Deciding Entailments in Inductive Separation Logic
with Tree Automata

Radu losif, Adam Rogalewicz, and Tomas Vojnar

1 University Grenoble Alpes, CNRS, VERIMAG, Grenoble, Franc
2 FIT, Brno University of Technology, IT4Innovations CenteExcellence, Czech Republic

Abstract. Separation Logic (SL) with inductive definitions is a natdfamal-
ism for specifying complex recursive data structures, us@@dmpositional veri-
fication of programs manipulating such structures. The kgyadient of any au-
tomated verification procedure based on SL is the decidgbilithe entailment
problem. In this work, we reduce the entailment problem fapa-trivial subset
of SL describing trees (and beyond) to the language inatusfdree automata
(TA). Our reduction provides tight complexity bounds foe throblem and shows
that entailment in our fragment is EXPTIME-complete. Faagtical purposes,
we leverage from recent advances in automata theory, sunblasion checking
for non-deterministic TA avoiding explicit determinizaii. We implemented our
method and present promising preliminary experimentalltes

1 Introduction

Separation Logic (SL) [22] is a logical framework for debimg recursive mutable
data structures. The attractiveness of SL as a specifictiomlism comes from the
possibility of writing higher-ordeinductive definitionghat are natural for describ-
ing the most common recursive data structures, such ag/siogtoubly-linked lists
(SLLs/DLLs), trees, hash maps (lists of lists), and more pl@x variations thereof,
such as nested and overlaid structures (e.g. lists with &eddail pointers, skip-lists,
trees with linked leaves, etc.). In addition to being an afipg specification tool, SL
is particularly suited for compositional reasoning abaogpams. Indeed, the principle
of local reasoningallows one to verify different elements (functions, thregaff a pro-
gram, operating on disjoint parts of the memory, and to comthie results a-posteriori,
into succinct verification conditions.

However, the expressive power of SL comes at the price of eciddhility [6]. To
avoid this problem, most SL dialects used by various toals. (B°PACE INVADER [2],
PREDATOR [9], or INFER[7]) use hard-coded predicates, describing SLLs and DLLs,
for which entailments are, in general, tractable [8]. F@apirstructures of bounded tree
width, a general decidability result was presented in [Efitailment in this fragment
is EXPTIME-hard, as provenin [1].

In this paper, we present a novel decision procedure fortaatsn of the decidable
SL fragment from [14], describing recursive structures ik all edges are local with
respect to a spanning tre&xamples of such structures include SLLs, DLLs, trees and
trees with parent pointers, etc. For structures outsideistlass (e.g. skip-lists or trees
with linked leaves), our procedure is sound (namely, if theveer of the procedure is
positive, then the entailment holds), but not complete &hswer might be negative
and the entailment could still hold). In terms of programifieation, such a lack of
completeness in the entailment prover can lead to non-tetion or false positives,
but will not cause unsoundness (i.e. classify a buggy progsacorrect).

The method described in the paper belongs to the claasitoinata-theoreticle-
cision techniques: We translate an entailment probfepa @ into a language inclu-
sion problemZ(Ay) C L(Ay) for tree automata (TARy andAy that (roughly speak-
ing) encode the sets of models dfand), respectively. Yet, a naive translation of
the inductive definitions of SL into TA encounterpalymorphic representatioprob-
lem: the same set of structures can be defined in severatatiffavays, and TA sim-
ply mirroring the definition will not report the entailmerffor example, DLLs with
selectorsnext andprev for the next and previous nodes, respectively, can be de-
scribed by a forward unfolding of the inductive definiti@.L(head prevtail ,next) =
Ix. head— (x, prev) «DLL(x, headtail, next) | empA head=tail A prev= next as well
as by a backward unfolding of the definitidLLiey(head prevtail, next) = Ix. tail —
(next X) *DLLrey(head prev x,tail) | empA head= tail A prev= next Also, one can de-
fine a DLL starting with a node in the middle and unfolding ba&akd to the left of this
node and forward to the rightLLig(head prevtail, next) = 3x,y,z. DLL(y, X, tail, next)
*DLLey(head prev z,x). The circular entailmenbLL(a,b,c,d) = DLLrey(a,b,c,d) =
DLLmid(a,b,c,d) =DLL(a,b,c,d) holds, but a naive structural translation to TA might
not detect this fact. To bridge this gap, we define a closusraifpn on TA, called
canonical rotation which adds all possible representations of a given indectéfini-
tion, encoded as a tree automaton.

The translation from SL to TA provides also tight complexXityunds, showing
that entailment in the local fragment of SL with inductivefidigions is EXPTIME-
complete. Moreover, we implemented our method using thea\[17] tree automata
library, which leverages from recent advances in non-dgtestic language inclusion
for TA [4], and obtained quite encouraging experimentalitss

Related work. Given the large body of literature on logics for describingtable data
structures, we need to restrict this section to the relatmdk that focuses on SL [22].
The first (proof-theoretic) decidability result for SL on estricted fragment defining
only SLLs was reported in [3], which describe a co-NP aldonit The full basic SL
without recursive definitions, but with the magic wand operavas found to be unde-
cidable when interpretdd any memory modé¢6]. A PTIME entailment procedure for
SL with list predicates is given in [8]. Their method was exted to reason about nested
and overlaid lists in [11]. More recently, entailments inisaportant SL fragment with
hardcoded SLL/DLL predicates were reduced to SatisfigtMibdulo Theories (SMT)
problems, leveraging from recent advances in SMT techryd®@, 18]. The work re-
ported in [10] deals with entailments between inductive &infulae describing nested
list structures. It uses a combination of graphs and TA tamdaanodels of SL, but
it does not deal with the problem of polymorphic represénmatRecently, a decision
procedure for entailments in a fragment of multi-sorted-finsler logic with reacha-
bility, hard-coded trees and frame specifications, callBiTE Graph Reachability and
Inverted Trees) has been reported in [21]. Due to the réisiniof the transitive closure
to one function symbol (parent pointer), the expressivegrani their logic, without
data constraints, is strictly lower than ours (regular prtips of trees cannot be en-
coded in GRIT). However, GRIT can be extended with data, Wwhia&s not been, so far,
considered for SL.

Closer to our work on SL with user-provid@tuctive definitionss the fragment
used in the tool SEEK, which implements a semi-algorithmic entailment checlsgob
on unfoldings and unifications [19]. Along this line of wottke theorem prover G
CLIST builds entailment proofs using a sequent calculus. NeBneek nor CyCLIST

2

are complete for a given fragment of SL, and, moreover, thesls do not address the
polymorphic representation problem.

Our previous work [14] gave a general decidability resutt & with inductive
definitions interpreted over graph-like structures, urgbseral necessary restrictions,
based on a reduction from SL to Monadic Second Order Logic@MSon graphs of
bounded tree width. Decidability of MSOL on such graphselbn a combinatorial
reduction to MSOL on trees (see [12] for a proof of Courcslt&eorem). Altogether,
using the method from [14] causes a blowup of several expg@isin the size of the
input problem and is unlikely to produce an effective dexigirocedure.

The work [1] provides a rather complete picture of complefar the entailment in
various SL fragments with inductive definitions, includiB¥PTIME-hardness of the
decidable fragment of [14], but provides no upper bound.EXBTIME-completeness
result in this paper provides an upper bound for a fragmembadl definitions and
strengthens the EXPTIME-hard lower bound as well, i.e. ishewed that even the
entailment between local definitions is EXPTIME-hard.

2 Definitions

The set of natural numbers is denotedWyIf X = (x1,...,X,) andy = (y1,...,Ym)
are tuplesx-y = (x1,...,Xn, Y1, - .,Ym) denotes their concatenatidr| = n denotes the
length ofx, and(x); = x; denotes théth element ok. For a partial functiorf : A — B,
and_L ¢ B, we denote byf (x) = L the fact thatf is undefined at some poirte A. The
domain off is denotedlom(f) = {x € A| f(x) # L}, and the image of is denoted as
img(f) ={yeB|3xeA. f(x) =y}. By f : A—jn B, we denote any partial function
whose domain is finite. Given two partial functiofigg defined on disjoint domains,
i.e.dom(f)ndom(g) = 0, we denote byf @ g their union.

States.We consideVar = {x,y,z ...} to be a countably infinite set afariablesand
nil € Var be a designated variable. Liedbc be a countably infinite set of locations and
null € Locbe a designated location.

Definition 1. A stateis a pair (s,h) where s Var — Loc is a partial function mapping
pointer variables into locations such thatdél) = null, and h: Loc —fjn N — i, Loc
is a finite partial function such that (i) nutt dom(h) and (ii) for all ¢ € dom(h) there
exists ke N such that(h(¢))(k) # L.

Given a stateS= (s,h), sis called thestoreandh the heap For anyl,l” € Loc, we
write £ % ¢ instead of(h(¢))(k) = ¢ for anyk € N called aselector We call the

triple ¢ 55 ¢ an edgeof S. When theS subscript is obvious from the context, we
sometimes omit it. Letmg(h) = ;¢ ocima(h(¢)) be the set of locations which are
destinations of some edge n A location? € Loc is said to beallocatedin (s, h) if
¢ € domh) (i.e. it is the source of an edge). The location is calleaglingin (s, h)
if £ € [img(s)UImg(h)]\ domh), i.e. it is referenced by a store variable or reachable
from an allocated location in the heap, but it is not allodatethe heap itself. The
setloc(S) = img(s) Uudomh) U Img(h) is the set of all locations either allocated or
referenced in the stat

For any two state$; = (s1,h1) andS, = (sp, hy) such that (i)s; ands, agree on
the evaluation of common variablegx(e dom(s;) N dom(sy) . s1(x) = $(x)) and
(i) hy andhy have disjoint domaingdomh;) N domhy) = 0), we denote by WS, =

3

(s1Usp, hy @ hy) thedisjoint unionof §; andS,. The disjoint union is undefined if one
of the above conditions does not hold.

Trees and Tree Automata.Let Z be a countable alphabet abtf be the set of se-
guences of natural numbers. lset N* denote the empty sequence gnd denote the
concatenation of two sequenggg € N*. We say thap is aprefixof qif q= p.q for
someq € N*. A setX C N* is prefix-closedff p € X = g € X for each prefix of p.

A tree toverX is a finite partial functiort : N* —¢j, Z such thadom(t) is a finite
prefix-closed subset df* and, for eachp € dom(t) andi € N, we havet(p.i) # L
only if t(p.j) # L, forall 0< j <i. The sequenceg € dom(t) are calledpositions
in the following. Given two positiong, q € domt), we say thaty is thei-th successor
(child) of pif g= p.i, for some € N. We denote byD(t) = {—1,0,...,N} thedirection
alphabetof t, whereN = max{i € N | 3p e N* . p.i € don(t)}, and we letD, (t) =
D(t) \ {—1}. By convention, we havep.i).(—1) = p, for all p € N* andi € D, (t).
Given a tre¢ and a positiorp € dom(t), we define theity of the positionp as #(p) =
max{d € D, (t) | p.d €edom(t)} + 1.

A (finite, non-deterministic, bottom-upjee automatorfabbreviated as TA in the
following) is a quadruplé = (Q,Z,A,F), whereX is a finite alphabe is a finite set
of statesF C Qis a set ofinal statesZ is an alphabet, anfiis a set otransition rules
of the formao(qy,...,qn) — q, for o € %, andq,qy, . ..,qn € Q. Given a tree automaton
A=(Q,Z,AF), foreachrule = (o(qgs,...,0n) —), we define its size gp| =n+ 1.
The size of the tree automaton|&f = ¥, |p[. A run of A over a tred : N* —jp T
is a functiontt: dom(t) — Q such that, for each nodec dom(t), whereq = 1(p), if
g = m(p.i) for 1 <i < n, thenA has a rule(t(p))(qy,...,0n) — 0. We writet == q
to denote thattis a run ofA overt such thatri(e) = g. We uset = q to denote that

t = q for some rurrt Thelanguageof A is defined asL(A) = {t | 3g € F, t = q}.

2.1 Separation Logic
The syntax obasic formulaeof Separation Logic (SL) is given below:

a € Var\{nil}; x € Var;

Mai=oa=x]|MiAM2

I i=emp|a— (X1,...,%) | Z1xZ2, for somen > 0
b =ZAM|3x.¢

A formula of the formA_; ai = x; defined by the nonterminal in the syntax above
is said to bepure The atomic propositioemp, or any formula of the forn*ikzlcxi —
(Xi1,--.,%,n), for somek > 0, is said to bepatial A variablexis said to bdreein ¢ if
it does not occur under the scope of any existential quantiie denote byV (¢) the
set of free variables. A variabtec FV (Z) \ {nil } is said to bellocated(respectively,
referencedlin a spatial formula if it occurs on the left-hand (respectively, right-hand)
side of a propositiont — (Xg,...,Xn) Of Z.

In the following, we shall use two equality relations. yatactic equalitydenoted
0 = ¢, means that and ¢ are the same syntactic object (formula, variable, tuple of
variables, etc.). On the other hand, by writie-n y, for two variables,y € Var and
a pure formuldl, we mean that the equality of the valuesxandy is implied byTT.

A system ofinductive definitionginductive system is a set of rules of the form

{H(Xi,l7---,xi,ni) =, Ri,j(xi,la---7xi,ni)}k (1)

i=1
4

where {Py,..., R} is a set ofpredicates X 1,...,% n are calledformal parameters
and the formuladR, ; are called theules of B. Each rule is of the fornR ;(x) =
Jz. ZxR;(y1) *...*R,(Yym) A I, wherexnz= 0, and the following holds:

1. ¥ # empis a non-empty spatial formulacalled theneadof Rij.

2. B, (Y1),...,P,(ym) is atuple ofpredicate occurrencesalled theail of R j, where
Iyl =nj, forall1<j<m

3. M is a pure formula, restricted such that, for all formal paggersp € x, we allow
only equalities of the fornat =n B, wherea is allocated irz.*

4. forall 1<r,s<m,if X x € yr, Xi| €Ys, @andx x =n %1, for some 1<k, | <nj, then
r = s; a formal parameter of a rule cannot be passed to two or mdrgesuent
occurrences of predicates in that rale.

The size of a ruleR is denoted by|R| and defined inductively as follows$o = x| =
1, jemp| = 1, o = (Xa,....%)| = N+ 1, [pew] = 0]+ W], Fx. | = ¢| + L, and
|[P(X1,...,%)| = n. Here,a € Var\ {nil}, X, x1,...,X, € Var, ande € {x,A}. The size
of an inductive system (1) is defined @& = 5 ; z’j“:l |R.j|. A rooted systeni?, P)
is an inductive syster® with a designated predical® € P.

Example 1.To illustrate the use of in- hd .
ductive definitions (with the above restricp’;exi%,lﬂ’ogo% .
tions), we first show how to define a pred- next ~— next. ~—"next next “— next
icate DLL(hd, p,tl,n) describing doubly-
linked lists of length at least one. As de-
picted on the top of Fig. 1, the formal
parametehd points to the first allocated ! p |
node of such a listp to the node pointed n n n
to by theprevselector othd, tl to the last ; AINAN
node of the list (possibly equal taf), and ~ F19- 1. Top: ADLL. Bottom: ATLL.
n to the node pointed to by theextselector frontl. This predicate can be defined as
follows: DLL(hd, p,tl,n) = hd— (n,p) A hd=tl | 3x. hd — (X, p) * DLL(x, hd,tl, n).
Another example is the predicateL(r,ll,Ir) describing binary trees with linked
leaves whose root is pointed to by the formal paranretie left-most leaf is pointed to
byll, and the right-most leaf points loas shown in the bottom of Fig. TLL(r, Il ,Ir) =
r—(nil,nil,Ir) A r =11 3xy,z r— (X,y,nil)« TLL(X, 1l ,Zz) *« TLL(y,zIr). [|

root

The semantics of SL is given by timeodel relationk=, defined inductively, on the
structure of formulae, as follows:

SEemp <= domh)=0
SEa— (X,...,%) < s={(a,),(x1,¢1),...,(Xn,¢n)} and

h={{¢o,Ai . if1 <i<nthen(elsel)}

for somelg, l1,...,¢n € LOC
SEb1x02 <— S E¢1andS = ¢ forsomeS, S : SWSH =S
SE3IX. <= (s[x<«{],h) = ¢ for somel € Loc
SERMX1,... . Xn) < SERj(X1....,Xn), forsome 1< j <m;, in (1)

3 In practice, we allow frontier or root rules to hagmpty heads.

4 This restriction can be lifted at the expense of an expoakblkdwup in the size of the TA.
5 The restriction can be lifted by testing double allocatisrira[14] (with an exponential cost).

5

The semantics of andA are classical for first order logic. Note that we adopt heee th
strict semanticsin which a points-to relation — (xg,...,%n) holds in a state consist-

ing of a single cell pointed to by that has exactly outgoing edges(a) Ls S(Xk)s
1 <k < n, leading either towards the single allocated locas@n (if s(xx) = s(a)) or
towards dangling locations (#xx) # s(a)). The empty heap is specified bynp.

A stateSis a model of a predicat® iff it is a model of one of its rule®, j. For a state
Sthat is a model oR, j, the inductive definition of the semantics |mpI|es exisent
a finiteunfolding tree this is a tree labeled with rules of the system in such a way th
whenever a node is labeled by a rule with a Bjly1),...,R.,(ym), it has exactlym
children such that thg-th child, for 1< j < m, is labeled with a rule oF’.j (see the
middle part of Fig. 2—a formal definition is given in [16].

Given an inductive systerft, predicates (x1,...,X,) andPj(ys,...,yn) of P with
the same number of formal parameterand a tuple of variableswhere|x| = n, theen-
tailment problemis defined as follows? (x) =9 Pj(X) : VS. Sk= R(X) = Sk= Pj(x).

2.2 Connectivity, Spanning Trees and Local States

In this section, we define two conditions ensuring that émeits in the restricted SL
fragment can be decided effectively. The notion afpanning treas central for these
definitions. Informally, a stat& has a spanning tredf all allocated locations 0§ can
be placed int such that there is always an edgeSin between every two locations
placed in a parent-child pair of positions (see Fig. 2 for sganning trees).

Definition 2. Given a state S (s h), a spanning tre®f S is a bijective tree tN* —
dom(h) such thatvp € dom(t)vd € D, (t) . p.d € domt) = Ik e N .t(p) L>g,t(p.d).

Given an inductive syster®?, let S= (s,h) be a state an& < 2 be an inductive
definition such thaS = R. Our first restriction, called@onnectivity(Def. 3), ensures
that the unfolding tree of the definition & is also a spanning tree & (cf. Fig. 2,
middle). In other words, each locatidre dom(h) is created by an atomic proposition
of the forma — (Xq,...,X%n) from the unfolding tree of the definitioR, and, moreover,

by Def. 2, there exists an ed@ek—>s ¢ for any parent-child pair of positions in this tree
(cf. thenext edges in Fig. 2).

For a basic quantifier-free SL formuda= = AT1 and two variables,y € FV(¢),
we say thatl is ¢-reachablefrom x iff there is a sequence=n qo,...,0m =n Y, for
somem > 0, such that, for each€@i <m, aj — (Bi1,...,Bi p) iS an atomic proposition
in Z, andBi s =n 041, for some 1< s< p;. A variablex € FV(X) is called aroot of =
if every variabley € FV(Z) is ¢-reachable fronx.

Definition 3. Given a systen? = {P, = |T‘:1Ri,j}{‘:1 of inductive definitions, a rule
Rij(Xi1,..., %K) =3z. 2B, (y1) *...* B,(Ym) ATl of a predicate RX 1,...,Xik) IS
connectedff there exists a formal parameter,gxof R, 1 < ¢ <Kk, such that (i) ¥ is
a root of > and (ii) for each j=1,...,m, there exist® < s < |y;j| such that(yj)s is
(Z/\ M)-reachable from x and X;.s is a root of the head of each rule oif PThe system
P is said to beconnectedf all its rules are connected.

For instance, th®LL and TLL systems from Ex. 1 are both connected. Our second

restriction, calledocality, ensures that every edgegs 7', between allocated locations
£,¢" € dom(h), involves locations that are mapped to a parent-child dgiositions in
some spanning tree &

Definition 4. Let S= (s,h) be a state andtN* — dom(h) be a spanning tree of S. An

edgel Ls ¢ with ¢,¢" € dom(h) is said to bdocalw.r.t. a spanning tree t iff there exist
p € dom(t) and de D(t) U{e} such that{p) = ¢ and t(p.d) = ¢'. The tree t is docal
spanning tre®f S iff t is a spanning tree of S and S has only local edges w.The
state S idocaliff it has a local spanning tree.

Forinstance, theLL system of Ex. Lis local, while ¢
theTLL system is not (e.g. theedges between leaves Y- o]
cannot be mapped to parent-child pairs in the spannirigx
tree that is obtained by taking theandr edges of the
TLL). In this paper, we address the locality problem byrex
giving a sufficient condition (a syntactic check of the
inductive system, prior to the generation of TA) ableg™™
to decide the locality on all of the practical examples
considered (Sec. 3.2). The decidability of locality of™",
general inductive systems is an interesting open pro
lem, considered for future research. "

Fig. 2. Two spanning trees of
Definition 5. A system? = {P(%1,...,%n)}_, i aDLL. The middle one is an
said to belocal if and only if each formal parameterunfolding tree when labeled
x;,; of a predicate Pis either (i) allocated in each rule by DLL; = hd— (n, p) Ahd =
of R and(y); is referenced at each occurrencgyy, tl and DLL, = 3x. hd —
or (ii) referenced in each rule ofiRnd (y); is allo- (X, p) * DLL(x, hd,tl,n).
cated at each occurrence().

[DLL2]
[DLL2]
[DLL2]

T >

[DLL1]

This gives a sufficient (but not necessary) condition engptiat any stat§, such that
SE R, has a local spanning tree, 4f is a connected local system. The condition is
effective and easily implemented (see Sec. 3.2) by thelatms from SL to TA.

3 From Separation Logic to Tree Automata

The first step of our entailment decision procedure is bogdi TA for a given inductive
system. Roughly speaking, the TA we build recognizes uiriglttees of the inductive
system. The alphabet of such a TA consists of small basic 8hufme describing the
neighborhood of each allocated variable, together withexifipation of the connec-
tions between each such formula and its parent and childréreiunfolding tree. Each
alphabet symbol in the TA is calledtde. Due to technical details related to the en-
coding of states as trees of SL formulae, the most spacesdrséuition is dedicated to
the definition of tiles. Once the tile alphabet is defined stages of the TA correspond
naturally to the predicates of the inductive system, andréngsition rules correspond
to the rules of the system.

3.1 Tiles, Canonical Tiles, and Quasi-canonical Tiles

A tile is a tupleT = (¢,x_1,Xo,...,Xd—1), for somed > O, where¢ is a basic SL
formula, and eacl; is a tuple of pairwise distinct variables, callegart. We further
assume that all ports contain only free variables frprand that they are pairwise
disjoint. The variables from_1 are said to béncoming the ones fronxg,...,Xq_1 are
said to beoutgoing and the ones fromar(T) = FV () \ (x_1U...UXq_1) are called

7

parametersThearity of a tile T = (¢,x_1,...,Xq4—1) is the number of outgoing ports,
denoted by #T) = d. We denotdorm (T) = ¢ andport;(T) =x;, forall -1 <i < d.

Given tilesT; = (¢,X_1,...,Xg—1) andTo = {(@,y_1,...,Ye_1) such thatFV($) N
FV (@) = 0, we define thaé-composition for some 0< i < d, such thatxi| = |y_1:
Ti®i To= (W, X_1,...Xi—1,Y0, - - -, Ye_1,Xit1,-- -, Xd—1) WhereQ =3Ix;Iy_1 . pxQAX; =
y_1.5 For a positiorg € N* and a tileT, we denote byl (9 the tile obtained by renaming
each variable in the ports of T by x(@. A treet labeled with tiles corresponds to
a tile defined inductively, for anp € domt), as: 7'(t, p) = t(p)P ®o 7 (t, p.0) ®1
T(t,p.l) ... ®gp-1T(t,p.(#(p)—1)). The SL formulad(t) = form (7 (t,¢)) is said
to be thecharacteristic formulaof t.

Canonical tiles. We first define a class of tiles that encode local states (Dekith
respect to the underlying tile-labeled spanning trees. ottt byT = ((32) z+—
(Yo,---,Ym-1) AT1,X_1,...,Xq4—1) @ tile whose spatial formula is either @ . z—
(Yo,---,Ym-1) Or (i) Z— (Yo,...,Ym-1) With z€ par(T). Atile T = ((32) z— (yo,...,
ym-1) AT, X_1,...,X4_1) IS said to becanonicalif each portx; can be factorized as

xif""-xibW (distinguishingforward links going from the root to the leaves ahdckward
links going in the opposite direction, respectively) suudtt

1. xtj"{ = (Yhy>- - -+ Yhy), for some ordered sequencgp < ... < hy <m,i.e. the back-
ward incoming tuple consists only of variables referencgthle unique allocated
variablez, ordered by the corresponding selectors.

2. Forall0<i <d, xifW = (Yjo,---Yjy)» for some ordered sequence0jo < ... <
jk < m. As above, each forward outgoing tuple consists of vargatgéerenced by
the unique allocated variabkeordered by the corresponding selectors.

3. Forall 0<i,j < d, if (xifw)o =VYp and(xjfw)o =Yg, forsome < p<g<m(ie.
Yp # ¥q), theni < j. This means that the forward outgoing tuples are orderetidy t
selectors referencing their first element.

4. (XY UXBYU L UXBY) {Yo,.. . Ymo1} = 0andM =x" =z A A G xW = 27

We denote byport " (T) andport?(T) the tuplesx™ andxP¥, respectively, for all
—1<i < d. The set of canonical tiles is denoted&%

Definition 6. A tree t: N* — ¢y 7€ is calledcanonicalff #(t(p)) = #(p) for any pe
dom(t) and, moreover, for each < i < #(p), |portifw(t(p))| = |p0rt£"{(t(p.i))| and
[port?*(t(p))| = [port®}(t(p.i))].

An important property of canonical trees is that each stad¢ is a model of the
characteristic formul@(t) of a canonical tre¢ (i.e. S= ®(t)) can be uniquely de-
scribed by adocal spanning tree udom(t) — Loc, which has the same structure as
t, i.e.dom(u) = dom(t). Intuitively, this is because each varialyle referenced in an
atomic propositiorz+— (yo,...,ym-1) in @ canonical tile, is allocated only if it belongs
to the backward part of the incoming poﬁV{ or the forward part of some outgoing

port xifw. In the first casey; is equal to the variable allocated by the parent tile, and
in the second case, it is equal to the variable allocated ®jtn child. An immediate
consequence is that any two modelshgt) differ only by a renaming of the allocated
locations, i.e. they are identical up to isomorphism.

6 For two tuplesx = (xg,...,%¢) andy = (y1,...,yk), we writex =y for /\E‘:lxi =Vi.
7 For a tuplex = (xq,...,%c), we writex = zfor AK_;x =z

8

Example 2 (cont. p
fE 1. T il hd prev prev r
of Ex. 1). To il- 6: hd— (7o)
lustrate the notion f ned/ s AndEx

of canonical trees, ™|
Fig. 3 shows two :
canonical trees for
a given DLL. The "/
tiles are depicted as -
big rectangles con-
taining the appropri- next||prev
ate basic formula as
well as the input and I :
output ports. In all nextjjerev ok AR
ports, the first vari- . \T.‘]_F_’Aev _ LJJJ
able is in the for- n/ﬁxt 0 A A i Joes
ward and the sec- " . !
ond in the backward Fig. 3. The DLL from Fig. 1 with two of its canonical trees (re-
part. B lated by a canonical rotatian).

o1 T2 2= (Yo.Y1)
Nz=x,Nz=x,

' 07 . 2 (o)
z2=X%,

Nz=x, /\z xJ

v

Quasi-canonical tiles.We next define a class of tiles that encode non-local states in
order to extend our decision procedure to handle entailertegtiveen non-local induc-
tive systems. In addition to local edges between neighfdilies, quasi-canonical tiles
allow to define sequences of equalities between remote Tileis extension is used
to specify non-local edges within the state. A file= (¢ AT,x_1,...,Xg_1) IS said
to be quasi-canonicalf and only if each pori; can be factorized azqf xbW X e
(&, x™xbw x; -xBW) is a canonical tile[1 is pure formula, and:
1. foreach i < |qu |, either(x*%)i € FV(9) or (x*9)i =n (xg) for some unique
indices 0< k< dand 0< j < |x£w|
2. foreach X k<dandeach & j < |qu| either(x;)j € FV(¢) or exactly one of
the following hoIds D =n (x*9)i for some unique index & i < |x*9| or
(i) (xgNj =n (x5) for some unique indices@r < d and 0< s < |xf 1.
3. Foranyx,y € UI, lxI , we havex =p y only in one of the cases above.
We denoteport{d(T) = x7%, for all -1 < i < d. The set of quasi-canonical tiles is
denoted byZ 9. The next definition of quasi-canonical trees extends Dé&d.tBe case
of quasi-canonical tiles.
Definition 7. A tree t: N* —¢j, 79¢ is quasi-canonicaiff #(t(p)) = #(p) for any
p € dom(t) and, moreover, for each <i < #(p), |portifW(t(p))| = |porti"{(t(p.i))|,

[Port?(t(p))| = [port®(t(p.i))], and|port£(t(p))| = [port®3 (t(p.i))!.

Example 3 (cont. of Ex. 1)zor an illustration of the notion of quasi-canonical trees,
see Fig. 4, which shows a quasi-canonical tree for the TLinfFag. 1. The figure uses
the same notation as Fig. 3. In all the ports, the first vagigbin the forward part, the
backward part is empty, and the rest is the equality part. |

3.2 Building a TA for an Inductive System

In the rest of this section, we consider thais a connected inductive system (Def. 3)—
our construction will detect and reject disconnected systeGiven a rooted system

9

¢: root —(y,,y,,nil) A x, =x,
root_ n i .
&
Yol Xs YAES

6 2. z— (Yoyo,nil) [X] [EAEA

Z=X,

N Xy = X5 . | N X, =X,
N Xy =X, iy ri_\ _______ N Xz =X,
Vo] [Vi[Xa[%] AES
%o Yo | [Tl Xa] Yo X[% [Yol | [T %]
¢ Il—(nil,nilyo) %/) S/ n N/ ¢: Oz z— (nil,nil,Ir)
Nl=x I . il ni c [z, z— nil,nil,A n Nz =x
o . » o 2. z— (nil,nil,y,)] it (YU)I X ‘/k'lr [Nl

Nz =X, =
Nz =x, Nz=x,

¢: [z, Z— (Yo.Ya,nil)|
Nz =X,

Fig. 4. A quasi-canonically tiled tree for the tree with linked leavrom Fig. 1.

(?,P), the first ingredient of our decision procedure for entailiseés a procedure for
building a TA that recognizes all unfolding trees of the intive definition ofP; in
the systentP. The first steps of the procedure implemespacializatiorof the rooted
system with respect to a tupte= (as,...,0n,) of actual parameters fd¥, not used
in . For space reasons, the specialization steps are desonbgedformally here (for
a detailed description of these steps, see [16]).

The first step is an elimination of existentially quantifiediables that occur within
equalities with formal parameters or allocated variabtesifall rules ofP. Second,
each rule of? whose head consists of more than one atomic proposition(xs, . .. ,X)
is split into several new rules, containing exactly one satdmic proposition. At
this point, any disconnected inductive system (Def. 3) @ade the procedure is de-
tected and rejected. The final specialization step consigisopagating the actual pa-
rametersa through the rules. A formal parameter of a rule R j(Xi1,...,Xin) =
Jz . 2B, (y1) *...x B, (ym) AT is directly propagatedo some (unique) parameter
of a predicate occurrendd,;, for some 1< j < m, if and only if x x ¢ FV(Z) and
Xik = (yij)g, for some O< / < |yij |, i.e. X« is neither allocated nor pointed to by the
head of the rule before being passed oRfoWe denote direct propagation of parame-
ters by the relatiom; y ~ Xij 0 Wherexij,g is the formal parameter ﬂj which is mapped
to the occurrence c{fyij)¢. We say thak; i is propagatedo X s if X k ~* Xr.s where~*
denotes the reflexive and transitive closure oftheelation. Finally, we replace each
variabley of # by the actual parameter; provided thatx. j ~* y. It is not hard to
show that the specialization procedure runs in ti{&?|), hence the size of the output
system is increased by a linear factor only.

Example 4 (cont. of Ex. 1As an example of specialization, let us consider the pred-
icateDLL from Ex. 1, with parameterBLL(a,b,c,d). After the parameter elimination
and renaming the newly created predicates, we have &g¢dllvithout parameters) of
the following inductive system:

Qi) =ar—(d,b) Aa=c|Ix ar (X,b)*xQ2(X,a)

Q2(hd,p) = hd+~— (d,p) A hd=c|3x. hd— (X, p) * Q2(x, hd) -

We are now ready to describe the construction of a TA for aiapeed rooted
system(?, P). First, for each predicatej(xj 1,...,Xjn;) € P, we compute several sets
of parameters, callesignatureSS:ngfW = {Xj k | Xjk is allocated in each rule &, and
(Y)k is referenced in each occurrerniegy) of P;}, sig?‘” = {Xjx | Xjk is referenced
in each rule ofP;, and(y) is allocated at each occurrenegy) of P;}, and, finally,

10

sigit={Xj1---,Xjm }\ (sigjfwu sigl"). The signatures of an inductive system can
be used to implement tHecality test(Def. 5): the systen? = {Py,..., P} is local if
and only ifsig"? = 0 for each 1< i < k.

Example 5 (cont. of Ex. 4The signatures for the system in Ex. 4 amg{w = sigkl’W:

sigl =0 ar;dsigéw = {hd},sigd" = {p},sigy" = 0. The fact that, for each= 1,2,
we havesig; 9= 0 implies that theLL system is local. |

The procedure for building a TA from a rooted systéf P;) with actual param-
etersa is denoted asL2TA(P,P:,T) in the following. For each rul&; , in the sys-
tem, thesL2TA procedure creates a quasi-canonical tile whose incomidgatgoing
portsx; are factorized axifw . xibW~ xf"q according to the precomputed signatmeg}cw,
sig?‘”, andsigTq, respectively. The backward part of the input p)di‘q and the for-
ward parts of the output pOﬂ{S(ifW}iZo are sorted according to the order of incoming
selector edges from the single points-to formula which tiuies the head of the rule.
The output portgx; }i>o are sorted within the tile according to the order of the gelec

edges pointing t(ﬁxifw)o for eachi > 0. Finally, each predicate nanfeis associated
with a statey;, and for each inductive rule, the procedure creates a tramsule in the
TA. The final state of the TA then corresponds to the root osystem (see Algorithm

in [16]). The invariant used to prove the correctness of ¢oisstruction is that when-
ever the TA reaches a stageit reads an unfolding tree whose root is labeled with a
rule R j of the definition of a predicate. The following lemma summarizes the TA
construction:

Lemma 1. Given a rooted syster?, P (X.1,...,%n)) Where? = {F‘.}ik:1 is a con-

nected inductive systeth < r <Kk, anda = (ay,...,0p,) is a tuple of variables not in
P, let A=sL2TA(P,P,@). Then, for every state S, we have=3(Q) iff there exists
t € L(A) such that $= ®(t). Moreover,|A| = O(]P]).

Example 0 (GO 2y (@p)Aa=c.0)) »a (acs (x0).0,(x)) (@) —
of Ex. 5).Forthe » _ J i5ng hd' — (4, p) Ahd = c Ahd' = hd, (hd, p))() S
specialized induc- (3hd .hd +— (x, p) Ahd’ = hd, (hd. p), (x, hd)) (c) =

tive system? =
{Q1,Q2} from Ex. 4, we obtain the TAA = SL2TA(?,Qi,(a,b,c,d)) =
(Z,{01,92},A,{a1}) whereA is shown above. |

4 Rotation of Tree Automata

In this section we deal with polymorphic representationstafes, i.e. situations when a
state can be represented by different spanning trees, iffithenht tilings. In this section
we show that, for states with local spanning trees only (Bgfthese trees are related
by arotationrelation.

4.1 Rotation as a Transformation of TA

We start by defining rotation as a relation on trees. Inteiyivtwo treeg; andt; are re-
lated by a rotation whenever we can obtaifromt; by picking a positiorp € dom(t;)
and making it the root ab, while maintaining irt; all edges front; (Fig. 5).

11

Definition 8. Given two treesitt, : N* — ¢, X and a bijective mappingrdom(t;) —
dom(tz), we say that#is an r-rotationof t;, denoted byit~, to if and only if: Vp €
domty)vVd € Dy (t1) : p.d edom(ty) = Jec D(tz) . r(p.d) =r(p).e. We write{ ~tp
if there exists a bijective mapping dom(t;) — dom(tp) such that{ ~; to.

An example of a rotation of a treet;
to a treety such thatr(g) = 2, r(0) =,
r(1) = 20,r(00) =0, andr(01) = 1 is
shown in Fig. 5. Note that, e.g., fagr=
€ € dom(t;) andd = 0 € D, (t1), where
p.d = €.0 € dom(t;), we gete= -1 ¢
D(tz), andr(e.0) =2.(-1) =«.

In the rest of this section, we define rotation on canonicdlg@rasi-canonical trees.
These definitions are refinements of Def. 8. Namely, the ahamthe structure of the
tree is mirrored by a change in the tile alphabet labelindrésin order to preserve the
state which is represented by the (quasi-)canonical tree.

A substitutionis an injective partial functiow : Var —¢j, Var. Given a basic for-
mula¢ and a substitutiow, we denote byp[o] the result of simultaneously replacing
each variable (not necessarily free) that occursfirby o(x). For instance, ib(x) =,
o(y) =z ando(z) =t, then(Ix,y . X — (Y, 2) Az=X)[0] =3y, 2. y— (zt) At =Y.

Definition 9. Given two canonical treesti : N* —j5 7€ and a bijective mapping r
dom(t) — dom(u), we say that u is aanonical rotatiomf t, denoted ¢ u, if and only
ift ~r uand there exists a substitution : Var — i, Var for each pe dom(t) such that
form(t(p))[op] =form(u(r(p))) and, for all0 <i < #(p), there exists £ D(u) such
thatr(p.i) =r(p).j and:
port{"(t(p))[ap] = if j > O thenport [*(u(r(p))) elseport™}(u(r(p)))
port™(t(p))[op] = if j > 0 thenport®™(u(r(p))) elseport " (u(r(p)))
We write t~© u if there exists a mapping r such thatf u.

Example 7 (cont. of Ex. 2Jhe notion of canonical rotation is illustrated by the canon
ical rotationr relating the two canonical trees of a DLL shown in Fig. 3. indase, the
variable substitutions are simply the identity in each nddwe, in particular, that when
the tile 0 of the left tree (i.e., the second one from the t@t$ gotated to the tile 1 of the
right tree (i.e., the right successor of the root), the irgmd output ports get swapped
and so do their forward and backward parts. |

The following lemma is the key for proving completeness af entailment check-
ing for local inductive systems: if a (local) state is a maafehe characteristic formulae
of two different canonical trees, then these trees mustlbagedeby canonical rotation.

Lemma 2. Lett: N* —¢j, 7€ be a canonical tree and S (s h) be a state such that
SE ®(t). Then, for any canonical tree:lN* — iy 7°, we have $= ®(u) ifft ~Cu.

In the following, we extend the notion of rotation to quaaionical trees:

Definition 10. Given two quasi-canonical treeat: N* — i, 79 and a bijective map-
ping r : domt) — dom(u), we say that u is @uasi-canonical rotatioof t, denoted
t ~“u, if and only if t~¢ u and|port*(t(p))| = port{I(u(r(p)))| for all p € dont)
andallo<i<#(p), —1< j<#(p) suchthat(p.i) =r(p).j. We write t~9€u if there
exists a mapping r such thatt° u.

12

Algorithm 1 Rotation Closure of Quasi-canonical TA.

input a quasi-canonical TA = (Q,%,A,F)
output a TAA" where:
LA) = {u:N* = T9 | St e L(A) . u~t}
function ROTATETA(A)
A A
assumeA’ = (Q, XA, F)
forall peAdo
assumep = T(qo,---,0k) — g
assumeT = (¢,X_1,Xo, ..., Xk)
if x_1#0o0r q¢F then
assume x5 = x"™ . xo% . x*
if x°% £ 0 then
Q¥ {d*|qeQ}
(Qo.) - (QUQ™ U {5 }.0)
p < POSITIONOF (X%, ¢)

fw e
Xswap + X5 -x"] - x%9

1
Thew < (9, (), X0, -, Xp, Xswap - - - s Xk)

Dy ¢ BoU{TnewlCo- - Cp, A .. Gk) — G }
(Dp,-) < ROTTR(q,A,4,,0,F)

function ROTTR(Q,A, Anew; V, F)
V+vu{q}
forall (U(sp,...,sr) —s)eAdo
forall 0 < j </suchthats; =qdo
assumel = (¢,X_1,X0,--- Xj,---, X¢)
assume x = x| - xb¥. x%
ifx_; =0andseF then
Xswap ¢ x'J-""’»fo"V~x‘J-eq
U’ 4 (§, Xswap X0, - - -, Xj—1, X415+ - X¢)
Anew < DnewU {U/(SO---Sj—l---S() - q%}
else
X_1= xi"{ X x®g
if X2 # 0 then
POrts < (Xo,. ., Xj—1,Xj41,.-, X¢)
states < (S,...,Sj-1,5j+1,---,5)
Xswap ¢~ XEV{XEW]. 'Xi[gl
p < INSERTOUTPORT (Xswap ports, $)
INSERTLHSSTATE (s®, states, p)

fw e
Unew‘*<¢-,xlj)w‘xj »qu,ports>

Dnew < BnewU {Unew(states) — g’}
if s¢ vthen
(Dnew V) ¢~ ROTTR(S,A, Apew, V, F)

Ap = (Qp, %, Bp, {ap})
A ATUA;
return A’
return (Apew, V)

The increase in expressivity (i.e. the possibility of defgqhnhon-local edges) comes
at the cost of a loss of completeness. The following lemmagdizes the necessity
direction (=) of Lemma 2 for quasi-canonical tiles. Notice that the sidficy =)
direction does not hold in general.

Lemma 3. Let t,u: N* —¢j, 79 be quasi-canonical trees such thatf° u. For all
states S, if $= ®(t), then S= d(u).

4.2

This section describes the algorithm that produces theisos a quasi-canonical tree
automaton (i.e. a tree automaton recognizing quasi-caabtrees only) under rota-
tion. The result is a TA that recognizes all traesN* — ¢, 79¢ such that ~9€ u for
some tred recognized by the input TA = (Q,%,A,F). Algorithm 1 (theROTATETA
procedure) describes the rotation closure whose resuliasguage-theoretic union
of A and the TAA,, one for each rulg of A. The idea behind the construction of

A = <Qp,Z,Ap,{q£}> can be understood by considering a ttee L(A), a runTt:
dom(t) — Q, and a positiorp € dom(t), which is labeled with the right hand side of the
rulep=T(qu,...,qk) — qof A. ThenL(A,) will contain the rotated tree, i.e.t ~i°
where the significant positiop is mapped into the root af by the rotation function
r,i.e.r(p) = €. To this end, we introduce a new rulgew(do,--.,d®",...,0k) — qg,
where the tileThew mirrors the change in the structure Bfat positionp, andg™®' €
Qo is a fresh state correspondingdo The construction oA, continues recursively
(procedureroOTTR), by considering every rule @k that hasg on the left hand side:
U(dy,...,q,...,q,) — s. This rule is changed by swapping the rolesgoénds and
producing a rulépen(d;, . ..,S%,...q;) — g whereUnew mirrors the change in the
structure ofJ. Intuitively, the state§q™V|q € Q} mark the unique path from the root of
utor(e) € domu). The recursion stops when either i}s a final state of, (ii) The

13

Implementing Rotation as a Transformation of TA

tile U does not specify a forward edge in the direction marked,toyr (iii) all states of
A have been visited.

Lemma 4. Let A= (Q, 79 A F) be a TA, and A= ROTATETA (A) be the TA defining
the rotation closure of A. Thefi(A") = {u | u: N* —¢j, 79 Jt € L(A) . u~9t}.
Moreover,|A’| = O(|A]?)

The main result of this paper is given by the following theor&he entailment
problem for inductive systems is reduced, in polynomiaktio a language inclusion
problem for tree automata. The inclusion test is always ddiinhe answer is yes, the
entailment holds), and complete, if the right-hand sidelecal system (Def. 4).

k
Theorem 1. Let? = {P, = |'J-“:l R } . be a connected inductive system. Then, for
1=

any two predicatesif; 1,...,%n) and F}(xj,l,...7xj,nj) of such that n= n;, and
for any tuple of variablesi = (a1, ...,0n) not used in?, the following holds for A=
SL2TA(P,R,0) and A = SL2TA(P,P},T):

— (SoundnessP () =9 P;(@) if L(A1) € L(A,) and

— (CompletnessP () = Pj(@) only if L(A1) € L(A,) provided(?,P;) is local.

Example 8 (cont. of th’(hd’)A(Z:)}\l‘)lt(i) /\1hd’<a ?d(? o)>((X Ve
-) =c - -
Ex. 6). When ap St et - (x.p)Ahd = hd, (hd. p). (x), (0p) S
(d,p) Ahd =cAhd =hd,0,(p,hd))(d5Y) — dfin

tomatonA, the op- — (X,b),(2,X)() - e
eration of rotation Shd. hd = (x,p) Ahd’ = hd, (nd.x). (p, he)) (c™) . %
closure produces the 3hdhd — (x, p) Ahd = hd, 0, (x,hd), (p,hd)>(q2,q2) — Gfin

tree automatoA” = (£, {qu, o, o5, dfin }, A, {01, qrin }) WhereA is shown above. W

(a
(
plied on the tree au- 5 _ gahd’ hd s
(a
{
(

5 Complexity

In this section, we provide tight complexity bounds for tha@lment problem in the
fragment of SL with inductive definitions under consideatii.e., with theconnectiv-
ity andlocality restrictions. The first result shows the needdonnectivitywithin the
system: allowing disconnected rules leads to undecidglbifithe entailment problem.
As a remark, the general undecidability of entailments ton@h inductive definitions
has already been proven in [1]. Our proof stresses the fattutidecidability occurs
due the lack of connectivity within some rules.

Theorem 2. Entailment is undecidable for inductive systems with diseated rules.

The second result of this section provides tight complelsdynds for the entail-
ment problem for local connected systems. We must point@itEXPTIME-hardness
of entailments in the fragment of [14] was already provedlih The result below is
stronger since the fragment under consideration is a céstriof the fragment from
[14] obtained by applying the locality condition.

Theorem 3. Entailment is EXPTIME-complete for local connected indecsystems.

6 Experiments

We implemented a prototype tool calledISE (Separation Logic with Inductive DEfi-
nitions) [15] that takes as input two rooted systeifigs, Phs) and(Bms, Prhs) and tests

14

Table 1. Experimental results. The upper table contains local systavhile the lower table non-
local ones. Sizes of initial TA (col. 3,4) and rotated TA (&)l are in numbers of states/transitions.

I EntailmenttHS|E RHS [JAnswer[[Ans|[TAms [TAI]
DLL(a,nil,c,nil) = DLLey(a, nil, c,nil) True [[2/4T 2/4 1 5/8

DLLyev(a,nil, ¢, nil) = DLLmig(a, nil, ¢, nil) True || 2/4 | 4/8 |12/18
DLLpm;g(@,nil,c,nil) = DLL(a,nil ,c,nil) True || 4/8 | 2/4 | 5/8
3x,n,b. X — (n,b) *DLLyey(a, nil, b,x) *xDLL(n, X, c,nil) = DLL(a,nil,c,nil)|| True || 3/5| 2/4 | 5/8
DLL(a, nil,c,nil) = 3x,n,b. X+ (n,b) *DLLey(a, nil ,b,x) «DLL (N, x,c,nil)|| False || 2/4 | 3/5 | 9/13
Jy,a. X+ (y,nil)«y — (a,x) *«DLL(a,Y, ¢, nil) = DLL(x,nil,c, nil) True || 3/4 | 2/4 | 5/8
DLL(x,nil,c,nil) = 3y,a. x— (nil,y) xy > (a,x) *DLL(a,y,c,nil) False|| 2/4 | 3/4 | 8/10
3x,b.DLL (X, b, ¢, nil) * DLLyey(a, nil ,b,x) = DLL(a,nil,c, nil) True || 3/6 | 2/4 | 5/8
DLL(a,nil,c,nil) = DLLo4 (&, nil,c,nil) True || 2/4 | 2/4 | 5/8
TREEpp(&, nil) = TREE (@, nil) True || 2/4 | 3/8 | 6/11
TREE; (8, nil) |= TREEpp(a, nil) True || 3/8 | 2/4 | 5/10

TLLpp(a, nil, ¢, nil’) [= TLLT;(a, il ¢,nil’) True || 4/8 | 4/8 [13/22

TLL{?,‘)’(& nil,c,nil) = TLLpp(a, nil, ¢, nil) True || 4/8 | 4/8 |13/22

Al,r,z.ar (I,r,nil,nil)« TLL(I, c,z) * TLL(r,z nil) = TLL(a,c, nil) True || 4/7 | 4/8 |13/22

TLL(a,c,nil) = 3l,r,z a (l,r,nil,nil) « TLL(I, c,Z) * TLL(r, z,nil) False || 4/8 | 4/7 |13/2]]

the validity of the entailmen®ns =5, 5, Prhs. Table 1 lists the entailment queries
on which we tried out our tool; all examples are public andlasée on the web [15].
The upper part of the table contains local systems, whehsabdttom part contains
non-local systems. Apart from tt.L and TLL predicates from Sect. 2.1, the con-
sidered entailment queries contain the following pre@saiLL ey, (resp.DLLyg) that
encodes a DLL from the end (resp. midd&)Lo, that encodes a possibly empty DLL,
TREEp, encoding trees with parent pointeREE[Y that encodes trees with parent
pointers defined starting with an arbitrary |€HtL,p, encoding TLLs with parent point-
ers, andrLL sy which encodes TLLs with parent pointers starting from theftmost
leaf. ColumngAs|, |Arns|, and|Al, | of Table 1 provide information about the number
of states/transitions of the respective TA. The tool ansdeill queries correctly (de-
spite the incompleteness for non-local systems), and th&img times were all under 1
sec. on a standard PC (Intel Core2 CPU, 3GHz, 4GB RAM).

We also compared thet®E tool to the CrcLIsT [5] theorem prover on the exam-
ples from the @cLIST distribution [13]. Both tools run in less than 1 sec. on the ex
amples from their common fragment of SLYCLIST does not handle examples where
rotation is needed, whileL$DE fails on examples that generate an unbounded number
of dangling pointers and are outside of the decidable franjwie14].

7 Conclusion

We presented a novel decision procedure for the entailm@itigm in a non-trivial
subset of SL with inductive predicates, which deals with pheblem that the same
recursive structure may be represented differently, whewed from different entry
points. To this end, we use a special operation, which clagggen TA representation
w.r.t. the rotations of its spanning trees. Our proceduseisid and complete for induc-
tive systems with local edges. We have implemented a prpeciyol which we tested
through a number of non-trivial experiments, with encourggesults.

Acknowledgmenf(This work was supported by the Czech Science Foundationrunde
the project 14-11384S, the EU/Czech IT4lnnovations Ceafr&xcellence project
CZ.1.05/1.1.00/02.0070, and the internal BUT projects&{12-1 and FIT-S-14-2486.

15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanoviaig a. Ouaknine. Foundations
for decision problems in separation logic with general ctoke predicates. IProc. of
FOSSACS'14volume 8412 of NCS pages 411-425, 2014.

. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’'He@rWies, and H. Yang. Shape

analysis for composite data structures.Pimc. CAV'07 volume 4590 olLNCS Springer,
2007.

. J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidabignfient of separation logic. In

Proc. of FSTTCS’04volume 3328 of.NCS Springer, 2004.

. A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. V@r. Antichain-based universality

and inclusion testing over nondeterministic finite treeoandta. InProc. of CIAA volume
5148 ofLNCS Springer, 2008.

. J. Brotherston, N. Gorogiannis, and R. L. Petersen. Amewgclic theorem prover. In

APLAS pages 350-367, 2012.

. J. Brotherston and M. Kanovich. Undecidability of proiosal separation logic and its

neighbours. IProceedings of the 2010 25th Annual IEEE Symposium on Lo@omputer
SciencelLICS 10, pages 130-139, 2010.

. C. Calcagno and D. Distefano. Infer: An automatic progvanifier for memory safety of ¢

programs. IrProc. of NASA Formal Methods’1%olume 6617 of.NCS Springer, 2011.

. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J.élloifractable reasoning in a

fragment of separation logic. IRroc. of CONCUR’11volume 6901 ofLNCS Springer,
2011.

. K. Dudka, P. Peringer, and T. Vojnar. Predator: A prattmal for checking manipulation of

dynamic data structures using separation logicPdoc. of CAV’11 volume 6806 oL NCS
Springer, 2011.

C. Enea, O. Lengal, M. Sighireanu, and T. Vojnar. Contjposl Entailment Checking for a
Fragment of Separation Logic. Technical Report FIT-TR401, FIT, Brno University of
Technology, 2014.

C. Enea, V. Saveluc, and M. Sighireanu. Compositionariant checking for overlaid and
nested linked lists. IiProc. of ESOP’13pages 129-148, 2013.

J. Flum and M. GroheParameterized Complexity Theorgpringer-Verlag New York, Inc.,
2006.

N. Gorogiannis. Cyclist: a cyclic theorem prover framew

URL: https://github. conf ngorogi anni s/ cyclist/.

R. losif, A. Rogalewicz, and J. Simacek. The tree widtsegaration logic with recursive
definitions. InProc. of CADE-24volume 7898 of NCS Springer, 2013.

R. losif, A. Rogalewicz, and T. Vojnar. Slide: Sepanatiogic with inductive definitions.
URL: http://ww fit.vutbr.cz/research/groups/verifit/tools/slidel.

R. losif, A. Rogalewicz, and T. Vojnar. Deciding entagdints in inductive separation logic
with tree automataCoRR abs/1402.2127, 2014.

O. Lengal, J. Simacek, and T. Vojnar. Vata: a tree autatitatary.

URL: http://ww. fit.vutbr.cz/research/groups/verifit/tools/libvatal.

J. Navarro Prez and A. Rybalchenko. Separation logicuhdtieories. IPAPLAS volume
8301 ofLNCS pages 90-106, 2013.

H. H. Nguyen and W.-N. Chin. Enhancing program verifaativith lemmas. IrProc of
CAV’'08 volume 5123 of. NCS Springer, 2008.

R. Piskac, T. Wies, and D. Zufferey. Automating separatogic using smt. IrProc. of
CAV’13 volume 8044 of-NCS 2013.

R. Piskac, T. Wies, and D. Zufferey. Automating separatdgic with trees and data. In
Proc. of CAV'14 LNCS, 2014.

J. Reynolds. Separation Logic: A Logic for Shared Mwgabhata Structures. IRroc. of
LICS’02 IEEE CS Press, 2002.

16

