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Contracts

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Execution

remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Execution

indexOf(obj)

remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Execution

indexOf(obj)

remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

0 1 2 3 4
a b obj c d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

0 1 2 3 4
a b obj c d

= 2

= 2

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

0 1 2 3 4
a b obj c d

= 2

= 2

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

= 2

= 2

0 1 2 3
a b c d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

= 2

= 2

0 1 2 3
a b c d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

= 2

= 2

0 1 2
a b d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17



Contracts for Concurrency

Contract (in concurrent setting)
A sequence of method calls which must be executed atomically.

Definition
Let ΣM be a set of all public method names (the API) of a software module
(or library). A contract is a set R of clauses where each clause % ∈ R is
a regular expression over ΣM. A contract violation occurs if any of the
sequences represented by the contract clauses is interleaved with an
execution of methods from ΣM.

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf ( set | remove | get )
(%3) size ( remove | set | get )
(%4) add ( get | indexOf )
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...
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Extending Contracts with Parameters

Allows one to express how the flow of data influences the
dependencies between methods
Contract specification extended by considering

Method call parameters
Return values

Expressed as meta-variables

Contract for the java.util.ArrayList class

(%′1) contains(X) indexOf(X)
(%′2) X = indexOf( ) ( remove(X) | set(X, ) | get(X) )
(%′3) X = size() ( remove(X) | set(X, ) | get(X) )
(%′4) add(X) ( get(X) | indexOf(X) )
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Extending Contracts with Spoilers

Motivation
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1 contract violation and 6 false alarms!
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Extending Contracts with Spoilers

Allows one to express in which context the contract clauses shall be
enforced

Definition
Let R be the set of target clauses where each target % ∈ R is a regular
expression over ΣM. Let S be the set of spoilers where each spoiler σ ∈ S
is a regular expression over ΣM. A contract is then a relation C ⊆ R × S
which defines for each target the spoilers that may cause atomicity
violations.

Contract for the java.util.ArrayList class

(%′′1 ) contains indexOf f remove

(%′′2 ) indexOf (remove | set | get) f remove | add | set

(%′′3 ) size (remove | set | get) f remove

(%′′4 ) add indexOf f remove | set
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Static Validation

Based on grammars and parsing trees

Supports contracts with parameters only
Analyses all executions of a program

May report false positives

Uses points-to information to handle multiple instances of a module
Class Scope Mode

Allows the analysis to handle large programs
Checks each class individually
Calls to other classes are ignored
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Static Validation Algorithm

1 Require: P: client’s program, R: module contract;
2 for t ∈ threads(P) do
3 Gt ← build grammar(t);
4 G′t ← subword grammar(Gt );
5 for % ∈ R do
6 T ← parse(G′t , %);
7 for τ ∈ T do
8 N ← lowest common ancestor(τ, %);
9 if ¬run atomically(N) then return ERROR;

10 return OK;
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Illustration of the Static Validation Approach

void run() {

if (cond)

f();

else {

m.indexOf();

g();

}

}

void atomic f() {

m.indexOf();

g();

}

void atomic g() {

m.remove();

}
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Experimental Results

Benchmark Clauses Contract False Potential Real SLOC Time (s)
Violations Positives AV AV

Allocate Vector 1 1 0 0 1 183 0.120
Coord03 4 1 0 0 1 151 0.093
Coord04 2 1 0 0 1 35 0.039
Jigsaw 1 1 0 0 1 100 0.044
Local 2 1 0 0 1 24 0.033
Knight 1 1 0 0 1 135 0.219
NASA 1 1 0 0 1 89 0.035
Store 1 1 0 0 1 621 0.090
StringBuffer 1 1 0 0 1 27 0.032
UnderReporting 1 1 0 0 1 20 0.029
VectorFail 2 1 0 0 1 70 0.048
Account 4 2 0 0 2 42 0.041
Arithmetic DB 2 2 0 0 2 243 0.272
Connection 2 2 0 0 2 74 0.058
Elevator 2 2 0 0 2 268 0.333

OpenJMS 0.7 6 54 10 28 4 163K 148
Tomcat 6.0 9 157 16 47 3 239K 3070
Cassandra 2.0 1 60 24 15 2 192K 246
Derby 10.10 1 19 5 7 1 793K 522
Lucene 4.6 3 136 21 76 0 478K 151
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Dynamic Validation

Based on happens-before relation and vector clocks

Supports both contracts with spoilers and parameters
Analyses a concrete execution of a program

If a contract is violated in the execution, it will be detected
Extrapolation based on the happens-before relation
Noise injection to force rare interleavings (executions)

On-the-fly validation
Uses a partial trace (trace window)
Does not require a trace to be available
Each thread needs to remember

1 Last instance of each spoiler
2 Last instance of each target
3 Up to |T| additional instances of each target
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Dynamic Validation Algorithm

Data: trace window υ, event e ∈ E generated by thread t ∈ T
1 if ∃% ∈ R, r ∈ [%]υt : e = end(r) then
2 for σ ∈ C(%), u ∈ T : u , t do
3 if ∃s ∈ [σ]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s) then r is violated by s ;
4 if ∃s ∈ [σ]τu : start(s) ∈ υ ∧ end(s) < υ then
5 if start(s) ≺hb start(r) then
6 if ∃r ′ ∈ [%]υt : r ′ , r ∧ start(s) ⊀hb start(r ′) then PV%,σ

t (u) = VCend(r′)(t) ;

7 if ∃r ′ ∈ [%]υt : r ′ , r then υ→ r ′ ;

8 if σ ∈ S, s ∈ [σ]υt : end(s) = e then
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u (t) , 0 ∧ PV%,σ
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[2,1]
[2,1]
[3,1]

[1,1]
[1,1]
[1,2]

[2,1]
[2,1]
[3,1]

[1,1]
[1,1][1,1]
[1,2]

[1,0]

[1,1]

¬(1 ≤ 0)

[1,1]

[2,1]

∧ ¬(2 ≤ 1)
Contract violated!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}
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Experimental Results

Benchmark T/S Contract False Potential Real SLOC Time (s)
pairs Violations Positives AV AV

Coord03 8 380 0 0 380 116 1.01
Coord04 4 24 0 0 24 53 0.52
Local 4 2 0 0 2 27 0.52
NASA 1 100 0 0 100 96 0.60
Account 1 176 0 0 176 54 0.53

Link Manager 2 1 0 0 1 1.5K 1.14
Chromium-1 2 2 0 0 2 7.5M 49.12
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Conclusion and Future Work

We have extended contracts for concurrency with
Parameters (flow of data)
Spoilers (contextual information)

We have proposed two methods to validate such contracts
Static method based on grammars and parsing trees
On-the-fly dynamic method based on happens-before relation and
vector clocks

We have evaluated both of these methods on both simple as well as
real-world programs
Future work

Support for more parameters in the dynamic approach
Support for spoilers in the static approach
Combine the static and dynamic approaches
Automatically derive contracts
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