¢,. In the next section, we will show that these graphs are ineatorone
correspondence with the accepting runs of an FBCA.

In order to build the constraint graph of a formula, one negedsay attention to
the following issue. Consider, e.g., the formigj.i— j <3AT=20A ] =21 —
ali] — b[j] < 5. The constraint graph of this formula needs to have a patheight
5 between, e.ga[0] andb[1], a]0] andbi3], a[0] andb[5], etc. As one can easily no-
tice, the span of such paths is potentially unbounded. Sirecevould like this graph
to represent a computation of a flat counter automaton, $semtial to define it as a
sequence composed of (a possibly unbounded number of)trepebf a finite number

15



of (finite) sub-graphs (see, e.g., Fig. 5 or Fig. 6). To thid,eme introduce interme-
diary nodes which are connected between themselves witbOsaich that, for each
non-local constraint of the form[n] — bim|] < w where|n—m| can be arbitrarily large,
there exists exactly one path of weighthrough these nodes. E.g., in Fig. 5, there is a

path(a,0) 3, (ty,—3) 5.2 (ty,1) 9 (b, 1) for the constraina[0] — b[1] < 5, another
path(a,0) 3, (ty,—3) 5.5 (ty,3) LN (b, 3) for the constrain&[0] — b[3] < 5, etc.

Formally, the constraint graph df is G, o = (V,E) with the set of verticey =
(a Uz U{{}) x Z, wherea = {a,b} are the array symbols iy, 7 = {t} are the
auxiliary symbols (tracks), anglis a special symbol (zero track). The set of edgeas
defined based on the type ®f i.e. (F1)-(F3). In general, for all types of formulae, we
have:
ED{(Z.K) > (@ k+1) [keZ} U{({k+1)> (LK) |kezZ}

i.e., the value of the zero track stays constant.

Constraint graphs for (F1) formulae Let¢ be the formula

K L
Viio A fc<i A A\i<a Ai=st—ali]~h(k)
k=1 1=1

¢

where 0<t <s. Lete, ={neZ| E an/i]}.
The set of edgeE is defined by the following case split:

1. If the right hand side of the implication &i] < h(k), we have (cf. Figure 2):
ED{(@k) " @K [ken)

a® ° °
h(k) h(k) h(k)

(1) t(u)
Fig. 2. Constraint graph fori . | <i<u A i =, 0— afi] < h(k)

2. Otherwise, if the right hand side of the implicatiorajg > h(k), we have:

E-{(CK 2, @k ke 2}

Nothing else is irE.
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Constraint graphs for (F2) formulae Let ¢ be the formula:

K L
Vi./\fkgiA/\i§g|AiEstHa[i]*b[ier]Nq
k=1 =1

¢

where 0<s<t,peN,andge Z. Lete, ={ncZ| = @[n/i]}.
The set of edgeR is defined by the following case split:

1. If the right hand side of the implication &i] — b[i + p] < g, we have (cf. Fig. 3):
E>{(ak > (bk+p) | ken}

. .
b ® o o o Se o Mo o °
0 (U

Fig. 3. Constraint graph fovi.l <i <uAi=,0—a[i]—b[i+3] <5

2. If the right hand side of the implication&si] — b[i + p] > q, then (cf. Figure 4):
E > {(b.k+p) = (ak) | ken}

a ® ° ™ o ° °
3 -5 -5 3 -5
b ® § ° ™ ° ° § ° °

0 1(u)

Fig. 4. Constraint graph fovi.l <i <uAi=,0—afi]—b[i+3] >5

Nothing else is irE.

Constraint graphs for (F3) formulae Let ¢ be the formula below, whereQ s< t,
O<u<v,peZ® andqeZ:

Wi AR i Ai<g At A ARSI A Ai<@ A jmov Al— | < p—ali]—b[j] ~q

k=1 1=1 k=1 I=1

g ¥
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Let @(i,k) and@?(j,k) be the subformulae defining the ranges ahd j, respec-
tively, ande! = {n€ Z | = @4[n/i]}, »2={ne€Z | = ¢ [n/j]}, be these ranges
under the valuation. Let T< = {(ty, k) K (ty,k+1) | Inc 2t Imer?. n—m< p}

andT- = {(ty.k) > (ty,k—1) | Ine 22 Ime »2 . n—m> p}. Note thafT- andT-
are empty is the precondition ¢fis not satisfiable. The set of eddess defined by the
following case split:
1. If p < o, we consider two cases, based on the directica]iof- b[j] ~ q:
(a) forafi] —b[j] < q, we have (Fig. 5):
ES{(ak) % (tg,k—p) ke rl} U {(tg, k) > (bk) [ ke 22} U Te

a ® ° ® [ ° °
5 ‘ 5 ‘ 5 |
ty @9 "0 e "0, ~e, "0, "¢, ~e¢; =
1 0 0 l 0
b @ [ [ ° o [ [ ®
1(l2) 1(u2)
Fig. 5. Constraint graph fowi,j.l1 <i <u Al < j<WwAIi—j<3ANi=0AN]j=1-—
afi] —b[j] <5

(b) forafi] —b[j] > g, we have:
E S {(b,k) — (tg,k+p) [ ke 22} U {(ts,k) > (k) [ke 2} U To
2. If p= o, we consider again two cases, based on the directiafilof b[j] ~ q:
(a) forali] —b[j] < g, we have (Fig. 6):
E>{(ak > (tg,k) | ke s} U {(ty,k) > (bK) [kerZ} UT- U To
(b) forali]—b[j] > g, we have:
E > {(b,k) —> (tp,K) | ke 22} U {(ty,k) 5 (ak) |[kee} UT-UT>

Nothing else is irE.

Relating constraint graphs and models of formulaeLet us point out the correspon-
dence between constraint graphs and models of formulaedbtms (F1)-(F3), i.e. if
the vertices of a constraint graph for a formgla&an be labelled in a consistent way,
then from the labelling one can extract a modeldoand vice versa. This proves the
correctness of the construction for constraint graphsgusie additional tracks.
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a ® ] ® e o
5 } |

b €007 "8F "% 0o "% "
| o 0o |

be e e e ) °

Fig. 6. Constraint graph fovi, j.l1 <i <up Al < j<up Ai=20Aj=21—afi]—b[j] <5

Letd(k,a) be a formula of the forms (F1)-(F3); k — Z a valuation of the array-
bound variables i, andG, ¢ = (V, E) its corresponding constraint graphlabelling

Lab:V — Z of G, 4 is calledconsistentf and only if (1) for all edges, LY v2 € E, we
haveLab(v1) — Lab(v;) < kand (2)Lab((¢,n)) =0 foralln € Z.

Lemma 6. Let ¢(k,a) be a formula of the form (F1)-(F3). Then, for all valuations
I : k—Zandp: a— “Z% we have thatl,y) & ¢ if and only if there exists a
consistent labelling Lab of G such that j@a,i) = Lab((a,i)), forallac aandic Z.

Proof. We carry out the proof separately fpbeing of type (F1)-(F3).
(FL)o:Vi . A fi<i A ALji<g Ai=st—ali]~h(k)where 0<t <s

“=" By the construction o5, y = (V,E), we haveV = {a,{} x Z. DefineLab:V — Z
asLab((a,n)) = u(a,n) andLab((Z,n)) =0 for alln € Z. To show thatabis consistent,
let ~ be <, the other case being symmetric. Let us consider any edge EoFor
edges linking nodes frorg x Z, we have triviallyLab((Z,n)) — Lab(({,n+ 1)) <0
andLab((¢,n+1)) — Lab((¢,n)) < 0. The only other edges G, 4 are of the form

h(k . . : . .
(a,n) Al (¢,n) with n € », wheree, is the set given in the construction & .

Any n € », satisfies the precondition @f. Since(1,) is a model ofp, we have that
H(a,n) — 0 < h(k), which impliesLab((a,n)) — Lab((¢,n)) < h(k).

“«<" This direction follows from a similar argument.

(F2)o:Vi. ANKifc<i A ALi<g A i=st— afi] —bli+ p] ~ qwhere 0< s < t,
peN,qeZ.

“=" By the construction ofG, ¢y = (V,E), we haveV = {a,b,{} x Z. DefineLab:
V — Z aslLab((a,n)) = p(a,n), Lab((b,n)) = u(b,n), andLab(({,n)) =0 foralln €
Z. To show thatlab is consistent, let- be <, the other case being symmetric. Let
us consider any edge frof. For edges linking nodes frohx Z, we have trivially
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Lab((¢,n)) —Lab((¢,n+1)) < 0andLab(({,n+ 1)) — Lab(({,n)) < 0. The only other
edges inG, ¢ are of the form(a,n) 4, (b,n+ p) with n € #, wheree, is the set given

in the construction of5, 4. Since(1, ) is a model of¢, then for alln € #,, we have
p(a,n) — pu(b,n+ p) < g, which impliesLab((a,n)) — Lab((b,n+ p)) < q.

“<" This direction follows from a similar argument.

(FO: Vi Adafe<i ANZI<a A NG TRR<iAANZ < Ai-j<
pAiI=stAj=yv—ali]-Db[j]~qwhere 0<s<t,0<u<v,peZ” andqge Z.

Let us assume first thgt < co and that~ is <, the other cases being very similar.
Let the sete ! and» 2 be defined as in the construction of the constraint g@ph

“=" By the construction oG, y = (V,E), we haveV = {a,b,{,ty} x Z. First of all, we
defineLab:V — Z asLab((a,n)) = u(a,n), Lab((b,n)) = p(b,n), andLab(({,n)) =0
for all n € Z. It remains to definkab for ty x Z.

Let us consider first the case whefe = 0. Then, there do not exigtc »;* and
| € »2 such thak — I < p. This allows us to defineab((ty,n)) = p(a,n+ p) — q for
n+pe el Lab((ty,n)) = u(b,n) for n € »2 andLab((ty,n)) = O for all othern € Z.
As there is na such than+ p € ».* andn € »2 and as there are no arcs linking nodes
of ty x Z, it can be easily checked that the labelling is consistent.

Second, we consider the case whEre# 0. In such a case, there exkéte » ! and
| € 22 such thak’ —| < p. Thus,»2 is not empty, and by definition it is finite, hence it
has a maximum element.

Then, we defingab((ty, n)) as follows: Fon < max# 2), Lab((ty,n)) = min{pu(b,i) |i €
»2 andi > n}. Forn > maxz?), we define the labelling inductively as follows:nf+
pe »l, thenLab((ty,n)) = maxLab((ty,n— 1)), (a,n+ p) —q), otherwise_ab((ty, n)) =
Lab((ty,n— 1)). It remains to show thanin{p(b,i) | i € »2 andi > n} exists and that
Labis consistent.

Sincep is a model, we have(a, k) — (b, j) < g for all j € »2 with K — j < p.
This implies that the sefu(b,i) | i € 2 andi > n} is bounded from below. Therefore
min{u(b,i) | i € »2 andi > n} exists.

To show that.abis consistent, we consider all edges®f.

For edges linking nodes fro x Z, we have triviallyLab((Z,n)) — Lab(({,n+
1)) <0 andLab(({,n+ 1)) — Lab(({,n)) < 0.

For edges of<, we have by definition of the labelling &f x Z thatLab((ty,n)) <
Lab((ty,n+1)) for alln € Z. Indeed, fon < max» 2), we setab(ty,n) = min{u(b,i) | i €
2?2 andi > n}. Notice that, forny < n, we havelLab(ty,n;) < Lab(ty,n2). Forn >
maxz?), we setLab(ty,n) = Lab(ty,n—1).

For edges in{(a k) 4, (ty,k— p) | k € 2}, we consider two cases. K— p >

max»?), then by definition of the labelling, we have thaab((a,k)) = pu(a,k) and
Lab((ty,k—p)) = maxLab((ty,n—1)),u(a,k) —q). ThereforeLab((a, k)) — Lab((ty, k—
p)) < q.If k— p < max»?), then by definition of the labelling, we have thaith((a, k)) =
H(a k) andLab((ty,k — p)) = min{u(b,i) | i € »2 andi > k— p}. Letm€ » 2 be such
thatp(b, m) = Lab((ty,k— p)). Sinceptis a model, we havg(a, k) — p(b,m) < qg. This
impliesLab((a,k)) — Lab((ty,k—p)) <q.
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Finally, for edges ir{ (ty, k) 5 (b,k) | ke 22}, we have by definition of the labelling
thatLab((ty, k)) — Lab((b,k)) < 0.

“«<" Let Lab be a consistent labelling @& ¢ andp a valuation such that(a,i) =
Lab((a,i)) forallac aandi € Z. Leti, j such thap\[ =, f1 <i A AfL,i <gt A A2, F2<
i A /\lelj < g|2 ANi—j<pAi=st A j=yv. By the construction oG, 4, there are

edgesa,i) & (ty,i— p), (tg,1) > (tg,i+1),.... (t, | — 1) > (ty, ) and(ty, }) — (b, ).
By the fact that.abis consistent, we haveab((a,i)) — Lab((b, j)) < g which implies
thatu(aa I) - l,l(b, J) <q. o

4.3 From Formulae to Counter Automata

In this section, we describe the construction of an FB&Aorresponding to a formula
¢ such that (1) each run @ corresponds to a model ¢f and (2) for each model df,
Ay has atleast one corresponding run. In this way, we effdgtiegluce the satisfiability
problem forLIA to the emptiness problem for FBCA.

The construction of FBCA is by induction on the structureha formulae. For the
rest of this section, lep be a formulak the set of array-bound variables ¢n and
a the set of array variables i, i.e. FV(¢) = k Ua. Suppose thap is the matrix of
a formula in the normal form (NF), i.e : Vg 6i(k) A Ajey Wij (K, @), where®; are
PA constraints angij are formulae of types (F1)-(F3). The automakgns defined as
Wiel Ao, © Qs Ay » Whered ande are the union and intersection operators on FBCA.
The construction of counter automatg, for the formulaa;j of type (F1)-(F3) relies
on the definition of the constraint graphs in Section 4.2. Higneach accepting run of
Ay; gives a consistent valuation of the constraint graptipf

Counter Automata Templates. To simplify the definition of counter automata, we
note that each constraint graph for the basic formulae o (ffi1)-(F3) is composed
of horizontal vertical, anddiagonaledges, which are defined in roughly the same way
for all types of formulae (cf. Section 4.2). We take advastafjthis fact, and we start
by defining three types of counter automtgmplateswhich are subsequently used to
define the counter automata for the basic formdlMore precisely, the automata for
(F1)-(F3) formulae will be defined as-products of particular instances of the automata
templates for the horizontal, vertical, and diagonal edigfeéke appropriate constraint
graphs. In the following definitions, we assume the existemica special counteg
(tick), incremented by each transition rule, i.e. we sugyhat the constraint = x; + 1

is implicitly in conjunction with each formula labelling eansition rule. Intuitively, the
role of thex; counter is to synchronism all automata composed byztheroduct on a
common current position.

The template for the horizontal edgdstabe an array symbadir € {1eft,right,bi}
be adirectionparameter, an@be a formula on array-bound variables. kgtbe the set
{X« | k€ FV(@)}. We define the templatd (a, dir,@) = (x,Q,L,R,—), where:

7 By templatewe mean a class of counter automata which all share the sanctuse.
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— X= {Xa} Uxk. These counters will have the same names in all instandds of
— Q=1{qL,9r, PL, Pr}. The control states are required to have fresh names in every
instance oH. L = {q., p.} andR= {qg, pr}-

- Q 5 dL, Or N gr, QL M Ors PL N PL, PR LR pr, andpL —Q(Xk) OR.

In the above(p(x) is the formula obtained by replacing each occurrence of eayar
bound variablé € FV (@) by its corresponding countg. The formulag (Xa, X;) is Xa—
X, < 0if dir = right, X, —Xa < 0 if dir = left, andx}, = X, if dir =bi. Moreover, for
each transition rule, we assume the conjuncfiQiey (g X = X« to be added implicitly
to the labelling formula, i.e. the value of apcounter stays constant throughout a run.
Thexy parameters are used within guards of the fafm f(xx), where~e {<,>} and
f is a linear combination afy, in order to mark the position of the array boundaries,
during the run of the automata.

If, for a given valuation of the parametexg, the formulap holds, then any accept-
ing run of (any instance of)l visitsq, infinitely often on the left, andr infinitely often
on the right. Otherwise, if for the given valuation xf, @ does not hold, the instance
automata have a run that goes infinitely often thropglon the left, and througpr on
the right. In this case, the automata do not impose any @n&ronxs.

The template for the diagonal edgeket a,b be array symbolsg € Z, p,s € NT,

t € [0,s— 1], anddir € {left,right} be a direction parameter. In the following, we
refer to the set&, = {lI4,...,Ik} andU = {uy, ..., u_} of lower, and respectively upper
bounds, wherg andu; are linear combinations of array-bound variables, anddet
{4 | ke UL FV (i) U Us—y FV(uj)}. Further, we assume thiatu U # 0 — we deal
with the case oLUTU = 0 later on. We define the templdi¥a,b, p,q,s,t,L,U,dir) =
(x,Q,L,R,—), where:

— X={Xa, X } Uk U{x% | 1 <i < p}. The countersa, Xy, andxx will have the same
names in all instances @. On the other hand, the countegs 1 <i < p, will
have fresh names in every instancelnf The x; counters are used for splitting
diagonal edges that span over more than one position, intss# diagonal edges
connecting only adjacent positioﬁs.

-Q={aq,r}U{g |0<i<stu{g |0<j<s j+1<i< j+p}. The control
states are required to have fresh names in every instanBe bét L = {q.} U
{gi|0<i<s}tandR={gr}U{qi | 0<i < s}.

-q AR L, OR AR qr, andq (3 Nieni21(%) A Averi<ulx) A i=dt) IR

NieL X > (X) =1 A (Ve Xe=l(Xk)—1) A X+1=si

g, forall0<i<s.

— g NieL X >1(%) A Ayeu Xe<u(Xk) A & [Xa/X0.Xo/Xp] A1) mods: forall0<i<s

8 For instance, the constraiafi] — bli +3] < 5 can be split ta[i] — xq[i + 1] < 5, x1[i + 1] —
X2[i+2] <0, andxy[i + 2] — bi + 3] < 0. The constraints for array values of neighboring indices
can then be conveniently expressed by using the currentudncefvalues of the appropriate
counters (e.g., for our example constraiat— X; < 5,x; —X, < 0, andx, —x;, < 0, which of
course appear on subsequent transitions of the appropieid.).

22



=G Voews=Uih) A %= £ Gba/o/l CIEH, forall0<i<s.

. Vaen Xe=U(Xk) A X=si A &i[Xa/X0,X/Xp] gr, forall0<i<s,if p=1.

— q Hhelelel oi  forallo< j<s j<i<j+p-1.

EbaPoXoXel, 0 forall 0< j <5, if p> 1.

- Q}er,l
In the abovel (xx) andu(xx ) denote the expressiohandu in which each occurrence of
an array-bound variableis replaced by its corresponding parameqerAs before, for
each transition rule, we assume the conjuncfigary () X, = X to be added implicitly
to the labelling formula, i.e. we require that the value ofxartounter stays constant
throughout the run. The formuld&gare defined as follows:

— if dir = right, & = Agek, Xk — X1 < Ok, for Kj ={k | 0 <k < p, i =sk+t},
0o =qandoyg =0,k >0,

— if dir = 1left, &; :/\keKix(Fl—xkgo(k, Ki={k|1<k<p, k+i=st},a1=q
andax =0,k > 1.

Finally, for the casd. = U = 0, we define any instance @f(a,b, p,q,s,t,0,0,dir) to
beA; ® Az, whereA; is an instance db(a, b, p,q,s,t,0,{0},dir) andA; is an instance
of D(a,b, p,q,s,t,{0},0,dir).

X > 11 —3AX% <u;—3
/\X’a—X1§5/\X/2—Xt¢ <0

xT:u1—3/\ x’a—x1§5
f— f——
X — X2 <OAX =2 /\x’z—xw, <0

=(Fi. 1 <i<uAi=20)

Fig. 7. The FBCA for the diagonal edges in the formglaYi, j.l1 <i<up Al < j<wmAi—j <
3AI=p0A ] =51— ali] —b[j] <5 from Fig. 5 obtained aB(a,ty,3,5,2,0— 3, {ly — 3}, {uy —
3},1eft). To understand the formuly on the transition frongg to gy, note that the constraint
i =sk+t in the definition of the sefg instantiates to &, k— 3, and henc&o = {1, 3}. A similar
reasoning applies for the other transitions.

The construction can be understood by considering an dogephn of (any instance
of) D. Let us consider the case in which there exists a vidlubetween the bounds that
satisfies also the modulo constraint. If this is not the casge will be an accepting run
(3 AeLi2H() A Aueri<u(xi) A i=st

that takes the transitiom_ ) gr exactly once.
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Since the run is accepting, it must visit a state flioimfinitely often on the left, and
a state fronRinfinitely often on the right. There are three casesi(3 0 andU £ 0, (2)
L =0andU # 0, and (3)L # 0 andU = 0. In the case (1), a bi-infinite run will vist_
infinitely often on the left, andg, infinitely often on the right. Notice that the run cannot
visit the loopgo — ... — gs—1 infinitely often, due to the presence of both lower and

upper bounds or;. In the case (2), the run cannot take any of the transitipns q;,

0 <i < s, due to the emptiness &f, which makes the guard unsatisfiable. Hence the
only possibility for an accepting bi-infinite run is to vighe stategjp — ... — gs_1

infinitely often on the left. Due to the presence of the upmana onx,, the run cannot
stay forever inside this loop, and must exit via one of ¢ghe» g}, ; (or gi — gr for
p = 1) transitions, getting trapped intg on the right. Case (3) is symmetric to (2).
Note that, in all cases, due to the modulo testgdn the entry and exit of the main
loopgo — ... — Qgs_1 ON any accepting run, whenever a stgted < i < s, is visited, the

value of thex; counter must equalmodulos. Note also that the role of thgf states is
to describe constraints corresponding to edges that s&idie the given interval bounds
and lead above its upper bound (or vice versa). The numberobfedges is bounded.
We do not use the same construction at the beginning of tkevalt as the templates
are applied such that none of the edges represented go@sthel®wer bounds.

Template for the vertical edged.et a,b be array symbolsy € Z, p,s<€ NT, andt ¢
[0,s—1]. We again refer to the sefs= {l4,...,Ik} andU = {uy,...,u_} of lower,
and respectively upper bounds, whirandu; are linear combinations of array-bound
variables. Also, lekx = {x | k€ UL FV(li) U Uj_1FV(uj)}. Further, we assume
thatLUU # 0 — we deal with the case &fUTU = 0 later on. We define the template
V(a,b,p,q,s,t,L,U) = (x,Q,L,R —), where:

— X={Xa,Xp} UXk. The countersg,, X, Xk have the same names in all instance¥ of

- Q={qL,gr}U{aqi | 0<i < s}. The control states are required to have fresh names
ineveryinstance 0. L= {qL} U{q |0 <i < s} andR= {gr} U{qi | 0<i <s}.

=3 AleLiZ1 (%) A Aueni<u(xk) A i=st)

T T
— 0L — 0., Gr — Or, @andq.
NieL X > (X) =1 A Ve % +1=l (X)) A X +1=4

g,0<i<s

>| —Xp< . .
— g Nrer Xe210) A Auew X <UCk) 1 Xa—Xo=d dii+1) mods: 0<i < sandi =st.

> uel Xt . .
— g NieLXx>1(Xk) A Ayew X <U(Xk) Uii+1) mods 0< i< sandi Zst.

Xt=U(XK) A Xr=si A Xg—Xp< . .
_quueIUT (Xk) A Xr=d bqu,O§|<sand|ESt.

Vueu Xr=U(Xk) A Xr=si

— g Or, 0<i < sandi #st.

In the abovel (xk) andu(xx ) denote the expressiohandu in which each occurrence of
an array-bound variableis replaced by the parameter As before, for each transition
rule, we assume the conjunctipcry ) X, = X to be added implicitly to the labelling
formula, i.e. the value of ary counter stays constant throughout the run. Finally, if
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L = U = 0, we define any instance df(a,b, p,q,s,t,0,0) asA; ® Ay, whereA; is an
instance oV (a,b, p,q,s,t,0,{0}) andA; is an instance d¥ (a,b, p,q,s,t,{0},0). The
intuition behind the construction &f is similar to the one ob.

=(Ji L <i<uAi=z1)

Fig. 8. The FBCA for the vertical edges in the formdlaVi, j.l1 <i<ui Al < j<wpAi— | <
3Ai=0A ] =21— ali]—b[j] <5 from Fig. 5 obtained ag(ty,b,2,1,{l2},{uz}).

4.4 Counter Automata for Basic Formulae

We are now ready to define the construction of FBCA for thedfsimulae. This is
done by composing instances of templates, usingzttaperator for intersection (cf.
Section 2).

Formulae of type (F1) Let ¢ be
K L
Yi. /\ fu <i A /\i <g Ai=st—ali] ~hk)
k=1 =1

where 0<t <s LetL = {fy,...,fx} andU = {gs,...,0.}. Then we definey =
A1 ® A, whereA; andA; are instantiated according to Table 1(a).

Formulae of type (F2) Let ¢ be the formula:

K L
Vii Afe<i A Ni<ag Ai=st—afi]—bli+p/~q
k=1 =1

where 0< s< t. As previously, we denote = {f1,..., fx } andU = {gy,...,9.}. The
instantiation oy is done according to the value paind~ as described in Table 1(B).
Given a set of integerSand an integep we use the notatioB+ pfor {s+ p|se S}.

9 Note that in the last two lines of Table 1(b), we shift the i bounds appearing in the
formula in order to be able to re-use the prepared templatsdp not explicitly deal with
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[p[~] Ay |
0 | <|V(ab,q,st,L,U)
[~ A [ A 0 [>|V(ba qstL,0)
<| V(a,¢,h,st,L,U) |H(,bi,T) > 0| <| D(a,b, p,q,s,t,L,U,right)
>\V(a,¢,—h,s t,IL,U)|H(Z,bi, T) > 0| >| D(b,a, p,—q,s t,L,U,1eft)
< 0| <|D(a,b,—p,q,s,t+p, L+ p,U+ p,Lleft)
(a) <0/ >|D(b,a,—p,—q,st+p,L+ p, U+ p,right)

(b)
Table 1. The instantiation table for (F1) and (F2) formulae

Formulae of type(F3) Let ¢ be the (F3)-type formula:

K Ly Ko L2 . .
Viyj. Afb<in Ai<gtn ARR<in ANis@ri-i< nisstaj=v—ai]—b[j]~q
k=1 I=1 k=1 =1

)

where 0<s<tand 0<u<v. LetLi={f},..., f,‘<i} andU; = {g‘l,...,g‘Li}, fori=1,2,
respectively. Byp we denote the precondition gf. The automator, is defined as
Ay = A1 ® A ® Ag, whereAq, A, Az are instantiated according to Table 2.

Counter Automata for Array-Bound Constraints. The FBCAAg for a Presburger
constraint® on array-bound variables & = (xx,Q,L,R —), wherexy is the set

0
(% | k€ FV(®)}, Q= {du,qr}, L = {aL}, R={ar}, and—= {q. = q,q 2

ORr,OR T gr}, andB(xy) denotes the formul@ in which each occurrence of an array-
bound variabld € FV(8) is replaced by its corresponding parameder

4.5 From Formulae to Counter Automata

Given a formulap(k,a) which is a positive boolean combination of formulae of types
(F1)-(F3) and PA constraints on the array-bound variakldet Ay be the automaton
defined inductively on the structure §fas follows:

— if ¢ is of type (F1)-(F3), or a PA constraint &nthenAy is as in Section 4.4,
—if & = Y1 AYg, thenA¢ = Ay, ® Ay,
— if & = Y1V Y, thenAy = Ay, WA,.
edges leaving from within the given bounds and going bel@diver bound. Due to the way
the templates are constructed, the shifting preservesthargtics of the formula — instead of

edges going below the lower bound of a certain interval, wainlihe same edges just going
above the upper bound of the shifted interval, which our tatep are prepared for.
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Lp[~] At | A | As |
o | <|V(aty,q,5t,1Lq,U7) H(ty,oi,di, j.Q) V(ty,b,0,u,v, Lo, Up)
o | >|V(b,ty,—q,u,v,Ly,Us) H(ty,bi, i, j.q) V(ty,a,0,5,t,1L1,U;)
0 |<|V(aty,q,st,L1,Uyp) H(ty,right,3i, j.Q)| V(tp,b,0,u,v,L,Up)
0 | >|V(bty,—q,u,v,Ly,Up) H(ty,left,3i,j.@) | V(ty,a,0,51t,L1,Uq)
> 0| <|D(aty, p,qg,8,t — p,L1 — p,Us — p,1eft) H(ty,right,3i, j.Q)| V(tp,b,0,u,v, L, Up)
> 0| >| D(b,ty, p,—q,u,v,Lp,Up, right) H(ty,left,di,j.q) |V(ty,a,0,51t,1L1,Us)
< 0| <| D(aty,— p,q,S,L]Ll,Ul,rlght) H(ty,right,3i, j.@)| V(ty,b,0,u,v, Lo, Us)
< 0| >| D(b,ty, —p,—q,u,v+ p,Lo+ p,Us+ p,1eft)| H(ty,left, i, j.¢) |V(ty,a,0,51t,1L1,Us)

Table 2. The instantiation table for (F3) formulae. Note that in sdines, we shift the original
bounds appearing in the formula in order to be able to refus@tepared templates that do not
explicitly deal with edges leaving from within the given lmals and going below the lower bound.
Due to the way the templates are constructed, the shiftieggpves the semantics of the formula
— instead of edges going below the lower bound of a certaériat, we obtain the same edges
just going above the upper bound of the shifted interval civldur templates are prepared for.
Given a set of integerSand an integep, we use the notatioS+ p for {s+ p|se S}

Letr € ® (Ap) be an accepting run &, andd(r) = val(r(0))(x;) be the value of
the x; (tick) counter at position 0 on. We denote by (r) = r o 6-3") the centered
run obtained fronr by shifting it such that the value of at position 0 is also 0. By
Lemma 1 is an accepting run oAy if and only if n(r) is. Notice thatr induces the
following valuations ork anda, respectively1; (k) = val(n(r)(0))(x), for all k € k,
andy, (a,i) = val(n(r)(i))(xa), forallac aandi € Z.

For an arbitrary valuation € v (Ay), there exists € & (Ay) such thav = val(r).
LetMg (v) = (1r, lr) be the valuation of the free variablestirthat correspond to. One
can see now tha¥ly defines a functioMy : v (Ay) — (k — Z) x (a— “Z®).10

To proof the main theorem relating a formula with its cor@sging automaton we
give first several lemmas. The following two lemmas relatedbntrol states visited by
an accepting run ofy, with its positions.

Lemma 7. Let A= (x,Q,L,R,—), where Q= {q.,qr} U{qi |0<i < s} U {qij |0<

j<s, j+1<i< j+p}beaninstance of the diagonal templatglb, p,q,s,t, L, U, dir),
and 1y be any normalised accepting run of A. Supposing IhatU # 0, for all k € Z,
we have that, if eitherg(k) = (g/,v) or ro(k) = (q,v) for some valuatiorv of the
counters in A, ther (k) =si.

Proof. Follows easily from (1) the fact that to enter and to leavestaes{q; | 0 <
i < s} a guard checking the modulo constraint has to be satisfie@ride fact that if
LuUU # 0, then an accepting run has to either enter or leave the ated <i < s}
due to the presence of guards in the transitions. a

10 By definition, for eachv € v (Ay) there exist valuations: and , so M is defined for all

Ve v (Ay). Letry,ro € & (Ay) be two runs such thaal(ry) = val(rp) = v. We haved(ry) =
o(rz), thereforen(r1) = n(rz), which leads tar, = 1, andpy, = r,.
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Lemma 8. Let A= (x,Q,L,R,—), where Q= {q.,qr} U{qi | 0<i < s} be aninstance

of the vertical template ¥4, b, p,q,s,t,IL,U), and fp be any normalised accepting run
of A. Supposing thdt UU # 0 for all k € Z, we have that, if §(k) = (qgi,v) for some
valuationv, thenv(k) =s1.

Proof. Like the proof of Lemma 7. a
The following lemma is the basis of theorem 1.

Lemma 9. Let$(k,a) be a formula of the form (F1)-(F3) andy/the corresponding
automaton, as defined in Section 4.4. Thep(M(Ay)) = [[¢].

Proof. We only give the proof for the most difficult case, i.e. formeilof the form
(F3). For the other formulae, it is similar. Let us have a faolad : Vi, j . /\E1 fl<
AN <G AN RS ANZ <SP ANI—]<pAiI=stAj=gv—al]-

b[j] ~ qwhere O<s<tandO<u<v. LetLi={fj,.... fi } andU; = {g},....9..}

for i = 1,2, respectively. Letp=3i,j . AL fE <i A AL i <gb A AR, 2 <

i A /\lelj < g|2 ANi—j<pAi=st Aj=yv. We givethe prooff0p> 0 and~=<.
The other cases are very similar. 1&gt be the automaton correspondingftoVe have

Ay =A1®A> @Az whereA, is an instance dD(a,ty, p,q,s,t — p,L1— p,U1— p,1eft),

Ay is an instance ofl (ty, right, @), andAg is an instance o¥ (ty,b,0,u,v,L>, Us). We
suppose thdk; UTU; # 0 andlL, UU, # 0. The other cases are treated in a similar way.

“C” We first show thatMy (v (Ag)) C [[¢]. Letr be an accepting run dfy andro be
the normalised run correspondingroLet i, : k — Z andy : {a,b} x Z — Z be the
valuations of the free variables ¢fcorresponding to the run. LetG,, 4 = (V,E) be
the constraint graph correspondingftdor the valuation of the bound variablgs We
show below that starting from the rug, we can define a consistent labellibgb of
G, ¢. Thanks to Lemma 6 which implies that the labellirap corresponds to a model,
this is enough to prove thady (v (Ay)) C [¢].

By construction, the rurp of the automatoiy = A; ® A> ® Az corresponds to runs
rhin the automata (i € {1,2,3}). We haveval(ro)(xa) = val(r§) (xa) andval(ro) () =
val(rd)(xp) as well asval(ro) (x, ) = val(r) (%,) = val(rd)(x, ) = val(r§)(x, ).

The labellingLabis defined as followd:ab((a,i)) = pr(a,i), Lab((b,i)) = pr (b, i),
andLab((ty,i)) = val(ro(i))(x, ) for all i € Z. We show in the following thatab is
consistent. Let,, = max{i,(f}) | 1<k <K} andui, =min{i(g)) | 1< <L}
fori=1,2. Letey, ={k| 21, <k<wuy, A k=st}andey, ={k| 2, <k<
a2, N k=yVv}. We have to consider several cases depending on the Iefugtntd r
accepting states visited by the rujsLetAs = (x1,Q,L,R,—), Ap = (X2, Q,L,R,—'

), andAg = (x3,Q",L",R’',—"). We haveQ = {q_,qr} U{q | 0<i < S}U{qij |0<
J'<s, jri<i<j+phL={aq}u{ag|0<i<s}andR={gr}U{q [0<i<s},
={0.,0&, P, PR} andQ” = {q/,qzt U {d/ | 0<i < s}.

1. The runr} is left-accepting using, and right-accepting usingr and goes through
the stateqq;i | 0 <i < s}. We now show thatabis consistent.
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(a) Letus consider an edde, k) 4, (ty,k—p) for somek € »1,,. We have to show

that Lab((a,k)) — Lab((ty,k— p)) < g. Due to the structure of the automaton
Aq, we have for eack € »1,, thatr}(k— p) = (q,v) for somei. Furthermore,
i =st — p due to Lemma 7. Then, the construction of the automaton éssur
that in any run, thep transitions followingg; are such thaval(r3(k))(xa) —
val(r(k— p))(x,) < g. This holds due to the roles of the additional counters
{Xi | 1 <i < p} from the definition ofD. This implies directlyLab((a,k)) —
Lab((ty,k—p)) < a.

(b) Let us consider an eddé&, k) 5 (b,k) for somek € »,,,. We have to show

thatLab((ty,k)) — Lab((b,k)) < 0. If 22, is not empty, then the rurg must
go through the statefgy’ | 0 <i < s} but it cannot stay there all the time. We
have for eactk € #2,, thatrd(k) = (g, v) with i =, v due to Lemma 8. Then,
the transition followingg; of the automaton ensures theal(r3(k))(x,) —
val(rd(k))(x,) < 0. This implies directlyLab((ty,k)) — Lab((b,k)) < 0.

(c) Let us consider the edgé&s. The accepting run% either goes througt and
gr or p| andpg. In the latter case, this means that the gugisinot satisfied.
Therefore, by definition]< is empty. In the former case, we haxg— Xt'¢, <0
for each transition of;. This givesval(r%(k))(x%) —val(rg(k+ 1))(x,) <0
for all k € Z, which impliesLaby((ty,k)) — Lab((ty,k+ 1)) < 0 for allk € Z.

. The runr% is left-accepting using the statg and right-accepting using the state

gr and does not go througfy; | 0 <i < s}. In this case, the run goes through

(3 Ateni=(Xk) A Aueri<u(xg) A i=gt)

the transitiong. gr. This means thaty,, is

empty and diagonal edges are trivially consistent. Theratiges are shown to be
consistent as in the cases 1(b) and 1(c).

. The runr} is left-accepting using a state fg; | 0 < i < s} and right-accepting
usinggr. In this case, Lemmas 7 and 8 can still be applied in a simitayr to the
first case to show that the labelling is consistent.

. The runr} is left-accepting using the statg and right-accepting usinfg; | 0 <

i < s}. Symmetric to the previous case.

. The rurr} is left-accepting using a state{i; | 0 < i < s} and right-accepting using
{gi | 0<i < s}. This is impossible becaudg UTU; # 0 implies that an accepting
run must either enter or leave the states | 0 < i < s} due to the presence of
guards in the transitions.

“ D" Now, we show thaf[$p]] C My (v (Ag)). Thisis, given a model aff, we have to show
that the counter automatdy has a corresponding accepting run. tief) be a model
of ¢. Because of Lemma 6, there exists a consistent labellatyof the constraint
graphG, ¢ with p(a,i) = Lab((a,i)) andp(b,i) = Lab((b,i)) for all i € Z. It remains to
show thatAy has a run corresponding to the labelliraf. It is enough to show that the
three automaté;, Ay, andAz have runs corresponding to the same labelliaf. That
is, there are rung} of Aq, r3 of Ay, r3 of A such thawal(rd(i))(xa) = Lab((a,i)) and
val(rd(i)) (%) = Lab((b,i)) for all i € Z as well asval(rj(i))(x, ) = val(r§(i)) (%,) =
val(rd(i))(x, ) = Lab((ty,i)) foralli € Z.

29



We define a bi-infinite sequenueZ — ({Xa, Xo, %, } U{XcK € K} U{Xj[j € {1,...,p—
1}} — Z) of valuations of the counters @§ such that :

— vk e ki € Z.v(i)(x) = 1(K)
— Vi € Z(i)(xa) = L((ai)) andv(i)(x) = L((b.i))
— Vi € Zv(i) (%) = L((tg.1)
—vVje{l,...p—1}Vie Zy(i)(x) = L((ai+])—q

Now, asv corresponds in the needed wayltab, it remains to show that each au-
tomatonAs, Az, Az has runs corresponding Wo(taking into account the relevant coun-
ters only). Letzi, = max{1(f}) | 1<k <Kj} andui, = min{i(g)) | 1 <1 < L} for
i=12. Lete!={K| £1; <k<w1; AKk=st} andf.PIZ: {K|z2) <k<aup Ak=yv}.

— The runr} of the automatom; is composed of three parts. The “left-accepting
part”, the “middle part’, and the “right-accepting” parthd@re are two cases to
consider depending on the emptiness or non-emptiness séthg.

e If »' is empty, then the run is constructed in the following waye Tift-

accepting part goes through the transithp_nL d., then the middle part is

(3. Ajen izl (Xk) A Ageri<u(xg) A i=st)

the transitiong. gr taken at an arbitrary

point. The right-accepting part goes through the tram;qi@l» gr. Since there

are no constraints (up to choosing the values of the parasi@tethe run can
be trivially chosen to correspond to

o If »}is notempty, then the left-accepting part goes throughrévesttiong, LR

q until one of the guards of the outgoing transitions is satikfivhich happens
whenx; reaches the value;, — 1 — p. The run then continues to one of ttye
states, namely the one for whigh+ 1 =gi. The middle part of the run then
goes through the statds} | 0 <i < s} till x; reaches the value 1, — p—
1. Subsequently, the run continues through the st:dtee gr Where it loops
forever. Within the run, the constraints that are to be Satiasvhen taking a
transition from &a; state include:
1. X, — x1 < g, which can be satisfied as in the sequencé valuations that
the run needs to follow, the value ®f equalsq, — q,
2. X1 —% < 0for 1<k < p, which can be satisfied as in the sequence of
valuationsv to be followed, alk;,_, andx, have the same value, and
3. x’p71 — X < 0. This last kind of constraints is tested at the moments when
the value ofx; corresponds to an inddxwhen a diagonal arc arrives to
ty. At that moment, in the sequenueof valuations that we try to follow,
X,_4 has the value of((a,| + p)) — g, and from the fact that the labelling
is consistent (and hends(a,l + p)) —L((ty,1)) < 0), it is clear that the
last kind of constraints can be satisfied too.
Hence, there is an accepting run corresponding to the biiieequence of
valuations. A similar reasoning applies when passing iindbe states’.
— The runs'g of A; andrd of Ag are constructed in a similar way.
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Theorem 1. Let ¢(k,a) be a positive boolean combination of formulae of types (F1)-
(F3) and PA constraints on the array-bound variablgsand A, be the automaton
defined in the previous. Then gk’ (Ay)) = [$].

Proof. Let us first introduce some notation. bebe an arbitrary set of variables, inter-
preted over some domaid, and: C x — D be a set of valuations. For some superset
y D x of the set of variables, we definefy= {1 :y — D |t [xe 1 }. If X1,y1 andxz,y>
are sets of variables interpreted over dom&@nandD, respectivelyx; C yi, X2 C ya,
andi12 € X1 — D1 x Xp — D2 is a set of pairs of valuations, leto Ty, y,= {(11,12) | 11:
y1— D1, 12:y2 — D2, (11]x;,12 x,) € 112}. The proof is by induction on the structure
of ¢. Lemma 9 takes care about the caseg dfeing of type (F1)-(F3). Ith is a PA
constraint ork, the proof is immediate.

For the inductive casé = Y1 A Y, let ki anda;, be the sets of array-bound and
array variables od;, fori = 1,2, respectively. We have by Lemma 3, that:

v (Al.Ul ®AUJ2) =v (AUJl) TX1UX2 nv (Alllz) TX1UX2

wherex; are the counters dhy, andx; are the counters dhy,. Applying Mg to this
equality, we obtain:

Mo (v (Ap ® Ay,)) = Mo (v (Ay,) Txauxa) N Mo (v (Agy) Txgux,)

sinceMy is defined point wise on sets of runs. By the induction hypsitheve have

My, (v (Atlh )) = [Wi]], fori=1,2. Itis easy to see thEMq;('V (Aqu)TXlUXZ) = [Will TkqUkg.aqUags
fori =1,2. Hence, we have:

Mo (v (Ay; © Ay,)) = [Wi]l Tkyukpagua, N [W2ll Tkyukp.aqua,= [W1A W2]]
The proof for the cas¢ = Y1 Vv Y3 follows a similar argument. O
The main result of the paper is the following:
Corollary 1. The logicLIA is decidable.

The proof of Corollary 1 uses the normalization step (cf. bearb) to rewrite any
formula ofLIA into the form (NF), and applies Theorem 1 to the matrix of tharfula
(i.e. the formula obtained by skipping the existential difeam prefix).

5 Conclusions and Future Work

We present a new decidable logic for reasoning about priegest programs handling
integer arrays. This logic allows to relate adjacent aradyes, as well as to express pe-
riodic facts relating all values situated at equidistarsifjons. We establish decidability
of this logic following the automata-theoretic approacb.tfiis end, we define a new
class of Biichi automata with counters, for which emptingskecidable, and translate
each formula into a corresponding automaton.

Future work will include the study of the complexity of ourailgon procedure and
its implementation. We furthermore plan to develop invarigeneration methods in
order to give automatic correctness proofs for programis imteger arrays.
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A Extensions of Flat Counter Automata

The purpose of this appendix is to motivate the extensiornth@fresult in [6, 4], on
flat counter automata. Given a flat counter automaten (x,Q,—), and a loopy on

a control stateg € Q, labelled with DBM formulae only, one can effectively buid
PA formulaWqy(y, x,x") which is satisfied by all triplegn,v, V'), where there exists an
execution corresponding toloop iterations, in which the initial values of the counters
arev and the final values arg. Based on this result, we prove two important lemmas.

Lemma 10. If any control loop of A is labelled by a parametric DBM forrauthen for
any two control states,q € Q, one can effectively build a PA formulg R(x,x’) such
that, for any two configurationgy,v) and(d,v’), (q,V’) is a successor afg,v) if and

only if = Ry ¢ (V(x), V' (X')).

Proof. First, we eliminate the atomic propositions of the form f (k) wherek are the
parameters o and~¢ {<,>} from all control loops ofA. This is done by introducing
an extra parametet;, Then we change ~ f into x ~ xt AX; = x; for all transition
rules ofA. Consequently, all loops & will be labelled only with DBM formulae. Let
Q be the conjunction of all formulae = f(k), for all linear combinationd that are
eliminated in this way from the transition rulesAf

If Ais flat, any control path betweepandq' is of the form

v Vi Vi .
Tag=00 200 251 2.0k 1 5 Q1 —5 g1 =0

for k > 1, wherey; are elementary loops ar@ are control paths in which each state
appears only once, ford i <k. Sinceg; are finite, one can build PA formulag(x,x’),
by composing the PA formulae on the transitionsopfin other words, ifo; : g1 —

On— _
o 92, 3. On-1 —— Gn then@ : IxoIX1... Ixn . X = Xo AX = Xn A AL i (Xi, Xi11)-

The needed formula is the conjunction @f with the disjunction over all path
schemegt, of formulae of the form:

O : IXy... Ixok—13NoINg ... ANk 1 . X = X1 AX = Xokp1 A
k
/\ Waiy (Ni,X2i—1,X2i) A @ (X2i, X2i41)
i=1

O
The next result concerns the termination of one control |dapelled with DBM
formulae. Since DBM formulae are closed under compositi@ncan consider w.l.0.g.

only one self-loop of the forng $xx), q. We first instrument the DBM formula, by

replacing each constraint of the foosnxK k by x—{ < kAL = andx>kby{—x<
—kA Tl =, where is a fresh counter, initially set to zero. From now on, we rréde
the setx as to the set of all counters, includigags well.
In general, a DBM formul@(x,x’) can be represented as a directed weighted graph
whose set of vertices is the set of variables x’, and there is an edge with weight
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Fig. 9. Constraint Graph and Automaton for the DB&##x < —1AU >0AU —x < 0.

k from x to y if and only if there is an explicit constrait—y < k in ¢. An n-step
execution of the loop is represented by a constraint g@{phjefined as the minimal

graph whose set of vertices|i_ox', wherex' = {x |x € x} and, for all 0< i < n, there
is an edge labellekt

— fromx toy, if there is a constraint—y < kin ¢.

— fromx*1 toy*+1 if there is a constraint —y < kin ¢.
— fromx toy'*1, if there is a constraint—y < kin ¢.

— fromx*1toy!, if there is a constraint —y < kin ¢.

We define the infinite grapBg = U, Gg- For instance, Figure 9 (a) shows the con-
straint graptGg corresponding to the DBM formubd —x < —1AU > 0AU —x < 0.

K
If mo:xd = .

., Y, yl,0<i,j <nis apath inGy, let w(m) denote the sum of all
labels along the path, i.e(1) = $M, k;. Clearly, we haved —yl < w(m). We define
min{X — yi} = min{ew(m) | : ¥ <% ... 57 yi1. By convention, if there are no paths
in Gy, betweernx' andy!, we take mifx — yl} = . On the other hand, if the set of

paths betweer andx! does not have a minimal element, we take frin- y/ } = —c

Notice that this can only be the caseé3f has a cycle whose weight is negative. With
this notation, we hav#’ —y! < min{x' — yl}. Moreover, this is the strongest relation
involving the values ok andy at the execution timeisand j, respectively. Notice that
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the satisfiability of all constraints betweehandy! is equivalent with the absence of
negative cycles involving the nodgsany! from Gg. For example, the thick edges in
Figure 9 (a) show a cycle iGyg.

The essence of the proof in [4] is to encode paths in the cminBlgrath{f, by
words of lengtm. Intuitively, a wordw of lengthn represents a pathbetween, say?
andy", with x,y € x, as follows: thew; symbol representsimultaneoushall edges of
Ttthat involve only nodes from' Uxi*1, 0 < i < n. Note that, for a path from® to y",
coded by a worav, the number of times th&; symbol is traversed by the path is odd,
whereas for a path frond to y°, or fromx” to y", this number is even. In particular, if
the path is cyclic, we are in the second case. We definevéightof a symbol as the
sum of the weights of all the edges in it. The weight of a finiravis the sum of the
weights of all symbols occurring in the word.

Given a DBM relationp(x,x’), theeven alphabesf ¢, denoted ag§, is the set of
all graphs satisfying the following conditions, for ea@he >§:

1. the set of nodes @ is x UX/,

2. for anyx,y € xUX/, there is an edge with labklfrom x toy, only if the constraint
x—y<koccursind,

3. the in-degree and out-degree of each node are at most one,

4. the number of edges frorto x’ equals the number of edges frofto x.

Starting from this encoding, it is possible to define a finitghted automatoAg, in
which each transition is labelled with a subgraplGgf and the weight of a transition
is the weight of the subgraph. Moreover, the constructiau@h that all paths between
certain pairs of control states are encodings of all cyalethé constraint grapts;.
Hence, fromAg, it is possible to give a PA formula stating the absence (es@nce) of
paths of negative weight iA§, and hence of negative cycles@f. For example, the
automaton in Figure 9 (b) accepts the word encoding of thieégd-igure 9 (a).

The following lemma is a consequence of the constructioarite=d above. Namely,
we are interested by a formula that characterises all ini¢ilues of the counters from
which there exists an infinite computation along the looptidéothat termination is a
universal problem: we are interested in the set of all states which there is a termi-
nating (or, vice versa, non-terminating) run of the loop.

Lemma 11. Given a control loopy labelled by a parametric DBM formula, and a con-
trol state g ony, one can effectively build a PA formulg{x), such that, for any con-
figuration(q,v), there exists an infinite computation alopgstarting with(q,v) if and

only if = Iqy(v(X)).

Proof. Let g LA g be a self-loop, wheré(x,X’) is a parametric DBM formula, and let

Gg be the corresponding infinite constraint graph. xgt= {xo | x € x} be the set of
initial values of the counters.

Leto™ : Ix03xL...3x" . x = xOAX = x" A A d(x',x 1) be the formula corre-
sponding to thex-th iteration of the loop, and lefi"(xg,X,X') = ®"(X,X') A Ayex X = X0
be the formula corresponding to theh iteration of the loop starting fromxy.

Notice that the constraint graj{, corresponding ta"(xo, X, x’) can be obtained

from G} by adding edges labelled witly betweend andZ?, and with—xo betweer(°
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andx?, for all x € x. Based on the encoding of unbounded constraint graphs asyvoe
define a weighted automaton recognizing all cycle&jn Notice that this automaton
has edges labelled with linear combinations of tg@arameters, and that these edges
do not occur within cycles.

Using the method described in [4], one can effectively baildA formulab(y, o)
that is satisfied by all tuple&,v), such that there exists a negative cycle of span
when the parameterg are assigned te. Hence the formulay . 6(y,xo) defines all
values ofxg for which there exists a negative cycle@j, and for which the loop has a
finite computation. The needed formulang. —8(y,Xg). O

For example, the PA formula defining the values for which theation of the loop
labelled with the DBM formulad —x < —1AU > 0A U —x < 0, started withx = Xg,
terminates im steps can be derived from the automaton in Figurng93:n—1 < 0.
Then, one can establish that the loop terminates for anglinélue ofx by verifying
the validity of the PA formuld’xpdn. xo—n—1<0.
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