
Verifying Concurrent Programs using Contracts

Ricardo J. Dias, Carla Ferreira, Jan Fiedor, João M. Lourenço, Aleš
Smrčka, Diogo G. Sousa, Tomáš Vojnar

Brno University of Technology (BUT)

Universidade Nova de Lisboa (UNL)

ICST, March 15, 2017

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 1 / 17

Outline

1 Contracts for Concurrency

2 Static Validation

3 Dynamic Validation

4 Conclusion

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 2 / 17

Contracts

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Execution

remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Execution

indexOf(obj)

remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Execution

indexOf(obj)

remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

0 1 2 3 4
a b obj c d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

0 1 2 3 4
a b obj c d

= 2

= 2

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

0 1 2 3 4
a b obj c d

= 2

= 2

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

= 2

= 2

0 1 2 3
a b c d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

= 2

= 2

0 1 2 3
a b c d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts

Thread 1

indexOf(obj)

remove(idx)

Thread 2

indexOf(obj)
remove(idx)

= 2

= 2

0 1 2
a b d

Contract
Consists of a pre- and post-condition of a method. When a call of the
method satisfies its pre-condition, the post-condition is guaranteed to be
satisfied upon return from the method.

Example: java.util.ArrayList class
Method: remove(idx)

Pre-condition: indexOf(obj) called

Post-condition: obj removed

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 3 / 17

Contracts for Concurrency

Contract (in concurrent setting)
A sequence of method calls which must be executed atomically.

Definition
Let ΣM be a set of all public method names (the API) of a software module
(or library). A contract is a set R of clauses where each clause % ∈ R is
a regular expression over ΣM. A contract violation occurs if any of the
sequences represented by the contract clauses is interleaved with an
execution of methods from ΣM.

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 4 / 17

Contracts for Concurrency

Contract (in concurrent setting)
A sequence of method calls which must be executed atomically.

Definition
Let ΣM be a set of all public method names (the API) of a software module
(or library). A contract is a set R of clauses where each clause % ∈ R is
a regular expression over ΣM. A contract violation occurs if any of the
sequences represented by the contract clauses is interleaved with an
execution of methods from ΣM.

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 4 / 17

Contracts for Concurrency

Contract (in concurrent setting)
A sequence of method calls which must be executed atomically.

Definition
Let ΣM be a set of all public method names (the API) of a software module
(or library). A contract is a set R of clauses where each clause % ∈ R is
a regular expression over ΣM. A contract violation occurs if any of the
sequences represented by the contract clauses is interleaved with an
execution of methods from ΣM.

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 4 / 17

Extending Contracts with Parameters

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

a

a

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

idx

idx

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void atomic replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void atomic erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void atomic replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void atomic erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

void f() {

Object x,y,z;

...

replace(x,y);

...

erase(z);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void atomic replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void atomic erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

void f() {

Object x,y,z;

...

replace(x,y);

...

erase(z);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void atomic replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void atomic erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

void f() {

Object x,y,z;

...

replace(x,y);

...

erase(z);

}

x < array

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void atomic replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void atomic erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

void f() {

Object x,y,z;

...

replace(x,y);

...

erase(z);

}

x < array

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Motivation

void atomic replace(Object a, Object b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b);

}

}

void atomic erase(Object c) {

int idx;

while ((idx=array.indexOf(c)) > -1) {

array.remove(idx);

}

}

void f() {

Object x,y,z;

...

replace(x,y);

...

erase(z);

}

x < array

Contract contains indexOf violated!

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Allows one to express how the flow of data influences the
dependencies between methods
Contract specification extended by considering

Method call parameters
Return values

Expressed as meta-variables

Contract for the java.util.ArrayList class

(%′1) contains(X) indexOf(X)
(%′2) X = indexOf() (remove(X) | set(X,) | get(X))
(%′3) X = size() (remove(X) | set(X,) | get(X))
(%′4) add(X) (get(X) | indexOf(X))

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Parameters

Allows one to express how the flow of data influences the
dependencies between methods
Contract specification extended by considering

Method call parameters
Return values

Expressed as meta-variables

Contract for the java.util.ArrayList class

(%′1) contains(X) indexOf(X)
(%′2) X = indexOf() (remove(X) | set(X,) | get(X))
(%′3) X = size() (remove(X) | set(X,) | get(X))
(%′4) add(X) (get(X) | indexOf(X))

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 5 / 17

Extending Contracts with Spoilers

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Thread 1

contains

indexOf

Thread 2

contains

Thread 3

indexOf

Thread 4

set

Thread 5

remove

Thread 6

get

Thread 7

size

Thread 8

add

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Thread 1

contains

indexOf

Thread 2

contains

Thread 3

indexOf

Thread 4

set

Thread 5

remove

Thread 6

get

Thread 7

size

Thread 8

add

7 contract violations

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Thread 1

contains

indexOf

Thread 2

contains

Thread 3

indexOf

Thread 4

set

Thread 5

remove

Thread 6

get

Thread 7

size

Thread 8

add

7 contract violations

ΣM (methods)

contains

indexOf

set

remove

get

size

add

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

Thread 1

contains

indexOf

Thread 2

contains

Thread 3

indexOf

Thread 4

set

Thread 5

remove

Thread 6

get

Thread 7

size

Thread 8

add

7 contract violations

ΣM (methods)

contains

indexOf

set

remove

get

size

add

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Motivation

Contract for the java.util.ArrayList class

(%1) contains indexOf
(%2) indexOf (set | remove | get)
(%3) size (remove | set | get)
(%4) add (get | indexOf)

ΣM (methods)

contains

indexOf

set

remove

get

size

add

Thread 1

contains

indexOf

Thread 2

contains

Thread 3

indexOf

Thread 4

set

Thread 5

remove

Thread 6

get

Thread 7

size

Thread 8

add

1 contract violation and 6 false alarms!

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Allows one to express in which context the contract clauses shall be
enforced

Definition
Let R be the set of target clauses where each target % ∈ R is a regular
expression over ΣM. Let S be the set of spoilers where each spoiler σ ∈ S
is a regular expression over ΣM. A contract is then a relation C ⊆ R × S
which defines for each target the spoilers that may cause atomicity
violations.

Contract for the java.util.ArrayList class

(%′′1) contains indexOf f remove

(%′′2) indexOf (remove | set | get) f remove | add | set

(%′′3) size (remove | set | get) f remove

(%′′4) add indexOf f remove | set

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Allows one to express in which context the contract clauses shall be
enforced

Definition
Let R be the set of target clauses where each target % ∈ R is a regular
expression over ΣM. Let S be the set of spoilers where each spoiler σ ∈ S
is a regular expression over ΣM. A contract is then a relation C ⊆ R × S
which defines for each target the spoilers that may cause atomicity
violations.

Contract for the java.util.ArrayList class

(%′′1) contains indexOf f remove

(%′′2) indexOf (remove | set | get) f remove | add | set

(%′′3) size (remove | set | get) f remove

(%′′4) add indexOf f remove | set

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Extending Contracts with Spoilers

Allows one to express in which context the contract clauses shall be
enforced

Definition
Let R be the set of target clauses where each target % ∈ R is a regular
expression over ΣM. Let S be the set of spoilers where each spoiler σ ∈ S
is a regular expression over ΣM. A contract is then a relation C ⊆ R × S
which defines for each target the spoilers that may cause atomicity
violations.

Contract for the java.util.ArrayList class

(%′′1) contains indexOf f remove

(%′′2) indexOf (remove | set | get) f remove | add | set

(%′′3) size (remove | set | get) f remove

(%′′4) add indexOf f remove | set

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 6 / 17

Static Validation

Based on grammars and parsing trees

Supports contracts with parameters only
Analyses all executions of a program

May report false positives

Uses points-to information to handle multiple instances of a module
Class Scope Mode

Allows the analysis to handle large programs
Checks each class individually
Calls to other classes are ignored

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 7 / 17

Static Validation Algorithm

1 Require: P: client’s program, R: module contract;
2 for t ∈ threads(P) do
3 Gt ← build grammar(t);
4 G′t ← subword grammar(Gt);
5 for % ∈ R do
6 T ← parse(G′t , %);
7 for τ ∈ T do
8 N ← lowest common ancestor(τ, %);
9 if ¬run atomically(N) then return ERROR;

10 return OK;

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 8 / 17

Illustration of the Static Validation Approach

void run() {

if (cond)

f();

else {

m.indexOf();

g();

}

}

void atomic f() {

m.indexOf();

g();

}

void atomic g() {

m.remove();

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 9 / 17

Illustration of the Static Validation Approach

entry

cond

f() m.indexOf()

g()

return

R

entry

m.indexOf()

g()

return

entry

m.remove()

return

F G

void run() {

if (cond)

f();

else {

m.indexOf();

g();

}

}

void atomic f() {

m.indexOf();

g();

}

void atomic g() {

m.remove();

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 9 / 17

Illustration of the Static Validation Approach

entry

cond

f() m.indexOf()

g()

return

R

entry

m.indexOf()

g()

return

entry

m.remove()

return

F G

R → a G
R → F

F → a G
G → b

void run() {

if (cond)

f();

else {

m.indexOf();

g();

}

}

void atomic f() {

m.indexOf();

g();

}

void atomic g() {

m.remove();

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 9 / 17

Illustration of the Static Validation Approach

entry

cond

f() m.indexOf()

g()

return

R

entry

m.indexOf()

g()

return

entry

m.remove()

return

F G

R → a G
R → F

F → a G
G → b

R → a G
R → F

a → a
a → ε

F → a G
G → b
b → b
b → ε

void run() {

if (cond)

f();

else {

m.indexOf();

g();

}

}

void atomic f() {

m.indexOf();

g();

}

void atomic g() {

m.remove();

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 9 / 17

Illustration of the Static Validation Approach

entry

cond

f() m.indexOf()

g()

return

R

entry

m.indexOf()

g()

return

entry

m.remove()

return

F G

R → a G
R → F

F → a G
G → b

R → a G
R → F

a → a
a → ε

F → a G
G → b
b → b
b → ε

a b

G

R

F

a b

G

R

void run() {

if (cond)

f();

else {

m.indexOf();

g();

}

}

void atomic f() {

m.indexOf();

g();

}

void atomic g() {

m.remove();

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 9 / 17

Experimental Results

Benchmark Clauses Contract False Potential Real SLOC Time (s)
Violations Positives AV AV

Allocate Vector 1 1 0 0 1 183 0.120
Coord03 4 1 0 0 1 151 0.093
Coord04 2 1 0 0 1 35 0.039
Jigsaw 1 1 0 0 1 100 0.044
Local 2 1 0 0 1 24 0.033
Knight 1 1 0 0 1 135 0.219
NASA 1 1 0 0 1 89 0.035
Store 1 1 0 0 1 621 0.090
StringBuffer 1 1 0 0 1 27 0.032
UnderReporting 1 1 0 0 1 20 0.029
VectorFail 2 1 0 0 1 70 0.048
Account 4 2 0 0 2 42 0.041
Arithmetic DB 2 2 0 0 2 243 0.272
Connection 2 2 0 0 2 74 0.058
Elevator 2 2 0 0 2 268 0.333

OpenJMS 0.7 6 54 10 28 4 163K 148
Tomcat 6.0 9 157 16 47 3 239K 3070
Cassandra 2.0 1 60 24 15 2 192K 246
Derby 10.10 1 19 5 7 1 793K 522
Lucene 4.6 3 136 21 76 0 478K 151

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 10 / 17

Dynamic Validation

Based on happens-before relation and vector clocks

Supports both contracts with spoilers and parameters
Analyses a concrete execution of a program

If a contract is violated in the execution, it will be detected
Extrapolation based on the happens-before relation
Noise injection to force rare interleavings (executions)

On-the-fly validation
Uses a partial trace (trace window)
Does not require a trace to be available
Each thread needs to remember

1 Last instance of each spoiler
2 Last instance of each target
3 Up to |T| additional instances of each target

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 11 / 17

Dynamic Validation Algorithm

Data: trace window υ, event e ∈ E generated by thread t ∈ T
1 if ∃% ∈ R, r ∈ [%]υt : e = end(r) then
2 for σ ∈ C(%), u ∈ T : u , t do
3 if ∃s ∈ [σ]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s) then r is violated by s ;
4 if ∃s ∈ [σ]τu : start(s) ∈ υ ∧ end(s) < υ then
5 if start(s) ≺hb start(r) then
6 if ∃r ′ ∈ [%]υt : r ′ , r ∧ start(s) ⊀hb start(r ′) then PV%,σ

t (u) = VCend(r′)(t) ;

7 if ∃r ′ ∈ [%]υt : r ′ , r then υ→ r ′ ;

8 if σ ∈ S, s ∈ [σ]υt : end(s) = e then
9 if ∃s′ ∈ [σ]υt : s′ , s then υ→ s′ ;

10 for % ∈ C(σ), u ∈ T : u , t do
11 if ∃r ∈ [%]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s) then r is violated by s ;
12 if PV%,σ

u (t) , 0 ∧ PV%,σ
u (t) ≤ VCend(s)(u) then

13 an instance of % is violated by s;

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 12 / 17

Illustration of the Dynamic Validation Approach

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation?

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation? No

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation? No
Data Race?

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation? No
Data Race?

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation? No
Data Race?

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

No

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation? No
Data Race?

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

No
Order Violation!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Atomicity Violation? No
Data Race?

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

No
Order Violation!
Can we detect it using contracts?

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]

[2,0]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

[1,0]

[1,1]

¬(1 ≤ 0)

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

[1,0]

[1,1]

¬(1 ≤ 0)

[1,1]

[2,0]

∧ ¬(2 ≤ 1)

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

Contract: thread start queue init
← {queue send, queue receive}

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

[1,0]

[1,1]

¬(1 ≤ 0)

[1,1]

[2,0]

∧ ¬(2 ≤ 1)
Contract violated!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

[1,0]

[1,1]

¬(1 ≤ 0)

[1,1]

[2,0]

∧ ¬(2 ≤ 1)
Contract violated!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]

[1,1]

[1,1]
[1,1]

[2,0]

[1,0]

[1,1]

¬(1 ≤ 0)

[1,1]

[2,0]

∧ ¬(2 ≤ 1)
Contract violated!

r

Extrapolation!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

[2,0]
[2,0]
[3,0]

[2,1]
[2,1]
[2,2]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

[2,0]
[2,0]
[3,0]

[2,1]
[2,1][2,1]
[2,2]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

[2,0]
[2,0]
[3,0]

[2,1]
[2,1][2,1]
[2,2]

[1,0]

[2,1]

¬(1 ≤ 0)

[2,1]

[2,0]

∧ ¬(2 ≤ 2)
No violation

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

N
oi

se

Noise injection!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

N
oi

se

Noise injection!

[2,1]
[2,1]
[3,1]

[1,1]
[1,1]
[1,2]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

N
oi

se

Noise injection!

[2,1]
[2,1]
[3,1]

[1,1]
[1,1]
[1,2]

[2,1]
[2,1]
[3,1]

[1,1]
[1,1][1,1]
[1,2]

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Illustration of the Dynamic Validation Approach

Contract: thread start queue init
← {queue send, queue receive}

et ≺hb eu ∼ VCet (t) ≤ VCeu (t)

Thread 1
(tmain)

thread start

thread create

queue init

queue receive

Thread 2
(worker)

thread start

do work

queue send

lock(q)
queue init
unlock(q)

lock(q)
queue send

unlock(q)

r

r

s

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

[1,0] [0,1]

[1,0]

[2,0]

[1,1]
[1,1]

N
oi

se

Noise injection!

[2,1]
[2,1]
[3,1]

[1,1]
[1,1]
[1,2]

[2,1]
[2,1]
[3,1]

[1,1]
[1,1][1,1]
[1,2]

[1,0]

[1,1]

¬(1 ≤ 0)

[1,1]

[2,1]

∧ ¬(2 ≤ 1)
Contract violated!

void tmain() {

thread_create(worker,input);

queue_init();

result = queue_receive();

}

void worker(void* data) {

do_work();

queue_send(result);

}

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 13 / 17

Discarding Spoilers

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

a3

b3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

a3

b3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

a3

b3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Spoilers

Thread 1

a1

b1

a2

Thread 2

x1

y1

x2

y2

Thread 3

x3

y3

Thread 4

x4

y4

a3

b3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 14 / 17

Discarding Targets

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

PV = [1,0,3,0]

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

y1 y2

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

y1 y2[3,4,2,0] [0,1,3,0]

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

y1 y2[3,4,2,0] [0,1,3,0]

b1 ⊀hb y1 b3 ⊀hb y2

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

y1 y2[3,4,2,0] [0,1,3,0]

b1 ⊀hb y1 b3 ⊀hb y2

[3,4,2,0] [0,1,3,0]

[0,1,0,0]

[1,3,0,0]

¬(1 ≤ 4) ¬(3 ≤ 1)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

y1 y2[3,4,2,0] [0,1,3,0]

b1 ⊀hb y1 b3 ⊀hb y2

[3,4,2,0] [0,1,3,0]

[0,1,0,0]

[1,3,0,0]

¬(1 ≤ 4) ¬(3 ≤ 1)

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Discarding Targets

Thread 1

x1

Thread 2

a1

b1

a2

b2

a3

b3

a4

b4

Thread 3

x2

Thread 4

x3

PV = [1,0,3,0]

x1 ⊀hb a1

∧
b1 ⊀hb y1

x2 ⊀hb a3

∧
b3 ⊀hb y2

[0,1,0,0]

[1,3,0,0]

y1 y2[3,4,2,0] [0,1,3,0]

b1 ⊀hb y1 b3 ⊀hb y2

[3,4,2,0] [0,1,3,0]

[0,1,0,0]

[1,3,0,0]

¬(1 ≤ 4) ¬(3 ≤ 1)

x1 y1

cannot violate
a1 b1

x2 y2

violated
a3 b3

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 15 / 17

Experimental Results

Benchmark T/S Contract False Potential Real SLOC Time (s)
pairs Violations Positives AV AV

Coord03 8 380 0 0 380 116 1.01
Coord04 4 24 0 0 24 53 0.52
Local 4 2 0 0 2 27 0.52
NASA 1 100 0 0 100 96 0.60
Account 1 176 0 0 176 54 0.53

Link Manager 2 1 0 0 1 1.5K 1.14
Chromium-1 2 2 0 0 2 7.5M 49.12

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 16 / 17

Conclusion and Future Work

We have extended contracts for concurrency with
Parameters (flow of data)
Spoilers (contextual information)

We have proposed two methods to validate such contracts
Static method based on grammars and parsing trees
On-the-fly dynamic method based on happens-before relation and
vector clocks

We have evaluated both of these methods on both simple as well as
real-world programs
Future work

Support for more parameters in the dynamic approach
Support for spoilers in the static approach
Combine the static and dynamic approaches
Automatically derive contracts

Jan Fiedor (BUT) Verifying Programs using Contracts ICST, March 15, 2017 17 / 17

	Contracts for Concurrency
	Static Validation
	Dynamic Validation
	Conclusion

