
November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems
Vol. 00, No. 00, October 2008, 1–30

Automated Formal Analysis and Verification: An Overview

Bohuslav Křena† and Tomás Vojnar‡

Brno University of Technology, FIT, IT4Innovations Centre of Excellence

Božetěchova 2, CZ-61266 Brno, Czech Republic
(Received 00 Month 200x; final version received 00 Month 200x)

This paper provides an overview of various existing approaches to automated formal analysis
and verification. The most space is devoted to the approach of model checking, including its
basic principles as well as the different techniques that have been proposed for dealing with
the state space explosion problem in model checking. This paper, however, includes a brief
discussion of theorem proving and static analysis too. All of the discussed approaches are
introduced mostly on an informal level, with an attempt to provide the reader with their
basic ideas and references to works where more details can be found.

Keywords: formal analysis and verification, model checking, state space explosion, theorem
proving, static analysis

1. Introduction

Computer-aided technologies have become ubiquitous in most areas of our lives.
The services they implement are continuously getting more complex due to sup-
porting new hardware technologies, providing new features, or integrating differ-
ent, originally stand-alone systems. Failures of computer systems may have a broad
range of consequences, ranging from disappointment of customers (and their move
to another producer) to more costly and even tragic situations when the system
that fails is a control system of an aircraft, a space device, or an industrially critical
system (such as a nuclear power plant or an electricity distribution network). The
fact that such faults do happen may be illustrated by a number of real accidents
(e.g., the failure of the maiden flight of Ariane 5 in 1996, four NASA Mars mis-
sions failing between 1997 and 2004, the US Northeast blackout in 2003, or the
“mutiny” of the autopilot of a Boeing 777 aircraft during a regular passenger flight
in 2005). Moreover, even if a computer-based system does not fail itself, it may
contain weak points which may be used for a successful intentional attack on the
system by human attackers, which is also considered increasingly dangerous.
Correspondingly, a significant stress is put on the use of various methods of

discovering errors in computer-based systems. The prevailing approach is to use
different forms of testing, simulation, or code inspection. Despite that these tech-
niques have been in use for a long time, research and development devoted to their
further improvements is still quite active, producing new methods and method-
ologies such as search-based testing, model-based design, agile testing, or extreme
programming. However, these—let us say “traditional”—methods suffer one im-
portant deficiency: They cannot prove a system correct, i.e., they cannot prove it
to be free of errors with respect to some specification. That is why one can also

†Email: krena@fit.vutbr.cz ‡Email: vojnar@fit.vutbr.cz

ISSN: 0308-1079 print/ISSN 1563-5104 online
c© 2008 Taylor & Francis
DOI: 10.1080/0308107YYxxxxxxxx
http://www.informaworld.com

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

2 B. Křena and T. Vojnar

witness a strong and ever rising interest in the development and applications of
formal verification methods that can remove this constraint. Moreover, it turns
out that even in cases in which the formal verification process is not completely
finished due to its high cost, or when it is intentionally restricted in some way (e.g.,
by restricting the depth of the state space of the verified system to be traversed or
by intentionally suppressing some generated warnings when it is not sure whether
they correspond to real errors or not), it may still be quite valuable. This is because
even in such cases, it may find a number of errors that are often different from those
found by traditional methods, which is due to the very different principles on which
these methods work.
A large interest of the industry in formal verification may be documented by

the existence of groups specializing in research as well as applications of formal
verification within various leading industrial companies and organisations, such
as Microsoft, Intel, IBM, NASA, Airbus, CEA, Cadence, Mentor Graphics, etc.
Another indication is the emergence of spin-offs working in the area of formal ver-
ification or at least restricted formal verification (such as Coverity, GrammaTech,
AbsInt, Prover, Monoidics, and others). On the other hand, an intense interest of
academia in formal verification can be documented by the existence of many live
and very competitive conferences (often sponsored by the industry) as well as by
many publications, academic tools, and projects arising in the area. An interesting
trend is also the emergence of various verification competitions—such as the Hard-
ware Model Checking Competition (HWMCC), the Competition on Software Veri-
fication (SV-COMP), or the VSTTE Software Verification Competition—intended
to compare the various existing verification tools and to stimulate their further
development.

1.1 Formal Verification and Analysis

We use the term formal verification to denote verification methods based on formal,
mathematical roots and (at least potentially) capable of proving error freeness of
systems with respect to some correctness specification. The potential to detect all
errors with respect to a given specification is called soundness of a method. It
means that if such a method terminates and claims a system correct with respect
to a certain specification, the system is indeed correct. On the other hand, we
call a method complete if it does not raise false alarms, i.e., if it does not report
spurious errors. As we have already indicated above, sometimes, the potential of
a method to be sound is sacrificed in order to increase efficiency of the approach,
leading to an error detection approach with formal verification roots.
By formal analysis, we denote approaches that can answer in a sound way ques-

tions other than whether the given system is correct with respect to some speci-
fication. Examples of such questions may be checking which variables are aliased
at a given program point, how many elements can appear in some buffer, what
the shape of dynamic linked data structures that can appear in a program is, and
so on. Answers to such questions may be used for verification (which may require
some further automated or manual reasoning), but also for optimisation, code gen-
eration, parallelisation, complexity analysis, etc.
The most common approaches used in computer-aided formal analysis and verifi-

cation include theorem proving, model checking, and various forms of static analysis.
We have to, however, note that the meaning of these terms is sometimes not com-
pletely sharp and not always understood in exactly the same way. Moreover, the
approaches may be used in various combinations and/or non-standard extensions.
In this survey, we devote the most space to the area of model checking. How-

ever, for a better orientation in the subject, we briefly introduce all the mentioned

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 3

approaches and characterise their relations. In the description, we stay on an infor-
mal level only, trying to grasp the intuition and main ideas behind the discussed
approaches: their formal details can be found in the referenced works.

1.2 A Note on Testing and Dynamic Analysis

Despite this survey is focusing on formal verification, we note that many interest-
ing advances are constantly happening in the area of traditional testing too. A lot
of effort is, for instance, invested into testing of concurrent software that is very
difficult due to many errors manifest only very rarely when the concurrently run-
ning processes or threads are scheduled in a very specific way. In order to increase
chances to spot such errors, techniques like injection of noise into the scheduling
of concurrent processes have been proposed and supported by tools such as IBM
ConTest (Edelstein et al. 2002) or ANaConDA (Fiedor and Vojnar 2012). Further,
there have been proposed various dynamic analyses that analyse the behaviour
seen in a testing run (tracking, e.g., the order in which locks are taken or the way
shared variables are protected when accessed). Consequences of the analysed be-
haviour can then be extrapolated leading to warnings about possible errors even
when such an error is not witnessed in the given testing run. In particular, many
dynamic analyses have been proposed for detection of data races and deadlocks
including, e.g., the Eraser (Savage et al. 1997), GoldiLocks (Elmas et al. 2007),
FastTrack (Flanagan and Freund 2009), or GoodLock (Havelund 2000) detectors.
Other approaches to improve the quality of testing include combinations with var-
ious (restricted) formal verification techniques, which we will briefly tackle later on
in this paper, or using advanced search-based techniques in order to generate test
data or parameters (McMinn 2004, Hrubá et al. 2012).
A lot of effort has also been devoted into automation of debugging leading to

techniques such as delta debugging (Zeller and Hildebrandt 2002). Delta debugging
is in particular based on automatically pruning the set of possible circumstances
leading to a failure until a minimal set remains. Finally, techniques of self-healing
have also appeared that not only try to automatically detect an error, but also to
prevent it from manifesting or at least to reduce its appearance—cf., e.g., (Nagpaly
et al. 2007, Křena et al. 2007, Jin et al. 2011, Ratanaworabhan et al. 2011). These
areas are, however, beyond the scope of this survey.

Plan of the Paper. The rest of the paper is structured as follows. Section 2 provides
a brief overview of the fields of theorem proving, static analysis, and model check-
ing. Section 3 provides a more detailed introduction to the approach of model
checking. Section 4 discusses the main principles of various existing approaches
to fighting the state explosion problem arising in model checking of finite-state
systems. Finally, Section 5 discusses possibilities of applying model checking to
infinite-state systems.

2. Common Approaches to Formal Analysis and Verification

In this section, we characterise the main approaches to formal analysis and veri-
fication, namely, theorem proving, static analysis (we will, in particular, mention
data flow analysis, constraint-based analysis, type-based analysis, and abstract in-
terpretation), and model checking.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

4 B. Křena and T. Vojnar

2.1 Theorem Proving

Theorem proving—also called deductive verification—is usually a semi-automated
approach using some inference system for deducing various theorems about the ex-
amined system from the facts known about the system and from general theorems
of various logical theories. This approach is quite close to classical mathemati-
cal reasoning, but it is supported by computer-aided tools, the so-called theorem
provers (or proof assistants), such as PVS (Owre et al. 2001), Isabelle (Nipkow
et al. 2005), ACL2 (Kaufmann et al. 2000b,a), Coq (Bertot and Castéran 2004),
and many others. These tools take care of remembering all of the so-far deduced
facts and of correctly applying inference rules. The inference process is, however,
usually guided by the user. The approach is very general but often very hard to
use. The approach is sometimes also weak in generating counterexamples (diag-
nostic information) to correctness specifications in faulty systems—one may have
troubles to distinguish whether the effort to prove some property is failing because
there is an error in the system being examined, or because the user of the method
is not bright enough to prove it correct.
On the other hand, there has also been a lot of progress in developing automated

decision procedures (or satisfiability solvers) for different logics and logical theories.
These solvers are used as a building block within various higher-level verification
methods. Among the solvers, an important position belongs to the so-called SAT
solvers, such as Glucose (Audemard and Simon 2009), deciding satisfiability of
propositional formulae, and hence solving the classical Boolean satisfiability prob-
lem, i.e., the SAT problem. Another important category of the solvers is then the
category of the so-called SMT solvers1, like Z3 (de Moura and Bjørner 2008), which
support various first-order logical theories with equality (such as linear arithmetic,
linear real arithmetic, uninterpreted functions, theory of arrays, etc.). Finally, one
can also find solvers for various higher-order theories, such as the Presburger arith-
metic, supported, e.g., by the Omega tool set (Kelly et al. 1996), or WSkS, i.e.,
the weak second order theory of k successors, supported by MONA (Klarlund and
Møller 2001).
The Boolean satisfiability problem is traditionally considered computationally

intractable due to the fact that it is an NP-complete problem. However, various
heuristics, like the DPLL algorithm (Davis et al. 1962), which have been proposed
in the past years, make SAT solving very efficient in many practical cases. The
same holds for the various more complex logical theories mentioned above whose
worst case complexity can be much worse than that of the SAT problem (e.g., it
is non-elementary in the case of WSkS). Moreover, the efficiency of the solvers is
being constantly improved. This process is greatly aided by regular competitions
among the solvers such as the SAT competition and the SMT competition2.
Decision procedures can, for instance, be used as a support for different kinds

of automated abstraction, such as the predicate abstraction (Graf and Säıdi 1997)
used in model checking, which we will discuss later on. Another approach is to an-
notate the verified program by loop invariants, procedure pre- and post-conditions,
and assertions to be checked, expressed in a suitable logic. This way the program
is cut into loop-free code fragments that together with the conditions assumed to
hold before and after these code fragments form (loop-free) Hoare triples (Hoare
1969). Provided that the effect of the loop-free code can be effectively expressed in

1The abbreviation comes from the words “Satisfiability Modulo Theories”.
2There, of course, exist many more SMT and SAT solvers than the two above mentioned ones. However,
giving their overview is beyond the scope of this article. An interested reader is referred to the web pages
of the SAT and SMT competitions for an overview of the currently existing solvers.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 5

the chosen logical fragment, the verification problem reduces as follows. First, the
result of applying loop free code fragments on their pre-conditions can be automat-
ically computed. Then, it is possible to automatically check whether the resulting
formulae imply the post-conditions of the code fragments (such implications are
called verification conditions).1 This approach is used, e.g., in the VCC (Cohen
et al. 2009) and ESC/Java2 (Cok and Kiniry 2005) tools. In order to reduce the
burden of a user to provide the annotations manually, various heuristics for their
discovery have been proposed—cf., e.g., the VS3 tool (Srivastava et al. 2009).

2.2 Static Analysis

Static analysis is usually characterised as analysis that collects some information
about the behaviour of a system without actually executing it under its origi-
nal semantics. Such a characterisation is, of course, rather broad, and it may be
viewed to include even theorem proving or model checking (at least in some of
its forms), which is, indeed, sometimes done by some authors. However, when set-
ting these approaches apart (together with their various derivatives, such as model
checking combined with predicate abstraction as discussed later on) and giving up
attempts to cover all existing approaches, the perhaps most common approaches
to static analysis include syntactic checks looking for various error patterns (as
implemented, e.g., in the Lint tool already in the late 70’s), data flow analysis,
constraint-based analysis, type-based analysis, and abstract interpretation. In many
cases, static analyses are not designed for checking correctness of programs but
to be used within compiling, optimisation, code generation, etc. Static analyses
are often highly specialised. On the other hand, they sometimes just collect some
information about the system, and it is up to the user to exploit it for a given
verification task.
Compared to model checking, static analyses have often—though not always—

the advantage of not needing any model of the environment in which the system
should run and of being able to handle very big code bases (even tens of millions of
lines of entire operating system kernels, such as Linux or Windows). The need to
model the environment and usually also parts of the system being examined (which
would otherwise be too big to be handled) may be quite expensive and may also
hide some errors, which may be ruled out by the manual modelling (Engler and
Musuvathi 2004). On the other hand, not tracking the (exact) values that particular
system variables may get can lead to a vast number of false alarms raised by static
analysis2. Moreover, some kinds of errors may be difficult or impossible to discover
via certain static analyses. For instance, it may be difficult or impossible to identify
all possible “syntactic patterns” that could lead to certain errors, and then the
otherwise very efficient methods like those mentioned in (Engler and Musuvathi
2004) may be hard to use.

2.2.1 Data Flow Analysis

Given a pre-defined set of properties of program states, which are of interest
for some particular reason and which can be denoted as the so-called data flow
facts, a data flow analysis tracks how the data flow facts propagate in between of

1Likewise, one can, of course, start from the post-condition and compute backwards.
2Sometimes, the tools developed in this area ignore much of the detected potential errors in order not to
overwhelm the user. Then, however, the approach becomes unsound—though it may still be very valu-
able. For this price and due to using additional techniques to prune infeasible program paths based, e.g.,
on SAT/SMT solving, some of the current commercial static analysers, such as those mentioned in Sec-
tion 2.2.1, can get down to low tens of per cents of false alarms.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

6 B. Křena and T. Vojnar

neighbouring control points of the control flow graph (CFG) of a program1. The
propagation of data flow facts is tracked in a way consistent with all feasible paths
through the CFG but without directly executing the program. The most common
approach to data flow analysis is the lattice-theoretic iterative data flow analysis
pioneered in (Kildall 1973, Kam and Ullman 1976, 1977).
An iterative data flow analysis is typically built on a set of data flow facts that

forms a complete lattice2. The meet operation is used to merge analysis results
flowing to a certain control point through several different controls paths. The effect
of program statements is modelled using monotone transfer functions defined on
the carrier set of the analysis (that is why such analyses are also often called as
monotone data flow analyses). The analysis is performed by iteratively evaluating
the transfer functions and meet operations starting from some defined initial data
flow fact. This fact is associated with either the entry or exit point of the analysed
code depending on whether the code is analysed forward or backward3. The analysis
stops when the data flow facts computed for particular control points stop changing.
The monotonicity of transfer functions is needed together with a restriction to
lattices with no infinite descending chains in order to guarantee termination of the
analysis. In many cases, the data flow facts have the form of sets that are subsets
of some universe of elementary data flow facts4. The transfer functions are then
often defined using the so-called Gen and Kill sets that define which elementary
data flow facts are killed and which generated (i.e., removed from or added to the
input data flow fact, respectively) when executing a certain statement.
Data flow analysis can be performed in an intra-procedural way, i.e., within a sin-

gle function, or in an inter-procedural way, i.e., across function boundaries (without
in-lining functions into a single function). The latter can be implemented by using
functional data flow facts or incrementally built function summaries. The sum-
maries say that a certain data flow fact at the input leads to a certain data flow
fact at the output (allowing one to avoid a repeated analysis of a function for
the same arguments). Such analyses can then be further distinguished according
to whether or not they track also the relevant context of calling a function with
certain arguments.
Many specific data flow analyses have been defined to date, ranging from anal-

yses computing information commonly used in optimising compilers (such as live
variables, reaching definitions, available expressions, etc.) to analyses used for veri-
fication purposes. Data flow analysis is used in many currently leading commercial
tools for static analysis (such as the static analyser of Coverity, CodeSonar from
GrammaTech, or TruePath from Klocwork) as well as advanced open-source tools,
such as FindBugs (Hovemeyer and Pugh 2004). In these tools, data flow analysis is
either directly used to find bugs or to characterise properties of the functions into
which the given code is structured before actually looking for occurrences of some
bug patterns. Using the information obtained this way, the number of infeasible
paths considered by the analysis may be significantly reduced, which may in turn
significantly reduce the number of false alarms which would otherwise be reported.

1Informally, a control flow graph is a directed graph whose nodes represent basic blocks of the program,
and edges express the transfer of control among them. A basic block is a maximal sequence of statements
that is always entered via its first statement and always left via its last statement. Basic blocks are used
to decrease the granularity of the code to be analysed.
2Sometimes, an equivalent notion of a complete meet semi-lattice is used.
3A generalisation of data flow analysis to bidirectional analysis has also been proposed (Khedker and
Dhamdhere 1994).
4Data flow facts having the form of sets of elementary data flow facts, such as sets of live variables,
available expressions, and the like, are often encoded in the form of bit-vectors having a Boolean entry for
each elementary data flow fact, which encodes its membership in the data flow fact. Analyses using such
data flow facts are usually called bit-vector analyses.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 7

A more exact description of the use of data flow analysis in leading commercial
tools is, unfortunately, difficult due to their producers keeping all details of their
tools secret. According to the limited information available, the use of data flow
analysis and bug patterns is often combined, e.g., with further pruning of infeasi-
ble paths using various logical solvers to check satisfiability of the conditions that
appear on the concerned program paths. Further, the tools also exploit statistical
methods to distinguish common and less common coding styles used in a pro-
gram in order to better identify suspicious parts of the code. The tools usually
ship with a set of bug detectors (checkers) developed by the tool developers for
discovering the most frequent kinds of bugs. Apart from that, it is often the case
that the users are offered an interface that allows them to create custom data flow
analyses based on the monotone framework (which requires them to specify the
data flow facts, the transfer functions, the meet operator, etc.) and to use them in
custom bug detectors.

2.2.2 Constraint-based Analysis

In constraint-based analysis, a set of constraints is derived from the analysed
program such that when the constraints are solved, the solution provides the needed
information about the program (Aiken 1999, Nielson et al. 2005, Sipma et al. 2006).
Various kinds of constraints can be used such as conditional set constraints, linear
arithmetic constraints, polynomial arithmetic constraints, etc.
Constraint-based analysis is more general than data flow analysis, at least when

classical one-pass unidirectional data flow analysis with no unbounded auxiliary
storage is used (Khedker and Dhamdhere 1994). Constraint-based analysis can
provide all solutions to the given analysis problem (not just one), it naturally
allows for a bi-directional flow of information, and it can work in a better way with
infinite domains. Of course, solving the generated constraints needs not be easy,
but one can leverage the constantly improving results of the constraint solving
community.
Typical applications of constraint-based analysis include control flow analysis

(i.e., analysis deriving the possible flow of control in programs written in languages
where the control flow is not obvious, which is the case, e.g., in functional and
object-oriented languages), points-to analysis, derivation of linear as well as non-
linear loop invariants, or derivation of ranking functions to be used for verification
of program termination.

2.2.3 Type-based Analysis

Type-based analyses may be viewed to include any static analyses that make use
of type information as a basis of the analysis or as a way how to make it more
precise and/or more efficient. One of the most common approaches to typed-based
analysis is the use of the so-called type and effect systems (Nielson and Nielson
1999, Palsberg 2001).
Type and effect systems extend the basic type systems of programming languages

to take into account various semantic effects of the allowed programming construc-
tions. One can, for instance, track how the memory is accessed (reading, writing,
allocation, de-allocation), whether and how synchronisation is used (locking and
unlocking of mutexes), whether and how various other resources are used (such
as reading and writing of files), whether some exceptions can be generated, etc.
Apart from the basic typing information and the effect information (essentially say-
ing what is being done), the so-called region information is sometimes also tracked,
giving information about which resource is affected (i.e., which file, memory lo-
cation, lock, etc.). The regions have to be identified using static information only,
hence they can be, e.g., associated with the program locations where some memory
was allocated, a file opened, a lock created, etc.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

8 B. Křena and T. Vojnar

Type and effect systems are typically specified in terms of rules similar to infer-
ence rules in logics. They can involve complex types and effects based on notions
such as sub-typing/sub-effecting and polymorphism allowing quantification over
type, effect, and region variables. For a new type and effect system, an appropriate
inference algorithm has to be provided (and proved correct), possibly based on the
algorithms already published in the literature. Alternatively, one can try to imple-
ment a desired type and effect system as an instantiation of a generic type and
effect system and use its generic inference algorithm (Marino and Millstein 2009).
Many different applications of type and effect systems have been proposed, in-

cluding side effect analysis, control flow analysis, binding type analysis (distinguish-
ing data available at compile time and run time), security analyses (distinguishing
secret and public information), callability analysis, strictness analysis of functions,
and so on. The information obtained from type and effect systems can be used both
for optimisation as well as verification (correctness of memory accesses, absence of
data races, etc.).

2.2.4 Abstract Interpretation

Abstract interpretation (Cousot and Cousot 1977) is a theory of a sound approx-
imation of the semantics of computer programs that, among other applications,
allows for constructing static analyses sound by construction. Abstract interpre-
tation consists in giving a class of programs a concrete and abstract semantics
defined on suitable concrete and abstract lattice-based domains. These domains
are usually linked by a pair of monotone functions—the so-called abstraction and
concretisation, traditionally denoted α and γ, respectively—that form a Galois con-
nection1. Program statements are modelled as monotone functions, often called as
concrete and abstract transformers, on the concrete and abstract domains, respec-
tively. The abstraction is sound if the concretisation of the result of applying any
abstract transformer on any abstract value gives a larger concrete value than the
value that is obtained by first concretising the abstract value and then applying
the corresponding concrete transformer2.
In a more general formulation of abstract interpretation (Cousot and Cousot

1992), the requirement of dealing with a Galois connection is lifted, and the analysis
is defined in terms of a concretisation (or, dually, abstraction) function only. This,
however, excludes the possibility of defining best abstract transformers, which can
be defined when using Galois connections (by simply first concretising the input
abstract value, then using the concrete transformer, and finally abstracting the
result). Another consequence of using the more general setting is that there is no
easy way of comparing the precision of abstractions.
In order to be able to use abstract interpretation for analysing programs, one

further needs an operator for accumulation of abstract values computed for a single
program point via multiple program paths. Moreover, since the abstract domain is
often infinite, one needs the so-called widening operator ▽ that over-approximates
the accumulation operator and that has the property that for any infinite se-
quence of abstract values x0, x1, ..., the sequence y0, y1, ... where y0 = x0 and
yi+1 = yi▽xi+1 eventually stabilises. The analysis is then performed by iterat-
ing the abstract transformers over the control flow graph, using the accumulation
operator at program points where several program paths meet, and applying the
widening operator at loop junctions to make the analysis terminate. Sometimes,
the so-called narrowing operator △ is also used after widening to refine its effect.

1A Galois connection between two partially ordered sets (A,≤A) and (B,≤B) consists of two monotone
functions f : A → B and g : B → A such that ∀a ∈ A ∀b ∈ B : f(a) ≤B b ⇐⇒ a ≤A g(b).
2This is, if (Dc,≤c) is a concrete domain, (Da,≤a) an abstract domain, fc : Dc → Dc a concrete
transformer, and fa : Da → Da an abstract transformer, then ∀x ∈ Da : fc(γ(x)) ≤c γ(fa(x)).

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 9

The notion of abstract interpretation is quite flexible and can be instantiated in
a number of ways significantly differing in their precision (basically ranging from
the precision of simple, purely syntactic static analyses to full model checking).
Abstract interpretation is also sometimes used as a formal framework in which ab-
stractions to be used together with model checking are defined, as in the case of the
so-called predicate abstraction (Graf and Säıdi 1997, Ball et al. 2001) that we will
briefly discuss in Section 4.3. Abstract interpretation can, however, be used even
for other purposes, such as program transformation, watermarking, information
hiding, code obfuscation, and so on.
Many abstract domains suitable for practical program analysis have been de-

fined to date and implemented in libraries such as Apron (Jeannet and Min 2009).
The most domains have probably been defined for analysis of numerical programs,
including domains such as intervals, octagons, or convex polyhedra. However, ab-
stract domains suitable for many other purposes, e.g., analysis of heap, string, or
array manipulation, have also been proposed. As examples of commercial tools
based on abstract interpretation, one can mention tools from AbsInt including the
worst-case execution time analyser aiT (Ferdinand et al. 2007) and the Astrée anal-
yser checking for run-time errors in safety-critical embedded applications written
or automatically generated in C (Cousot et al. 2005). Both of these tools have been
applied, for instance, to analyse flight software of several Airbus aircraft. Another
example is MathWorks with its PolySpace analyser (Deutsch 2003) aimed at run-
time errors such as overflows, division by zero, or out-of-bounds array accesses in
C, C++, as well as Ada.

2.3 Model Checking

Model checking (Clarke et al. 1999, Baier and Katoen 2008) is an approach of
automated checking whether a system (or a model of a system) satisfies a certain
correctness specification based on a systematic exploration of the state space of the
system. The system or model to be verified can be described in a variety of different
languages ranging from real-life hardware description languages (such as VHDL or
Verilog), common programming languages (like C or Java), various kinds of Petri
nets or process algebras to specialised modelling languages (such as the Promela
language of the Spin model checker (Holzmann 1997)). The specification is typically
written in some temporal logic like LTL (Pnueli 1977), CTL (Clarke and Emerson
1981), CTL* (Emerson and Halpern 1986), or µ-calculus (Kozen 1983), but some
simpler specification means such as C-like assertions or end-state and progress
labels known from Promela can also be used. Model checking has originally been
proposed for verification of finite-state systems. Its roots can be traced back to the
works (Clarke and Emerson 1981, Queille and Sifakis 1982)1. Model checking can
usually be fully automated and can generate error traces explaining why a certain
property does not hold in a given system. We provide a more detailed description
of the basic ideas behind CTL and LTL model checking in Section 3.
The main problem to cope with when model checking finite-state systems is the

state space explosion problem, i.e., the need to cope with the exponential growth of
the number of reachable states in the size of the examined systems. To cope with
the state space explosion problem, many different heuristics have been proposed.
We provide an overview of some of these techniques in Section 4.

1E.M. Clarke, E.A. Emerson, and J. Sifakis were awarded the 2007 ACM Turing prize as a recognition of
the impact of their work.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

10 B. Křena and T. Vojnar

An even more complicated situation arises when one wants to apply model check-
ing to infinite-state systems (such as systems with unrestricted parameters and/or
various unbounded data and control structures like communication queues, dy-
namic linked data structures, stacks, counters, and so on). Clearly, in this case,
one cannot simply enumerate reachable states to verify a given system. Indeed,
most interesting verification problems over infinite-state systems are undecidable.
However, there have been proposed approaches for applying model checking even
in this context, and we briefly discuss some of them in Section 5.
Yet another problem—which, however, may arise with some forms of static anal-

ysis too—is the need to model the environment of the system being verified. This
modelling task is usually quite tedious and may hide some errors if the model of the
environment ignores some behaviour that is possible in practice (on the other hand,
if the model of the environment enables some behaviours that are not possible in
reality, many false alarms may be obtained).
Model checking has found many successful applications, including commercial

ones, especially in the area of hardware verification. However, it has been success-
fully applied in verification of concurrent and distributed systems (such as commu-
nication and synchronisation protocols or security protocols), software (e.g., device
drivers), real-time systems, probabilistic systems, as well as other kinds of systems
(e.g., UML models) too. Moreover, model checking has been applied not only to
computer systems but also other kinds of systems such as models from the area of
systems biology, work flow, etc.
Commercial hardware model checkers include RuleBase from IBM, Incisive Veri-

fier from Cadence, Magellan from Synopsys, the JasperGold Formal Property Ver-
ification App from Jasper, or the Questa Formal Verification from Mentor Graph-
ics1. A different approach is taken by companies such as the Oski company which
does not sell its own tool, but rather offers RTL formal verification services, in-
cluding development of abstractions of the verified designs needed to overcome the
state explosion problem as well as computation of the achieved coverage of the
behaviour of the verified system (Aggarwal et al. 2011). Freely available tools sup-
porting hardware model checking include Cadence SMV (McMillan 2000), NuSMV
(Cavada et al. 2010), Uclid (Seshia et al. 2003), or the model checking engines avail-
able within the ABC framework (Brayton and Mishchenko 2010).
Model checkers for concurrent and distributed systems include, e.g., Spin (Holz-

mann 1997) and DiViNe (Barnat et al. 2010b) using specialised input languages
(Promela, DVE) for describing models of the verified systems. One of the most suc-
cessful software model checkers is the Static Driver Verifier (Ball et al. 2004) from
Microsoft that is successfully used for verifying selected critical properties of Win-
dows drivers. Apart from it, there exist many more experimental academic software
model checkers such as the Java PathFinder from NASA for model checking Java
programs on the byte code level (Visser et al. 2003); Blast (Henzinger et al. 2003),
CPAChecker (Beyer and Keremoglu 2011), SatAbs (Clarke et al. 2005), Wolverine
(Kroening and Weissenbacher 2011) for model checking C programs using predi-
cate abstraction (briefly discussed in Section 4.3); or bounded model checkers for
the C language such as CBMC (Clarke et al. 2004a) or LLBMC (Merz et al. 2012).
Finally, to give some representatives of tools for model checking of real-time and
probabilistic systems too, we can mention Uppaal (Behrmann et al. 2004) and Prism
(Kwiatkowska et al. 2011).

1The producers often speak about formal verification instead of model checking. Moreover, instead of full
model checking, they often successfully use bounded model checking that explores the state space up to
some given depth only, which we will briefly discuss in Section 4.4. As for commercial static analysers, the
details of the techniques used in the tools are usually unpublished.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 11

3. Basics of CTL and LTL Model Checking

In the previous section, we have introduced model checking as an automated tech-
nique that verifies a system (or its model) against a property specified in some
suitable way through a systematic exploration of the state space of the system (or
its model). We have said that many different languages can be used for specifying
the properties to be verified. We now concentrate on two of these languages that
belong among the most often used, namely, the Linear Temporal Logic (Pnueli
1977), abbreviated as LTL, and the Computation Tree Logic (Clarke and Emerson
1981), abbreviated as CTL. We will briefly introduce both of these logics, and we
will also mention the main ideas behind the classical LTL and CTL model checking
algorithms.
LTL and CTL differ primarily in the underlying notion of time. LTL considers

time to be linear, and it views the behaviour of a system as a set of linear executions.
On the other hand, CTL considers time to be branching, and it views the behaviour
of a system as a tree of gradually branching executions. Both of the logics, however,
work with logical time only, which allows one to express requirements on the order
in which certain states (events) should occur in the system, but unlike physical
time, it does not allow one to measure how much time elapses between two states
(events).

Safety, Liveness, and Fairness. Both LTL and CTL allow one to express various
safety as well as liveness properties. Intuitively, safety properties state that noth-
ing bad ever happens (and counterexamples to them are finite executions) whereas
liveness properties state that something good eventually happens (and counterex-
amples to them are infinite or at least complete executions, i.e., executions that
cannot be extended any more). Examples of safety properties can be the follow-
ing: “A deadlock never happens.” or “The length of a certain buffer never exceeds
5 elements.”. Examples of liveness properties can be: “The program eventually
terminates.” or “Each incoming request is eventually handled by a server.”.
In order to verify liveness properties, one usually has to provide some fairness

assumptions limiting the non-determinism in the system to be verified in order
to avoid artificial counterexamples that never happen in practice. This especially
concerns the scheduling of concurrently running processes for which one typically
wants to state, without having to precisely describe the scheduler used, that a pro-
cess that is ready to run will not wait for ever.
Two most common notions of fairness are the so-called weak and strong fairness.

Weak fairness assumes that an action that is eventually always enabled must al-
ways eventually be taken. Strong fairness assumes that an action that is always
eventually enabled must always eventually be taken. The fairness requirements
may be stated as a part of the formula to be verified provided that the logic used
is powerful enough, which is the case of LTL but not CTL for the above mentioned
notions of weak and strong fairness. Alternatively, the verification tool may pro-
vide a specialised means for stating whether and which notion of fairness should be
used (possibly complemented with specially optimised algorithms for dealing with
fairness assumptions).

Kripke Structures. In the section, we assume working with finite-state systems
only. Such systems can be expressed or modelled in many different ways. For the
purpose of explaining the semantics of LTL and CTL and for describing basics
of their model checking algorithms, we will, however, work on the level of the so-

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

12 B. Křena and T. Vojnar

called Kripke structures, which provide a uniform description of the state spaces
of systems to be verified. Let AP be a finite non-empty set of atomic propositions.
A (finite) Kripke structure is a 4-tupleM = (S, S0, R, L) where S is a (finite) set of
states, S0 ⊆ S is a non-empty set of initial states, R ⊆ S×S is a transition relation
between the states, and L : S → 2AP is a labelling function mapping each state
s ∈ S to the set of atomic propositions L(s) ⊆ AP that are true in s. The atomic
propositions are observations about particular states of the system being verified
(such as program locations, values of variables, etc.) that a property specification
may refer to. For convenience, we assume the transition relation to be such that
each state has some successor, i.e., ∀s ∈ S ∃s′ ∈ S : R(s, s′).
An execution path in a Kripke structureM = (S, S0, R, L) is an infinite sequence

of states π = s0, s1, . . . such that si ∈ S and R(si, si+1) for each i ≥ 0. For each
s ∈ S, we denote by Π(s) the set of all execution paths leading from s. For an
execution path π = s0, s1, s2, . . . and i ≥ 0, let π(i) = si. Finally, we define the
suffix πi of π starting from the state si to be the path πi = si, si+1, si+2, . . . for
any i ≥ 0.

3.1 Linear Temporal Logic (LTL)

Formulae of LTL (Pnueli 1977) are built from atomic propositions allowing one
to refer to relevant aspects of the particular states of the system being verified1,
Boolean constants and connectives (coming from and used in the same way as in
propositional logic), and, most importantly, temporal operators that allow one to
express logical timing requirements. In particular, LTL comes with five temporal
operators2 allowing one to reason about execution paths:

(1) The “next time” operator, denoted X or ©, can be used in a formula Xϕ

to stipulate that the property ϕ should hold for the given path starting
from its second state.

(2) The “finally” operator, sometimes also pronounced as “eventually” and
denoted as F or ♦, can be used in a formula Fϕ to state that ϕ should
hold for the given path starting from some of its states.

(3) The “globally” operator, sometimes also pronounced as “always” and de-
noted as G or �, can be used in a formula Gϕ to state that ϕ should hold
for the given path invariantly starting from any of its states.

(4) The “until” operator, denoted U, can be used in a formula ϕUψ to state
that ψ should eventually hold at the given path, and ϕ should hold until
then.

(5) The “release” operator, denoted R, can be used in a formula ϕRψ to state
that ψ should hold for all prefixes of the given path starting from states
prior to which no state at which ϕ holds has appeared (with no requirement
for such a state to appear).

Thus, given a finite non-empty set AP of atomic propositions, assuming p ∈ AP ,
and using ⊤ and ⊥ to denote true and false, respectively, LTL formulae can be
generated by the following grammar:

ϕ ::= ⊤ | ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ϕ↔ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ

1There are, of course, works that concentrate on events instead of states or even both on states as well as
events.
2Sometimes, more operators are defined, which can, however, be seen as syntactic sugar only. Moreover,
as we shall see, three of the five classical operators have the form of syntactic sugar too.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 13

We can now formalise the semantics of LTL formulae. Let M be a Kripke struc-
ture over a finite non-empty set of atomic propositionsAP . The satisfaction relation
� between execution paths π = s0, s1, s2, . . . of M and LTL formulae is defined as
follows (we skip the definition of the meaning of some of the propositional constants
and connectives):

π � p iff p ∈ L(s0)
π � ¬ϕ iff π 2 ϕ

π � ϕ ∨ ψ iff π � ϕ or π � ψ

π � Xϕ iff π1 � ϕ

π � Fϕ iff ∃i ≥ 0 : πi � ϕ
π � Gϕ iff ∀i ≥ 0 : πi � ϕ
π � ϕUψ iff ∃ i ≥ 0 : (πi � ψ ∧ ∀ 0 ≤ j < i : πj � ϕ)
π � ϕRψ iff ∀i ≥ 0 : (∀ 0 ≤ j < i : πj 6|= ϕ) ⇒ πi |= ψ

Not all of the above introduced LTL operators are, however, needed to achieve the
expressive power of LTL. In particular, the expressive power stays the same if one
works with the atomic propositions, negation, disjunction, the next time operator,
and the until operator only. All the rest can be obtained as syntactic sugar as
follows (we again skip some of the propositional constants and connectives that
can be expressed as usual):

⊤ ≡ p ∨ ¬p for any p ∈ AP

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)
Fϕ ≡ ⊤Uϕ

Gϕ ≡ ¬F¬ϕ
ϕRψ ≡ ¬(¬ϕU¬ψ)

So far, we have dealt with satisfaction of LTL formulae with respect to a single
execution path only. A given LTL formula ϕ is defined to be satisfied by a Kripke
structure M = (S, S0, R, L) as a whole, denoted M � ϕ, iff it is satisfied by each
execution path starting from any of the initial states of M , i.e., M � ϕ iff ∀s0 ∈
S0 ∀π ∈ Π(s0) : π � ϕ.1

3.2 Automata-Theoretic LTL Model Checking

One of the most common approaches to LTL model checking is the automata-
theoretic approach (Vardi and Wolper 1986, Vardi 2007) whose basic idea we will
now describe. Assume that we are given a Kripke structureM describing the state
space of the system to be verified and an LTL formula ϕ describing a correctness re-
quirement on the system. We need to check whether any execution path π starting
from any initial state of M satisfies ϕ. To check this using the automata-theoretic
framework, one can use Büchi automata and/or various other finite automata ac-
cepting infinite words as follows2.
First, one constructs a non-deterministic Büchi automaton A¬ϕ that accepts

infinite words corresponding exactly to those execution paths that do not satisfy ϕ.

1This definition assumes an implicit universal quantifier over all execution paths starting from all initial
states. Sometimes, a dual notion of existential LTL with an implicit existential quantifier over the execution
paths starting from initial states is used too.
2A Büchi automaton is essentially a finite automaton that accepts infinite words by looping through an
accepting state. For more information on Büchi automata and various other finite automata accepting
infinite words, see, e.g., (Perrin and Pin 2003). In LTL model checking, automata on infinite words are
needed to cope with liveness properties. For the case of safety properties, the verification can be simplified,
but we prefer a uniform presentation here.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

14 B. Křena and T. Vojnar

Second, the Kripke structure is converted to a non-deterministic Büchi automaton
AM accepting infinite words corresponding exactly to all the execution paths of
M . Third, the product automaton AM ⊗ A¬ϕ, which accepts the intersection of
the languages of AM and A¬ϕ, is constructed. Finally, emptiness of the language
of AM ⊗ A¬ϕ is checked. If the language of the product automaton is empty,
the system modelled by M satisfies ϕ. Otherwise, the language of the product
automaton consists of words corresponding exactly to those executions of M that
break the specification ϕ.
The translation from a Kripke structure to a non-deterministic Büchi automaton

is easy. Essentially, the Kripke structure M is converted to a non-deterministic
Büchi automaton AM by using 2AP as the alphabet, adding a new initial state
with outgoing transitions leading to all initial states of M , moving the labelling of
the states of M to their incoming transitions, and making all states accepting. On
the other hand, the construction of the non-deterministic Büchi automaton A¬ϕ is
far beyond the scope of this article. We just note that its size may be exponential
in the size of the formula: Indeed, LTL model checking is linear in the size ofM but
PSPACE-complete in the size of ϕ. However, various heuristics for keeping the size
of A¬ϕ as small as possible have been proposed and implemented in freely available
translators from LTL to Büchi automata, such as the LTL2BA tool implementing
the translation proposed in (Gastin and Oddoux 2001). Note also that the non-
deterministic Büchi automaton is constructed for the negation of ϕ. A construction
of the automaton for ϕ, followed by complementing the automaton, is possible, but
it is typically avoided since complementation of non-deterministic Büchi automata
is quite complicated and costly.
Construction of the product Büchi automaton is easy—one just has to take

care of the fact that the accepting states need not be reached at the same time
when looping through AM and A¬ϕ. It remains to discuss how the emptiness of
the product Büchi automaton may be checked. This emptiness check amounts to
checking that there is no reachable accepting loop in the automaton. For that
purpose, one can use various versions of the Tarjan’s algorithm for computing
strongly connected components or the nested depth-first search (nested DFS), in
which the outer DFS is used for finding accepting states while the inner DFS for
checking whether a loop exists on the state identified by the outer loop (Holzmann
et al. 1996, Gaiser and Schwoon 2009).
Finally, let us note that despite LTL model checking is linear in the size of the

Kripke structure and exponential in the size of the formula being checked, it is
usually the size of the Kripke structure that is problematic. This comes from that
the formulae of interest are often very small, but the Kripke structures tend to be
very large. Indeed, they represent the state space of the system being verified, which
is often exponentially larger than the system itself. To cope with this situation,
various heuristics are used.
First of all, one can use the so-called on-the-fly model checking (Holzmann 1996)

in which the Kripke structure is not generated first and only then explored. Instead,
the property Büchi automaton is composed with the Kripke structure during the
generation of the latter. This has two advantages. First, one can stop the state
space generation as soon as an error is found, possibly avoiding generation of many
further states (which can be quite useful since erroneous systems tend to have more
states due to they do not observe various invariants they should otherwise observe).
Moreover, one can avoid generation of parts of the state space for which it is clear
that they do not compose with the property automaton (and hence cannot lead
to any error). The state space generation is thus property driven. Next, one can
use various techniques to store and explore the generated state space efficiently

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 15

as well as to reduce it by not exploring some of its states whose exploration can
be seen redundant with respect to the property being checked and with respect
to the other explored states. Many different heuristics have been proposed for this
purpose, and we will briefly discuss some of them in Section 4.

3.3 Computation Tree Logic (CTL)

Formulae of CTL (Clarke and Emerson 1981) are built from atomic propositions,
Boolean constants and connectives, temporal operators, and universal and existen-
tial path quantifiers A and E. Compared to LTL, the path quantifiers are added,
which is consistent with CTL being a branching time logic. The use of the path
quantifiers is, however, restricted in CTL in that the temporal operators and path
quantifiers must regularly interleave, leading to ten non-propositional connectives:
AX, EX,AF, EF, AG, EG, AU, EU,AR, and ER. Thus, provided that p ∈ AP

where AP is a finite non-empty set of atomic propositions, CTL formulae are gen-
erated by the following grammar, in which an infix notation is used for AU, EU,
AR, and ER:

Φ ::= ⊤ | ⊥ | p | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | Φ → Φ | Φ ↔ Φ | AXΦ | EXΦ | AFΦ |
EFΦ | AGΦ | EGΦ | A [ΦUΦ] | E [ΦUΦ] | A [ΦRΦ] | E [ΦRΦ]

The satisfaction relation of CTL formulae is defined for each state of a Kripke
structure, taking into account all execution paths that originate from that state.
Let M = (S, S0, R, L) be a Kripke structure over a non-empty finite set of atomic
propositions AP . The satisfaction relation � between states s ∈ S and CTL for-
mulae is defined as follows (for brevity, we skip the definition of the meaning of
some of the propositional constants and connectives):

s � p iff p ∈ L(s)
s � ¬Φ iff s 2 Φ
s � Φ ∨Ψ iff s � Φ or s � Ψ
s � AXΦ iff ∀π ∈ Π(s) : π(1) � Φ
s � EXΦ iff ∃π ∈ Π(s) : π(1) � Φ
s � AFΦ iff ∀π ∈ Π(s)∃i ≥ 0 : π(i) � Φ
s � EFΦ iff ∃π ∈ Π(s)∃i ≥ 0 : π(i) � Φ
s � AGΦ iff ∀π ∈ Π(s)∀i ≥ 0 : π(i) � Φ
s � EGΦ iff ∃π ∈ Π(s)∀i ≥ 0 : π(i) � Φ
s � A [ΦUΨ] iff ∀π ∈ Π(s)∃ i ≥ 0 : (π(i) � Ψ ∧ ∀ 0 ≤ j < i : π(j) � Φ)
s � E [ΦUΨ] iff ∃π ∈ Π(s)∃ i ≥ 0 : (π(i) � Ψ ∧ ∀ 0 ≤ j < i : π(j) � Φ)
s � A [ΦRΨ] iff ∀π ∈ Π(s) : ∀i ≥ 0 : (∀ 0 ≤ j < i : π(j) 6|= Φ) → π(i) |= Ψ
s � E [ΦRΨ] iff ∃π ∈ Π(s) : ∀i ≥ 0 : (∀ 0 ≤ j < i : π(j) 6|= Φ) → π(i) |= Ψ

As in the case of LTL, the above introduced set of connectives is not minimal.
In particular, to preserve the expressive power of CTL, it is enough to use atomic
propositions, negation, disjunction, and the following three non-propositional con-
nectives: EX, EG, and EU. The meaning of the other non-propositional connec-
tives can be obtained as follows:

AXΦ ≡ ¬EX¬Φ
EFΦ ≡ E [⊤UΦ]
AGΦ ≡ ¬EF¬Φ
AFΦ ≡ ¬EG¬Φ
A [ΦUΨ] ≡ ¬(E [¬ΨU¬(Φ ∨Ψ)] ∨ EG¬Ψ)
A [ΦRΨ] ≡ ¬E [¬ΦU¬Ψ]
E [ΦRΨ] ≡ ¬A [¬ΦU¬Ψ]

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

16 B. Křena and T. Vojnar

For a given Kripke structureM and a CTL formula Φ, we can now define the so-
called satisfaction set Sat(Φ) = {s ∈ S | s � Φ}, i.e., the set of all the states of M
that satisfy Φ. Then, we say that M satisfies Φ, denoted M � Φ, iff S0 ⊆ Sat(Φ),
i.e., all initial states of M satisfy Φ.

3.4 Explicit-State CTL Model Checking

Let M = (S, S0, R, L) be a Kripke structure over a non-empty finite set of atomic
propositions AP , and let Φ be a CTL formula over AP . The basic algorithm of CTL
model checking (i.e., checking whether M � Φ holds) is rather straightforward. It
consists in computing the satisfaction sets for all sub-formulae of Φ, followed by
checking that the set S0 of initial states of M is included in Sat(Φ). In particular,
the algorithm starts by computing the satisfaction sets for the atomic propositions
that appear in Φ and then proceeds in a bottom-up fashion through the structure
of Φ, using the following rules (we provide the rules for the minimum needed set
of CTL operators only):

• Sat(p) = {s ∈ S | p ∈ L(s)} for any p ∈ AP ,

• Sat(¬Φ) = S \ Sat(Φ),

• Sat(Φ ∨Ψ) = Sat(Φ) ∪ Sat(Ψ),

• Sat(EXΦ) = {s ∈ S | ∃s′ ∈ Sat(Φ) : R(s, s′)},

• Sat(E [ΦUΨ]) is the smallest set T ⊆ S such that
(1) Sat(Ψ) ⊆ T and
(2) (s ∈ Sat(Φ) ∧ ∃s′ ∈ T : R(s, s′)) → s ∈ T ,

• Sat(EGΦ) is the largest set T ⊆ S such that
(1) T ⊆ Sat(Φ) and
(2) s ∈ T → ∃s′ ∈ T : R(s, s′).

Most of the above rules are rather straightforward: Atomic propositions hold in
the states that are labelled by them, negation corresponds to complementing the
satisfaction set, disjunction to taking the union, and EXΦ to going one step back
from the states satisfying Φ. The rules for handling EU and EG are a bit more
involved, but not too much.
Indeed, Sat(E [ΦUΨ]) can be obtained by computing the smallest fixpoint of

the equation T = Sat(Ψ)∪{s ∈ Sat(Φ) | ∃s′ ∈ T : R(s, s′)}, which can be obtained
by letting T := Sat(Ψ) and then iterating the transformation T := T ∪ {s ∈
Sat(Φ) | ∃s′ ∈ T : R(s, s′)} until T stops changing. The final value of T then gives
the desired satisfaction set.1 Intuitively, this means that one starts from the states
satisfying Ψ and then proceeds backwards throughM while passing through states
satisfying Φ only.
Similarly, Sat(EGΦ) can also be obtained quite easily as the greatest fixpoint

of the equation T = {s ∈ Sat(Φ) | ∃s′ ∈ T : R(s, s′)}, which can be obtained by
letting T := Sat(Φ) and then iterating the transformation T := {s ∈ T | ∃s′ ∈ T :
R(s, s′)} until the set T stops changing. The final value of T then gives the desired
satisfaction set.2

Moreover, for computing Sat(EGΦ), one can also build on the notion of non-
trivial strongly connected components (containing more than one state or at least
one state with a self-loop). In particular, Sat(EGΦ) can then be computed by
restricting M to its sub-structure consisting of states in Sat(Φ) only, applying the

1This computation is, in fact, based on the expansion law E [ΦUΨ] ≡ Ψ ∨ (Φ ∧EXE [ΦUΨ]).
2This computation is based on the expansion law EGΦ ≡ Φ ∧EXEGΦ.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 17

Tarjan’s algorithm to compute non-trivial strongly-connected components of the
sub-structure, using states of these components as the initial approximation of the
sought satisfaction set, and then extending them by all the states that can be
reached from them by going backwards through the sub-structure.
Clearly, the time complexity of the above described approach to CTL model

checking is O((|S|+ |R|) · |Φ|). However, since the state spaces of practical systems
tend to be extremely large, one still has to fight with the state space explosion
problem here too, using some of the heuristics for efficient state space generation
and storage or state space reduction briefly discussed in Section 4.

3.5 Expressiveness of LTL and CTL

Although many relevant properties of systems to be verified can be specified both in
LTL and CTL, the expressive power of these logics is, in fact, incomparable. Some
properties expressible in LTL (e.g., FG p) cannot be expressed in CTL while some
properties expressible in CTL (e.g., AGEF p) cannot be expressed in LTL. The
CTL* logic proposed in (Emerson and Halpern 1986) combines features of both
LTL and CTL and is more expressive than any of them. The syntax of CTL* is easy
to obtain from that of CTL by lifting the restriction on the regular interleaving of
path quantifiers and temporal connectives. A commonly used temporal logic that is
even more expressive than CTL* is then the modal µ-calculus (Kozen 1983), which
is based on allowing one to explicitly use least/greatest fixpoint operators on sets
of states (thus essentially allowing one to define new specialised modalities).

4. State Space Explosion in Model Checking

As we have already mentioned above, the state space explosion problem, which is
one of the main problems to face in model checking, means the need to deal with
an exponential growth of the number of reachable states in the size of the examined
systems. The state explosion stems from a huge number of possible interleavings of
concurrently running processes (a system with n processes, each having k states,
may have up to kn reachable states) and/or from a huge number of possible data
values that may be handled by the system to be verified (indeed, a single 32-bit-
wide integer variable can have 232 possible values, n of such variables then 232.n

possible values). To cope with the state space explosion problem, many different
heuristics have been proposed (Valmari 1998, Clarke et al. 1999, Baier and Katoen
2008). We briefly overview some of the most important of them below.

4.1 Compact State Space Storage

The first possible approach to cope with the state space explosion problem is to
store state spaces as compactly as possible. One way to achieve compactness is to
store state spaces in a hierarchical way. This approach can be used in the quite
frequent case when the particular states have some internal hierarchical structure.
For instance, it may be the case that a state of a system consists of states of
various processes existing in that state. The states of processes may in turn consist
of states of threads running within these processes. Then, a lot of space is waisted
when an entire new state vector is created whenever the state of a single thread
changes. Instead, one can store state vectors as vectors of pointers to states of
processes, which, similarly, can have the form of vectors of pointers to states of
threads. Now, when the state of a single thread changes, one has to only create

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

18 B. Křena and T. Vojnar

a new vector of pointers for the global state, a new vector of pointers for the state of
the concerned process, and a new state vector for the thread whose state changed.
This is much more space efficient than making a new copy of the unchanged states
of all existing threads. A hierarchical storage of states has thus been used in many
model checkers, such as Spin (Holzmann 1997) or Java PathFinder (Visser et al.
2003).
Another approach is to use the so-called symbolic verification that, instead of

exploring individual states one-by-one, works with sets of states at the same time.
These sets must, of course, be encoded in a way allowing for an efficient manipula-
tion with them. The most famous symbolic verification method is probably the one
based on binary decision diagrams (Bryant 1986, Burch et al. 1992), commonly ab-
breviated as BDDs. The use of BDDs is behind many successes of model checking,
especially in hardware.

a

b

0 1

a

b

c

0 0

c

0 0

b

c

0 0

c

1 1
Figure 1. Binary decision diagrams

BDDs provide a (usually) very compact
and canonical representation of Boolean
functions (i.e., functions of the form
{0, 1}k −→ {0, 1}, k ≥ 0), corresponding
to propositional formulae (possibly rep-
resenting finite sets or relations). BDDs
have a form of rooted, directed, con-
nected, acyclic graphs that consist of in-
ternal Boolean decision nodes and termi-
nal Boolean result nodes. BDDs may be
viewed to arise from Boolean decision trees by removing redundancies from them
by merging isomorphic sub-trees and removing useless nodes with identical chil-
dren. An illustration of the use of BDDs for representing a state space may be
found in Fig. 1 where a, b, and c may be viewed to refer to particular bits of state
vectors of some system being verified, and the leaves say whether the appropriate
state vector is or is not in the reachable state space. When using BDDs, it may
actually happen that larger state spaces require less storage space than smaller
ones since they can contain more redundancies (which, however, depends on many
factors, including the density of the state space and the choice of ordering of the
particular bits of state vectors).
When using BDDs for symbolic model checking, one needs to use BDDs not

only to represent sets of reachable states but also the transition relation of the
system being examined. Moreover, one needs to be able to compute satisfaction
sets of temporal formulae purely on the level of BDDs (and hence, equivalently,
propositional formulae). For that, fixpoint characterisations of temporal operators,
such as those used in Section 3.4, are useful since they can be easily written as
(quantified) propositional formulae.
Sometimes, the compact representation of state spaces may disregard some infor-

mation in which case soundness of model checking is deliberately sacrificed in order
to achieve efficiency. This way, an error detection method with formal verification
roots is obtained. An example of such an approach is the bit-state hashing method
(Holzmann 1987) where different reachable states of the system being verified are
not distinguished when they have the same hash value (alternatively, several differ-
ent hash functions can be used, not distinguishing states only when they are hashed
to the same value by all the functions). This approach is used, for instance, in the
Spin model checker (Holzmann 1997). In particular, Spin uses two hash functions,
and it also provides the user with an estimation of how well the state space was
probably covered based on the so-called hash factor (computed as the size of the
hash-table divided by the number of stored states).

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 19

4.2 State Space Reductions

The goal of state space reduction techniques is to avoid generation and exploration
of states for which it is clear that their properties are not important with respect
to the specification being checked, or their properties are covered by the properties
of other explored states. We are by far, of course, not able to describe all the
numerous state space reduction techniques studied in the literature, and so we will
briefly present just three of them that are quite commonly used.
One of the commonly used ways to reduce the generated and explored portion

of the state space of a system being verified is the on-the-fly model checking (Holz-
mann 1996) when the property to be examined is checked in parallel with the
state space generation. As we have already mentioned in Section 3.2, this approach
builds on the fact that the state space generation can sometimes be driven by the
property being checked. For instance, when using an automata-theoretic approach
to model checking, one can avoid generation and exploration of certain paths in
the state space once it is clear from their already generated prefixes that they can-
not be accepted by the automaton describing undesirable behaviours. Moreover,
one can avoid not only the generation of some unimportant states with respect to
the property being checked, but one can also stop the state space generation and
exploration as soon as an error is found without having to generate many further
reachable states.

think think

thinkthink

eat

think

think

think

think

eat

Figure 2. Symmetries and the dining philosophers

Another commonly
used state space re-
duction is the so-called
symmetry reduction—
cf., e.g., (Clarke et al.
1993, Ip and Dill 1996a,
Sistla et al. 1997). In-
tuitively, this approach
builds on identifying
sets of the so-called
symmetrical states that
can be made identical by exchanging the roles of some of their components. Out of
the sets of symmetrical states, it is then enough to explore just one representative
state. One can, e.g., rotate the philosophers in the well-known dining philosophers
problem since it is not really important whether the first one is eating and the
others are thinking, or the third one is eating and the others thinking, and so
on (cf. Fig. 2). Clearly, similar situations are likely to arise in many practical
scenarios when dealing with replicated components, objects, processes, and the
like. The use of symmetries is especially important in the context of verification
of systems with dynamically instantiated processes or objects (Visser et al. 2003,
Češka et al. 2001) where the use of fresh identifiers of processes or objects being
regularly destroyed and created may cause a very significant state explosion. Of
course, a problem that must be addressed when applying symmetries is how to
detect symmetrical states efficiently, or, even better, how to transform states
into a canonical form in order not to loose too much time by testing whether
some states are or are not symmetrical (which is to be performed every time
a potentially new state is generated).
Another very important state space reduction, particularly successful in

model checking of concurrent systems, is the so-called partial-order reduction
or commutativity-based reduction (Valmari 1988, Katz and Peled 1988, Gode-
froid 1991). This reduction aims at reducing the amount of interleaving of
concurrently enabled actions. In particular, if some concurrently enabled ac-

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

20 B. Křena and T. Vojnar

tions are independent (i.e., they do not mutually influence the enabledness
and the effect of each other) and, moreover, the order of executing the ac-
tions is not visible through the property being checked (i.e., the order of ex-
ecuting the actions is not important for the validity of the property), the ac-
tions are fired in one of the possible orders only. This is illustrated in Fig. 3

Figure 3. Partial-order reduction

where the independent, concurrently
enabled actions correspond to the
edges drawn using different styles of
lines. The main practical issue with
partial-order reduction is how to effi-
ciently decide which actions are inde-
pendent in order for the overhead of
the reduction not to be higher than
what it brings. For this purpose, var-
ious heuristics tailored for different
classes of verified systems have been
proposed and are in use in model
checkers such as Spin (Holzmann 1997) or Java PathFinder (Visser et al. 2003).

4.3 Abstraction

When abstraction is combined with model checking (Clarke et al. 1994), only some
selected aspects of states are tracked, hopefully yielding a smaller abstract state
space to be explored. It is preferable that the abstraction is constructed auto-
matically and possibly gradually refined in the so-called counterexample-guided
abstraction refinement (CEGAR) loop (Clarke et al. 2000). CEGAR is based on
excluding artificial counterexamples to the properties being verified, stemming from
using a too coarse abstraction.1

Among the abstractions used in model checking, perhaps the most successful is
the so-called predicate abstraction (Graf and Säıdi 1997), heavily used especially in
software model checking. Intuitively, model checkers based on predicate abstraction
do not track the exact reachable states of the system being verified, but only some
predicates about the states. For instance, instead of remembering that a state in
which the variable x has value 100 and the variable y has value 10 is reachable,
they may remember that a state where x > y is reachable only.
To find out how the validity of the predicates tracked by predicate abstraction

changes in response to the transitions being fired, one can use specialised decision
procedures or theorem provers operated in a fully automated way. The abstraction
may either be applied before a state space exploration is started (Ball et al. 2001),
or it is constructed on-the-fly during the state space exploration (Henzinger et al.
2002). An important issue in predicate abstraction is then how to choose the new
predicates to be learnt from spurious counterexamples. For this, the so-called Craig
interpolation known from logic is often used (McMillan 2005). Intuitively, Craig
interpolation, when given a spurious counterexample path through a program (en-
coded as a formula), produces an abstract reason (encoded again as a formula) for
the path not to be feasible at each particular line of the program through which the
path is supposed to go through (which is then used as a source of new predicates
to be tracked).

1The use of CEGAR, allowing the answers “yes, the property to be verified holds” or “no, the property
does not hold” instead of “the property is possibly broken”, often distinguishes approaches based on model
checking from various static analyses using a fixed abstraction.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 21

Predicate abstraction is at the core of many well-known software model checkers,
such as Blast (Henzinger et al. 2003), CPAChecker (Beyer and Keremoglu 2011),
SatAbs (Clarke et al. 2005), Wolverine (Kroening and Weissenbacher 2011), ARMC
(Rybalchenko 2011), or the commercial Static Driver Verifier from Microsoft, devel-
oped on the basis of the SLAM model checker (Ball and Rajamani 2001). Although
predicate abstraction is mostly used for checking safety properties, its variant for
verifying liveness properties has also appeared (Podelski and Rybalchenko 2005).

4.4 Bounded Model Checking

A further way to cope with the state space explosion problem is to bound the state
space exploration in some way. As in the case of the above mentioned bit-state
hashing, this usually results in an unsound technique which can, however, be still
very well used as a systematic testing approach.
One natural way how the state space exploration can be bounded is to restrict

the depth of the state space exploration, leading to the classical notion of bounded
model checking (Biere et al. 2003). In this case, the behaviour of the system is un-
folded some given number of steps. An important observation is that the unfolded
behaviour can easily be captured by a formula that can subsequently be conjoined
with another formula describing undesirable behaviours, and the constantly in-
creasing power of various SAT or SMT solvers can then be utilised to check satisfi-
ability of the resulting formula. This way, one can reliably check whether an error
can be reached within a given number of steps or not. Moreover, there are even
ways how to make the approach complete (based, e.g., on automated induction
(Sheeran et al. 2000)).
Bounded model checking in the form described above has become very popular

and is widely applied even in the industry, especially in the area of hardware
verification. It has, however, been applied even in software verification, e.g., in
tools like CBMC (Clarke et al. 2004a) or LLBMC (Merz et al. 2012). A closely
related approach is then used in tools such as KLEE (Cadar et al. 2008) under the
name of symbolic execution1. The difference is that in bounded model checking,
a single formula describing all runs up to some length is constructed. In symbolic
execution, a separate path formula for each path in the program of a length up to
some bound is examined. A path formula naturally describes in a chosen logic all
the conditions that appear on the considered program path as well as the effect of
each encountered statement.
A different approach of how to bound the state space exploration within model

checking is to bound the number of context switches that are allowed to happen
when verifying concurrent programs. This idea is motivated by the fact that many
errors in concurrent programs do manifest already with a few processes (or threads)
and a few context switches. The idea has been quite successfully implemented
in tools for systematic (or deterministic) testing of concurrent programs such as
CHESS (Musuvathi and Qadeer 2007). These tools try to record the already wit-
nessed testing runs and then to force those that have not yet been seen until some
given bound on the number of context switches is reached.

1In the literature, the term “symbolic execution” is used in other meanings than the above too. In par-
ticular, it is also used to denote execution of a system on the level of sets of its configurations described
using a suitable formalism.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

22 B. Křena and T. Vojnar

4.5 Other Approaches to State Space Explosion

Other approaches to the state space explosion problem in model checking include
modular verification and the so-called assume-guarantee reasoning (Pnueli 1985,
Clarke et al. 1989, Chaki et al. 2005, Alur et al. 2005) in which the system is verified
part-by-part. The assumptions on the behaviour of various parts of a system needed
for its modular verification can be provided manually or automatically learnt from
sample behaviours of the system.
Yet another approach is to use more computational power in the form of

distributed computing environments, external storage (instead of RAM), multi-
processor systems, graphics processing units (GPUs), and so on. For examples
of such approaches, see, e.g., (Holzmann and Bošnački 2007, Barnat et al. 2009,
2010a,b, Blom et al. 2010).
Finally, various combinations of (bounded) model checking and other approaches

are possible. For instance, dynamic analysis may be used to detect possible defects
in a program and to partially record a behaviour witnessing such a defect. The
partially recorded behaviour can then be reconstructed in a model checker. Sub-
sequently, bounded model checking in the neighbourhood of the behaviour can be
used to check whether there is really an error in the system or not (Hrubá et al.
2009).

5. Model Checking and Infinite-State Systems

Model checking of systems with infinitely many states is usually even more de-
manding than that of systems with large but finite state spaces. Indeed, most
verification problems for infinite-state systems are undecidable. However, dealing
with infinite-state systems is common in practice due to using various unbounded
data and control structures (such as queues, stacks, counters, dynamic linked data
structures, or unrestricted dynamic creation of processes, objects, etc.) or due to
using parameterised designs. That is why techniques for model checking of such
systems are also highly needed and studied. In their case, however, one clearly
cannot use a systematic enumeration of all individual reachable states.
One possibility of verifying infinite-state systems via model checking is to use

the so-called cut-offs—cf., e.g., (German and Sistla 1992, Emerson and Namjoshi
1996, Emerson and Kahlon 2004, Clarke et al. 2004b, Emerson and Kahlon 2000,
2002, Kahlon et al. 2005, Bouajjani et al. 2006b, Kaiser et al. 2010). Cut-offs are
such bounds on the various infinite resources present in the system being verified
that once the property of interest is successfully verified with the sources of infinity
limited by the cut-off bounds, the property is guaranteed to hold in general. If one
can find a suitable cut-off, infinite-state model checking can be reduced to finite-
state model checking with the possibility of using all the optimisations discussed in
Section 4. On the other hand, cut-offs are usually highly specialised to only certain
classes of systems and their properties. Moreover, sometimes, even if some cut-offs
are known, they are so huge that they are not really applicable in practice.
Another possibility to apply model checking on infinite-state systems is to use

various kinds of (finite-range) abstractions. The abstractions considered in the lit-
erature range from predicate abstraction (Graf and Säıdi 1997) discussed already
in Section 4.3 (indeed, when we use a finite number of Boolean predicates, the
abstract state space becomes finite regardless of the original domains of the con-
crete state variables) to various specialised abstractions proposed, for instance, for
verifying parameterised networks of processes (Ip and Dill 1996b, Baukus et al.
2000, Pnueli et al. 2002).
Further, one may use symbolic model checking based on some kind of a finite

representation of infinite sets of states by means of logics, automata, grammars, or

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

International Journal of General Systems 23

another suitable formalism. An example of such an approach is the so-called regular
model checking, cf., e.g., (Kesten et al. 1997, Pnueli and Shahar 2000, Bouajjani
et al. 2000, Abdulla et al. 2002, Boigelot et al. 2003, Bouajjani et al. 2004, Abdulla
2012). Regular model checking is a generic automata-based framework for verifica-
tion of infinite-state systems with linear or tree-like configurations that uses finite
(word, tree, or infinite word) automata to finitely represent potentially infinite sets
of reachable configurations of the systems being verified.1 The technique has been
successfully applied for verification of a wide range of infinite-state systems, in-
cluding systems with unbounded counters, queues, stacks, parameters as well as
complex dynamic linked data structures (Bouajjani et al. 2006a, Habermehl et al.
2011). Another successful symbolic verification is then, for instance, the symbolic
model checking approach based on the so-called zones (Dill 1989, Henzinger et al.
1994) that has turned out to be very successful in the domain of model check-
ing real-time systems modelled by timed automata (Alur and Dill 1994, Henzinger
et al. 1994).
Yet another group of often studied approaches is based on various ways of auto-

mated induction—cf., e.g., (Wolper and Lovinfosse 1989, Kurshan and McMillan
1995, McMillan et al. 2000, Lesens et al. 1997, Creese and Roscoe 2000, Pnueli
et al. 2001). Many of these works use the so-called network invariants which pro-
vide an abstraction of a composition of any number of processes. It then suffices to
use model checking to verify that (1) the behaviour of a single process is covered
by the network invariant, (2) a composition of the network invariant and a process
is also covered by the invariant, and (3) the invariant satisfies the given property
of interest.
Of course, when dealing with infinite-state systems, as we have already said, one

very quickly reaches undecidability of most verification problems of interest. The
same in particular holds for verification of parametric systems (Apt and Kozen
1986). Therefore, most of the model checking methods proposed for verification of
infinite-state and parametric systems (including the methods discussed above) are
either not fully automated, or they are semi-algorithmic heuristics, i.e., they do not
guarantee termination, or they allow an indefinite answer of the type “don’t know”
to be returned. Note, however, that some verification problems are decidable even
over infinite-state systems. This is, e.g., the case of many model checking problems
over push-down systems (Walukiewicz 1996, Burkart and Steffen 1997, Bouajjani
et al. 1997, Finkel et al. 1997, Esparza et al. 2000), lossy FIFO channel systems
(Finkel 1994, Cécé et al. 1996, Abdulla and Jonsson 1996, Masson and Schnoebelen
2002), timed automata (Alur and Dill 1994, Alur et al. 1993), various dynamic
networks of concurrent processes with recursion (Mayr 2000, Bouajjani et al. 2005),
or the various scenarios in which some cut-offs have been found. However, it may
sometimes be more advantageous to use semi-algorithmic heuristic approaches even
in these cases since the heuristics may turn out to deliver more efficient results in
practice.

6. Conclusion

We have presented multiple techniques for formal analysis and verification, includ-
ing, in particular, various forms of theorem proving, static analysis, as well as
model checking. The description was mostly informal, and, given the width of the

1Sometimes even systems with more general topologies of states may be handled provided that the non-
word/non-tree links present in the states can be encoded over words or trees using suitable alphabet
symbols (such as pairs of from/to marker symbols for encoding loops).

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

24 B. Křena and T. Vojnar

subject and the space of a typical article, omitted many details and alternatives
of the presented approaches. Nevertheless, many references have been provided for
works where further details can be found.
Despite the immense amount of work that has been invested into the development

of the different techniques of formal analysis and verification, there is still a lot of
space for improving their generality, efficiency, and degree of automation. Works
going in these directions are constantly appearing and are likely to appear in the
future too since the interest in all forms of automated verification is currently very
high, and it is likely that the interest will further grow due to the ever increasing
impact of computer systems on human lives.

Acknowledgements

This work was supported by the Czech Science Foundation (project No.
P103/10/0306), the Czech Ministry of Education (projects COST OC10009 and
MSM 0021630528), the EU/Czech IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070, and Brno University of Technology (project FIT-S-12-1).

Notes on Contributors

Bohuslav Křena is an assistant professor at the Fac-
ulty of Information Technology of the Brno University
of Technology. His research focuses on formal analy-
sis and verification, especially on exploiting symbolic
execution and on analysis of concurrent programs. He
received his Ph.D. at the Faculty of Information Tech-
nology of the Brno University of Technology in 2004.
In 2002, he visited the Central Laboratory for Parallel
Processing of the Bulgarian Academy of Science, Sofia,

Bulgaria; in 2003, he visited the Edinburgh Parallel Computing Centre at the Uni-
versity of Edinburgh in Scotland; and in 2004 and 2005, he worked as a researcher
at the Software Testing and Analysis Laboratory of the Università degli Studi di
Milano-Bicocca, Milano, Italy. Since 2004, he works at FIT BUT.

Tomáš Vojnar is a full professor at the Faculty of In-
formation Technology of the Brno University of Tech-
nology (FIT BUT). His research focuses on computer-
aided verification, including, in particular, automata-
based and logic-based symbolic formal verification of
infinite-state systems (especially programs with dy-
namic linked data structures); model checking, dynamic
analysis, and intelligent testing of concurrent programs;
as well as formal verification of modern hardware de-

signs. He received his Ph.D. at the Faculty of Electrical Engineering and Computer
Science of the Brno University of Technology in 2001. In 2001–03, he worked as
a post-doc researcher at LIAFA, Université Paris Diderot/CNRS in France. Since
2003, he works at FIT BUT. He defended his habilitation thesis in 2007 and became
a full professor of computer science and engineering in 2012.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

REFERENCES 25

References

Abdulla, P.A., (ed.), A Special Issue of the STTT Journal on Regular Model Check-
ing. International Journal on Software Tools for Technology Transfer (STTT),
14(2), Springer-Verlag, 2012.

Abdulla, P.A., d’Orso, J., Jonsson, B. and Nilsson, M., 2002. Regular Model Check-
ing Made Simple and Efficient. Vol. 2421 of LNCS Springer-Verlag.

Abdulla, P.A. and Jonsson, B., 1996. Verifying Programs with Unreliable Channels.
Information and Computation, 127 (2).

Aggarwal, P., Chu, D., Kadamby, V. and Singha, V., 2011. End-to-End Formal
using Abstractions to Maximize Coverage (Invited Tutorial). ACM and IEEE.

Aiken, A., 1999. Introduction to Set Constraint-based Program Analysis. Science
of Computer Programming, 35 (2-3).

Alur, R., Courcoubetis, C. and Dill, D.L., 1993. Model-Checking in Dense Real-
Time. Information and Computation, 104 First appeared in Proc. of LICS’90.

Alur, R. and Dill, D.L., 1994. A Theory of Timed Automata. Theoretical Computer
Science, 126 First appeared in Proc. of ICALP’90.

Alur, R., Madhusudan, P. and Nam, W., 2005. Symbolic Compositional Verification
by Learning Assumptions. Vol. 3576 of LNCS Springer-Verlag.

Apt, K. and Kozen, D., 1986. Limits for Automatic Verification of Finite-State
Concurrent Systems. Information Processing Letters, 22 (6).

Audemard, G. and Simon, L., 2009. Predicting Learnt Clauses Quality in Modern
SAT Solver. IJCAI and AAAI.

Baier, C. and Katoen, J.P., 2008. Principles of Model Checking. MIT Press.
Ball, T., Cook, B., Levin, V. and Rajamani, S.K., SLAM and Static Driver Verifier:

Technology Transfer of Formal Methods inside Microsoft, 2004, Technical report
MSR-TR-2004-08, Microsoft.

Ball, T., Podelski, A. and Rajamani, S.K., 2001. Boolean and Cartesian Abstrac-
tions for Model Checking C Programs. Vol. 2031 of LNCS Springer-Verlag.

Ball, T. and Rajamani, S.K., 2001. The SLAM Toolkit. Vol. 2102 of LNCS Springer-
Verlag.

Barnat, J., Bauch, P., Brim, L. and Češka, M., 2010a. Employing Multiple CUDA
Devices to Accelerate LTL Model Checking. IEEE CS.

Barnat, J., Brim, L., Češka, M. and Ročkai, P., 2010b. DiVinE: Parallel Distributed
Model Checker. IEEE CS.

Barnat, J., Brim, L. and Šimeček, P., 2009. Cluster-Based I/O-Efficient LTL Model
Checking. IEEE CS.

Baukus, K., Bensalem, S., Lakhnech, Y. and Stahl, K., 2000. Abstracting WS1S
Systems to Verify Prameterized Networks. Vol. 1785 of LNCS Springer-Verlag.

Behrmann, G., David, A. and Larsen, K.G., 2004. A Tutorial on Uppaal. Vol. 3185
of LNCS Springer-Verlag.

Bertot, Y. and Castéran, P., 2004. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag.

Beyer, D. and Keremoglu, M.E., 2011. CPAchecker: A Tool for Configurable Soft-
ware Verification. Vol. 6806 of LNCS Springer-Verlag.

Biere, A., et al., 2003. Bounded Model Checking. Advances in Computers, 58.
Blom, S., van de Pol, J. and Weber, M., 2010. LTSMIN: Distributed and Symbolic

Reachability. Vol. 6174 of LNCS Springer-Verlag.
Boigelot, B., Legay, A. and Wolper, P., 2003. Iterating Transducers in the Large.

Vol. 2725 of LNCS Springer-Verlag.
Bouajjani, A., Esparza, J. and Maler, O., 1997. Reachability Analysis of Pushdown

Automata: Application to Model-Checking. LNCS Springer.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

26 REFERENCES

Bouajjani, A., Habermehl, P., Rogalewicz, A. and Vojnar, T., 2006a. Abstract
Regular Tree Model Checking of Complex Dynamic Data Structures. Vol. 4134
of LNCS Springer-Verlag.

Bouajjani, A., Habermehl, P. and Vojnar, T., 2004. Abstract Regular Model Check-
ing. Vol. 3114 of LNCS Springer-Verlag.

Bouajjani, A., Habermehl, P. and Vojnar, T., 2006b. Verification of Parametric
Concurrent Systems with Prioritized FIFO Resource Management. Formal Meth-
ods in Systems Design, 32.

Bouajjani, A., Jonsson, B., Nilsson, M. and Touili, T., 2000. Regular Model Check-
ing. Vol. 1855 of LNCS Springer-Verlag.

Bouajjani, A., Mueller-Olm, M. and Touili, T., 2005. Regular Symbolic Analysis of
Dynamic Networks of Pushdown Systems. Vol. 3653 of LNCS Springer-Verlag.

Brayton, R. and Mishchenko, A., 2010. ABC: An Academic Industrial-Strength
Verification Tool. Vol. 6174 of LNCS Springer-Verlag.

Bryant, R.E., 1986. Graph-based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35 (8).

Burch, J.R., et al., 1992. Symbolic Model Checking: 1020 States and Beyond. In-
formation and Computation, 98 (2).

Burkart, O. and Steffen, B., 1997. Model Checking the Full Modal mu-Calculus for
Infinite Sequential Processes. Vol. 1256 of LNCS Springer-Verlag.

Cadar, C., Dunbar, D. and Engler, D., 2008. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. USENIX
Association.

Cavada, R., et al., Chapter title. NuSMV 2.5 User Manual, Fondazione Bruno
Kessler, 2010.

Cécé, G., Finkel, A. and Iyer, S.P., 1996. Unreliable Channels Are Easier to Verify
Than Perfect Channels. Information and Computation, 141 (1).

Češka, M., Janoušek, V. and Vojnar, T., 2001. Generating and Using State Spaces
of Object-Oriented Petri Nets. International Journal of Computer Systems Sci-
ence and Engineering, 16 (3).

Chaki, S., Clarke, E., Sinha, N. and Thati, P., 2005. Automated Assume-Guarantee
Reasoning for Simulation Conformance. Vol. 3576 of LNCS Springer-Verlag.

Clarke, E.M. and Emerson, E.A., 1981. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. Vol. 131 of LNCS Springer-
Verlag.

Clarke, E.M., Filkorn, T. and Jha, S., 1993. Exploiting Symmetry In Temporal
Logic Model Checking. Vol. 697 of LNCS Springer-Verlag.

Clarke, E.M., et al., 2000. Counterexample-Guided Abstraction Refinement. Vol.
1855 of LNCS Springer-Verlag.

Clarke, E.M., Grumberg, O. and Long, D.E., 1994. Model Checking and Abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16 (5).

Clarke, E.M., Grumberg, O. and Peled, D., 1999. Model Checking. MIT Press.
Clarke, E.M., Kroening, D. and Lerda, F., 2004a. A Tool for Checking ANSI-C

Programs. Vol. 2988 of LNCS Springer-Verlag.
Clarke, E.M., Kroening, D., Sharygina, N. and Yorav, K., 2005. SATABS: SAT-

based Predicate Abstraction for ANSI-C. Vol. 3440 of LNCS Springer-Verlag.
Clarke, E.M., Long, D. and McMillan, K.L., 1989. Compositional Model Checking.

IEEE Press.
Clarke, E.M., Talupur, M., Touili, T. and Veith, H., 2004b. Verification by Network

Decomposition. Vol. 3170 of LNCS Springer-Verlag.
Cohen, E., et al., 2009. VCC: A Practical System for Verifying Concurrent C. Vol.

5674 of LNCS Springer-Verlag.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

REFERENCES 27

Cok, D.R. and Kiniry, J., 2005. ESC/Java2: Uniting ESC/Java and JML. Vol. 3362
of LNCS Springer-Verlag.

Cousot, P. and Cousot, R., 1977. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
ACM Press.

Cousot, P. and Cousot, R., 1992. Abstract Interpretation Frameworks. Journal of
Logic and Computation, 2 (4).

Cousot, P., et al., 2005. The Astre analyser. Vol. 3444 of LNCS Springer-Verlag.
Creese, S.J. and Roscoe, A.W., 2000. Data Independent Induction over Structured

Networks. CSREA Press.
Davis, M., Logemann, G. and Loveland, D., 1962. A Machine Program for Theorem

Proving. Communications of the ACM, 5.
de Moura, L.M. and Bjørner, N., 2008. Z3: An Efficient SMT Solver. Vol. 4963 of

LNCS Springer-Verlag.
Deutsch, A., Static Verification of Dynamic Properties. SIGADA 2003. White paper

of PolySpace Technologies., 2003.
Dill, D.L., 1989. Timing Assumptions and Verification of Finite-state Concurrent

Systems. Vol. 407 of LNCS Springer-Verlag.
Edelstein, O., et al., 2002. Multithreaded Java Program Test Generation. IBM

Systems Journal, 41.
Elmas, T., Qadeer, S. and Tasiran, S., 2007. Goldilocks: A Race and Transaction-

aware Java Runtime. ACM Press.
Emerson, E.A. and Halpern, J.Y., 1986. ‘Sometimes’ and ‘Not Never’ Revisited:

On Branching Versus Linear Time Temporal Logic. Journal of the ACM, 33 (1).
Emerson, E.A. and Kahlon, V., 2000. Reducing Model Checking of the Many to

the Few. Vol. 1831 of LNCS Springer-Verlag.
Emerson, E.A. and Kahlon, V., 2002. Model Checking Large-Scale and Parameter-

ized Resource Allocation Systems. Vol. 2280 of LNCS Springer-Verlag.
Emerson, E.A. and Kahlon, V., 2004. Parameterized Model Checking of Ring-based

Message Passing Systems. Vol. 3210 of LNCS Springer-Verlag.
Emerson, E.A. and Namjoshi, K.S., 1996. Automatic Verification of Parameterized

Synchronous Systems. Vol. 1102 of LNCS Springer-Verlag.
Engler, D. and Musuvathi, M., 2004. Static Analysis versus Software Model Check-

ing for Bug Finding. Vol. 2937 of LNCS Springer-Verlag.
Esparza, J., Hansel, D., Rossmanith, P. and Schwoon, S., 2000. Efficient Algorithms

for Model Checking Pushdown Systems. Vol. 1855 of LNCS Springer.
Ferdinand, C., et al., 2007. New Developments in WCET Analysis. In: T. Reps,

M. Sagiv and J. Bauer, eds. Program Analysis and Compilation, Theory and
Practice., Vol. 4444 of LNCS Springer-Verlag.

Fiedor, J. and Vojnar, T., 2012. ANaConDA: A Framework for Analysing Multi-
threaded C/C++ Programs on the Binary Level. LNCS Springer-Verlag.

Finkel, A., 1994. Decidability of the Termination Problem for Completely Specified
Protocols. Distributed Computing, 7 (3).

Finkel, A., Willems, B. and Wolper, P., 1997. A Direct Symbolic Approach to Model
Checking Pushdown Systems. ENTCS, 9 A preliminary version was presented at
Infinity’97.

Flanagan, C. and Freund, S., 2009. FastTrack: Efficient and Precise Dynamic Race
Detection. ACM Press.

Gaiser, A. and Schwoon, S., 2009. Comparison of Algorithms for Checking Empti-
ness on Büchi Automata. FIT BUT.

Gastin, P. and Oddoux, D., 2001. Fast LTL to Büchi Automata Translation. Vol.
2102 of LNCS Springer-Verlag.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

28 REFERENCES

German, S.M. and Sistla, A.P., 1992. Reasoning about Systems with Many Pro-
cesses. Journal of the ACM, 39 (3).

Godefroid, P., 1991. Using Partial Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. Vol. 575 of LNCS Springer-Verlag.

Graf, S. and Säıdi, H., 1997. Construction of Abstract State Graphs with PVS.
Vol. 1254 of LNCS Springer-Verlag.

Habermehl, P., et al., 2011. Forest Automata for Verification of Heap Manipulation.
Vol. 6806 of LNCS Springer-Verlag.

Havelund, K., 2000. Using Runtime Analysis to Guide Model Checking of Java
Programs. Vol. 1885 of LNCS Springer-Verlag.

Henzinger, T.A., Jhala, R., Majumdar, R. and Sutre, G., 2002. Lazy Abstraction.
ACM Press.

Henzinger, T.A., Jhala, R., Majumdar, R. and Sutre, G., 2003. Software Verifica-
tion with Blast. Vol. 2648 of LNCS Springer-Verlag.

Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine, S., 1994. Symbolic Model
Checking for Real-time Systems. Information and Computation, 111 First ap-
peared in Proc. of LICS’92.

Hoare, C.A., 1969. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, 12.

Holzmann, G.J., 1987. On Limits and Possibilities of Automated Protocol Analysis.
North-Holland Publishing Co.

Holzmann, G.J., 1997. The Model Checker Spin. IEEE Transactions on Software
Engineering, 23 (5).

Holzmann, G., 1996. On-the-Fly Model Checking. ACM Computing Surveys, 28
(4es).

Holzmann, G. and Bošnački, D., 2007. The Design of a Multicore Extension of the
SPIN Model Checker. IEEE Transactions on Software Engineering, 33 (10).

Holzmann, G., Peled, D. and Yannakakis, M., 1996. On Nested Depth First Search.
American Mathematical Society.

Hovemeyer, D. and Pugh, W., 2004. Finding Bugs Is Easy. ACM Press.
Hrubá, V., et al., 2012. Testing of Concurrent Programs Using Genetic Algorithms.

Vol. 7515 of LNCS Springer-Verlag.
Hrubá, V., Křena, B. and Vojnar, T., 2009. Self-Healing Assurance Using Bounded

Model Checking. Vol. 5717 of LNCS Springer-Verlag.
Ip, C.N. and Dill, D.L., 1996a. Better Verification Through Symmetry. Journal of

Formal Methods in System Design, 9 (1/2).
Ip, C.N. and Dill, D.L., 1996b. Verifying Systems with Replicated Components in

Murϕ. Vol. 1102 of LNCS Springer-Verlag.
Jeannet, B. and Min, A., 2009. APRON: A Library of Numerical Abstract Domains

for Static Analysis. Vol. 5643 of LNCS Springer-Verlag.
Jin, G., et al., 2011. Automated Atomicity-Violation Fixing. ACM Press.
Kahlon, V., Ivančić, F. and Gupta, A., 2005. Reasoning about Threads Communi-

cating via Locks. Vol. 3576 of LNCS Springer-Verlag.
Kaiser, A., Kroening, D. and Wahl, T., 2010. Dynamic Cutoff Detection in Param-

eterized Concurrent Programs. Vol. 6174 of LNCS Springer-Verlag.
Kam, J.B. and Ullman, J.D., 1976. Global Data Flow Analysis and Iterative Algo-

rithms. Journal of the ACM, 23.
Kam, J.B. and Ullman, J.D., 1977. Monotone Data Flow Analysis Frameworks.

Acta Informatica, 7.
Katz, S. and Peled, D., 1988. An Efficient Verification Method for Parallel and

Distributed Programs. Vol. 354 of LNCS Springer-Verlag.
Kaufmann, M., Manolios, P. and (eds.), J.S.M., 2000a. Computer-Aided Reasoning:

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

REFERENCES 29

ACL2 Case Studies. Kluwer Academic Publishers.
Kaufmann, M., Manolios, P. and (eds.), J.S.M., 2000b. Computer-Aided Reasoning:

An Approach. Kluwer Academic Publishers.
Kelly, W., et al., The Omega Calculator and Library, version 1. 1.0. , 1996.
Kesten, Y., et al., 1997. Symbolic Model Checking with Rich Assertional Lan-

guages. Vol. 1254 of LNCS Springer-Verlag.
Khedker, U.P. and Dhamdhere, D.M., 1994. A Generalized Theory of Bit Vector

Data Flow Analysis. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 16 (5).

Kildall, G.A., 1973. A Unified Approach to Global Program Optimization. ACM
Press.

Klarlund, N. and Møller, A., MONA Version 1.4 User Manual. BRICS, Department
of Computer Science, University of Aarhus, Denmark, 2001.

Kozen, D., 1983. Results on the Propositional µ-Calculus. Theoretical Computer
Science, 27.

Kroening, D. and Weissenbacher, G., 2011. Interpolation-Based Software Verifica-
tion with Wolverine. Vol. 6806 of LNCS Springer-Verlag.

Kurshan, R.P. and McMillan, K.L., 1995. A Structural Induction Theorem for
Processes. Information and Computation, 117 (1).

Křena, B., et al., 2007. Healing Data Races On-The-Fly. ACM Press.
Kwiatkowska, M., Norman, G. and Parker, D., 2011. PRISM 4.0: Verification of

Probabilistic Real-time Systems. Vol. 6806 of LNCS Springer-Verlag.
Lesens, D., Halbwachs, N. and Raymond, P., 1997. Automatic Verification of Pa-

rameterized Linear Networks of Processes. ACM Press.
Marino, D. and Millstein, T., 2009. A Generic Type-and-Effect System. ACM Press.
Masson, B. and Schnoebelen, P., 2002. On Verifying Fair Lossy Channel Systems.

Vol. 2420 of LNCS Springer-Verlag.
Mayr, R., 2000. Process Rewrite Systems. Information and Computation, 156 (1).
McMillan, K.L., Chapter title. The SMV System, Carnegie Mellon University and

Cadence, 2000.
McMillan, K.L., 2005. Applications of Craig Interpolants in Model Checking. Vol.

3440 of LNCS Springer.
McMillan, K.L., Qadeer, S. and Saxe, J.B., 2000. Induction in Compositional Model

Checking. Vol. 1855 of LNCS Springer.
McMinn, P., 2004. Search-based Software Test Data Generation: A Survey. Soft-

ware Testing, Verification and Reliability, 14.
Merz, F., Falke, S. and Sinz, C., 2012. LLBMC: Bounded Model Checking of C

and C++ Programs Using a Compiler IR. Vol. 7152 of LNCS Springer-Verlag.
Musuvathi, M. and Qadeer, S., 2007. Iterative Context Bounding for Systematic

Testing of Multithreaded Programs. ACM.
Nagpaly, R., Pattabiramanz, K., Kirovski, D. and Zorn, B., 2007. Tolerace: Toler-

ating and Detecting Races.
Nielson, F. and Nielson, H.R., 1999. Type and Effect Systems. Vol. 1710 of LNCS

Springer-Verlag.
Nielson, F., Nielson, H.R. and Hankin, C., 2005. Principles of Program Analysis.

Springer-Verlag.
Nipkow, T., Paulson, L.C. and Wenzel, M., 2005. Isabelle/HOL: A Proof Assistant

for Higher-Order Logic. Springer-Verlag.
Owre, S., Shankar, N., Rushby, J.M. and Stringer-Calvert, D.W., Chapter title.

PVS System Guide, Computer Science Laboratory, SRI International, Menlo
Park, California, USA URL: http://pvs.csl.sri.com/, 2001.

Palsberg, J., 2001. Type-based Analysis and Applications. ACM Press.

November 30, 2012 22:51 International Journal of General Systems ijgs-fav

30 REFERENCES

Perrin, D. and Pin, J.E., 2003. Infinite Words: Automata, Semigroups, Logic and
Games. Academic Press.

Pnueli, A., 1977. The Temporal Logic of Programs. IEEE.
Pnueli, A., 1985. In Transition from Global to Modular Temporal Reasoning about

Programs. NATO Asi Series F: Computer And Systems Sciences, In: K. Apt, ed.
Logics and Models of Concurrent Systems. Springer-Verlag.

Pnueli, A., Ruah, S. and Zuck, L., 2001. Automatic Deductive Verification with
Invisible Invariants. Vol. 2031 of LNCS Springer-Verlag.

Pnueli, A. and Shahar, E., 2000. Liveness and Acceleration in Parameterized Ver-
ification. Vol. 1855 of LNCS Springer-Verlag.

Pnueli, A., Xu, J. and Zuck, L., 2002. Liveness with (0,1,infinity)-Counter Abstrac-
tion. Vol. 2404 of LNCS Springer-Verlag.

Podelski, A. and Rybalchenko, A., 2005. Transition Predicate Abstraction and Fair
Termination. ACM Press.

Queille, J.P. and Sifakis, J., 1982. Specification and Verification of Concurrent
Systems in CESAR. Vol. 137 of LNCS Springer-Verlag.

Ratanaworabhan, P., et al., 2011. Efficient Runtime Detection and Toleration of
Asymmetric Races. IEEE Transactions on Computers, 99.

Rybalchenko, A., ARMC: Abstraction Refinement Model Checker.
URL: http://www.mpi-inf.mpg.de/~rybal/armc/, 2011.

Savage, S., et al., 1997. Eraser: A Dynamic Data Race Detector for Multi-threaded
Programs. ACM Press.

Seshia, S.A., Lahiri, S.K. and Bryant, R.E., Chapter title. A User’s Guide to
UCLID version 1.0, Carnegie Mellon University, 2003.

Sheeran, M., Singh, S. and St̊almarck, G., 2000. Checking Safety Properties Using
Induction and a SAT-Solver. Vol. 1954 of LNCS Springer-Verlag.

Sipma, H., et al., Constraint-Based Static Analysis of Programs. Master Class
Seminar at Washington University at St Louis, 2006.

Sistla, A.P., Miliades, L. and Gyuris, V., 1997. SMC: A Symmetry Based Model
Checker for Verification of Liveness Properties. Vol. 1254 of LNCS Springer-
Verlag.

Srivastava, S., Gulwani, S. and Foster, J.S., 2009. VS3: SMT Solvers for Program
Verification. Vol. 5643 of LNCS Springer-Verlag.

Valmari, A., 1988. State Space Generation: Efficiency and Practicality. Thesis
(PhD). Tampere University of Technology, Tampere, Finland.

Valmari, A., 1998. The State Explosion Problem. In: W. Reisig and G. Rozenberg,
eds. Lectures on Petri Nets I: Basic Models., Vol. 1491 of LNCS Springer-Verlag.

Vardi, M., 2007. Automata-Theoretic Model Checking Revisited. Vol. 4349 of
LNCS Springer-Verlag.

Vardi, M. and Wolper, P., 1986. An Automata-Theoretic Approach to Automatic
Program Verification. IEEE CS.

Visser, W., et al., 2003. Model Checking Programs. Automated Software Engineer-
ing Journal, 10 (2).

Walukiewicz, I., 1996. Pushdown Processes: Games and Model Checking. Vol. 1102
of LNCS Springer-Verlag.

Wolper, P. and Lovinfosse, V., 1989. Verifying Properties of Large Sets of Processes
with Network Invariants. Vol. 407 of LNCS Springer-Verlag.

Zeller, A. and Hildebrandt, R., 2002. Simplifying and Isolating Failure-Inducing
Input. IEEE Transactions on Software Engineering, 28.

