
Deciding Entailments in Inductive Separation Logic
with Tree Automata

Radu Iosif1, Adam Rogalewicz2, and Tomáš Vojnar2

1 University Grenoble Alpes, CNRS, VERIMAG, Grenoble, France
2 FIT, Brno University of Technology, IT4Innovations Centreof Excellence, Czech Republic

Abstract. Separation Logic (SL) with inductive definitions is a natural formal-
ism for specifying complex recursive data structures, usedin compositional veri-
fication of programs manipulating such structures. The key ingredient of any au-
tomated verification procedure based on SL is the decidability of the entailment
problem. In this work, we reduce the entailment problem for anon-trivial subset
of SL describing trees (and beyond) to the language inclusion of tree automata
(TA). Our reduction provides tight complexity bounds for the problem and shows
that entailment in our fragment is EXPTIME-complete. For practical purposes,
we leverage from recent advances in automata theory, such asinclusion checking
for non-deterministic TA avoiding explicit determinization. We implemented our
method and present promising preliminary experimental results.

1 Introduction
Separation Logic (SL) [22] is a logical framework for describing recursive mutable
data structures. The attractiveness of SL as a specificationformalism comes from the
possibility of writing higher-orderinductive definitionsthat are natural for describ-
ing the most common recursive data structures, such as singly- or doubly-linked lists
(SLLs/DLLs), trees, hash maps (lists of lists), and more complex variations thereof,
such as nested and overlaid structures (e.g. lists with headand tail pointers, skip-lists,
trees with linked leaves, etc.). In addition to being an appealing specification tool, SL
is particularly suited for compositional reasoning about programs. Indeed, the principle
of local reasoningallows one to verify different elements (functions, threads) of a pro-
gram, operating on disjoint parts of the memory, and to combine the results a-posteriori,
into succinct verification conditions.

However, the expressive power of SL comes at the price of undecidability [6]. To
avoid this problem, most SL dialects used by various tools (e.g. SPACE INVADER [2],
PREDATOR [9], or INFER [7]) use hard-coded predicates, describing SLLs and DLLs,
for which entailments are, in general, tractable [8]. For graph structures of bounded tree
width, a general decidability result was presented in [14].Entailment in this fragment
is EXPTIME-hard, as proven in [1].

In this paper, we present a novel decision procedure for a restriction of the decidable
SL fragment from [14], describing recursive structures in whichall edges are local with
respect to a spanning tree. Examples of such structures include SLLs, DLLs, trees and
trees with parent pointers, etc. For structures outside of this class (e.g. skip-lists or trees
with linked leaves), our procedure is sound (namely, if the answer of the procedure is
positive, then the entailment holds), but not complete (theanswer might be negative
and the entailment could still hold). In terms of program verification, such a lack of
completeness in the entailment prover can lead to non-termination or false positives,
but will not cause unsoundness (i.e. classify a buggy program as correct).

The method described in the paper belongs to the class ofautomata-theoreticde-
cision techniques: We translate an entailment problemϕ |= ψ into a language inclu-
sion problemL(Aϕ) ⊆ L(Aψ) for tree automata (TA)Aϕ andAψ that (roughly speak-
ing) encode the sets of models ofϕ and ψ, respectively. Yet, a naı̈ve translation of
the inductive definitions of SL into TA encounters apolymorphic representationprob-
lem: the same set of structures can be defined in several different ways, and TA sim-
ply mirroring the definition will not report the entailment.For example, DLLs with
selectorsnext and prev for the next and previous nodes, respectively, can be de-
scribed by a forward unfolding of the inductive definition:DLL(head, prev, tail ,next)≡
∃x. head7→ (x, prev)∗DLL(x,head, tail ,next) | emp∧head= tail ∧prev= next, as well
as by a backward unfolding of the definition:DLLrev(head, prev, tail ,next)≡∃x. tail 7→
(next,x)∗DLLrev(head, prev,x, tail) | emp∧head= tail∧prev= next. Also, one can de-
fine a DLL starting with a node in the middle and unfolding backward to the left of this
node and forward to the right:DLLmid(head, prev, tail ,next)≡∃x,y,z. DLL(y,x, tail ,next)
∗DLLrev(head, prev,z,x). The circular entailment:DLL(a,b,c,d) |= DLLrev(a,b,c,d) |=
DLLmid(a,b,c,d) |= DLL(a,b,c,d) holds, but a naı̈ve structural translation to TA might
not detect this fact. To bridge this gap, we define a closure operation on TA, called
canonical rotation, which adds all possible representations of a given inductive defini-
tion, encoded as a tree automaton.

The translation from SL to TA provides also tight complexitybounds, showing
that entailment in the local fragment of SL with inductive definitions is EXPTIME-
complete. Moreover, we implemented our method using the VATA [17] tree automata
library, which leverages from recent advances in non-deterministic language inclusion
for TA [4], and obtained quite encouraging experimental results.

Related work. Given the large body of literature on logics for describing mutable data
structures, we need to restrict this section to the related work that focuses on SL [22].
The first (proof-theoretic) decidability result for SL on a restricted fragment defining
only SLLs was reported in [3], which describe a co-NP algorithm. The full basic SL
without recursive definitions, but with the magic wand operator was found to be unde-
cidable when interpretedin any memory model[6]. A PTIME entailment procedure for
SL with list predicates is given in [8]. Their method was extended to reason about nested
and overlaid lists in [11]. More recently, entailments in animportant SL fragment with
hardcoded SLL/DLL predicates were reduced to Satisfiability Modulo Theories (SMT)
problems, leveraging from recent advances in SMT technology [20, 18]. The work re-
ported in [10] deals with entailments between inductive SL formulae describing nested
list structures. It uses a combination of graphs and TA to encode models of SL, but
it does not deal with the problem of polymorphic representation. Recently, a decision
procedure for entailments in a fragment of multi-sorted first-order logic with reacha-
bility, hard-coded trees and frame specifications, called GRIT (Graph Reachability and
Inverted Trees) has been reported in [21]. Due to the restriction of the transitive closure
to one function symbol (parent pointer), the expressive power of their logic, without
data constraints, is strictly lower than ours (regular properties of trees cannot be en-
coded in GRIT). However, GRIT can be extended with data, which has not been, so far,
considered for SL.

Closer to our work on SL with user-providedinductive definitionsis the fragment
used in the tool SLEEK, which implements a semi-algorithmic entailment check, based
on unfoldings and unifications [19]. Along this line of work,the theorem prover CY-
CLIST builds entailment proofs using a sequent calculus. NeitherSLEEK nor CYCLIST

2

are complete for a given fragment of SL, and, moreover, thesetools do not address the
polymorphic representation problem.

Our previous work [14] gave a general decidability result for SL with inductive
definitions interpreted over graph-like structures, underseveral necessary restrictions,
based on a reduction from SL to Monadic Second Order Logic (MSOL) on graphs of
bounded tree width. Decidability of MSOL on such graphs relies on a combinatorial
reduction to MSOL on trees (see [12] for a proof of Courcelle’s theorem). Altogether,
using the method from [14] causes a blowup of several exponentials in the size of the
input problem and is unlikely to produce an effective decision procedure.

The work [1] provides a rather complete picture of complexity for the entailment in
various SL fragments with inductive definitions, includingEXPTIME-hardness of the
decidable fragment of [14], but provides no upper bound. TheEXPTIME-completeness
result in this paper provides an upper bound for a fragment oflocal definitions, and
strengthens the EXPTIME-hard lower bound as well, i.e. it isshowed that even the
entailment between local definitions is EXPTIME-hard.

2 Definitions

The set of natural numbers is denoted byN. If x = 〈x1, . . . ,xn〉 andy = 〈y1, . . . ,ym〉
are tuples,x ·y= 〈x1, . . . ,xn,y1, . . . ,ym〉 denotes their concatenation,|x|= n denotes the
length ofx, and(x)i = xi denotes thei-th element ofx. For a partial functionf : A⇀ B,
and⊥ /∈ B, we denote byf (x) =⊥ the fact thatf is undefined at some pointx∈ A. The
domain of f is denoteddom(f) = {x∈ A | f (x) 6=⊥}, and the image off is denoted as
img(f) = {y∈ B | ∃x∈ A . f (x) = y}. By f : A⇀ f in B, we denote any partial function
whose domain is finite. Given two partial functionsf ,g defined on disjoint domains,
i.e.dom(f)∩dom(g) = /0, we denote byf ⊕g their union.

States.We considerVar = {x,y,z, . . .} to be a countably infinite set ofvariablesand
nil ∈Var be a designated variable. LetLoc be a countably infinite set of locations and
null ∈ Locbe a designated location.

Definition 1. A stateis a pair 〈s,h〉 where s: Var⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h: Loc⇀ f in N ⇀ f in Loc
is a finite partial function such that (i) null6∈ dom(h) and (ii) for all ℓ ∈ dom(h) there
exists k∈ N such that(h(ℓ))(k) 6=⊥.

Given a stateS= 〈s,h〉, s is called thestoreandh the heap. For anyl , l ′ ∈ Loc, we

write ℓ
k
−→S ℓ′ instead of(h(ℓ))(k) = ℓ′ for any k ∈ N called aselector. We call the

triple ℓ
k
−→S ℓ′ an edgeof S. When theS subscript is obvious from the context, we

sometimes omit it. LetImg(h) =
⋃

ℓ∈Loc img(h(ℓ)) be the set of locations which are
destinations of some edge inh. A locationℓ ∈ Loc is said to beallocatedin 〈s,h〉 if
ℓ ∈ dom(h) (i.e. it is the source of an edge). The location is calleddangling in 〈s,h〉
if ℓ ∈ [img(s)∪ Img(h)] \dom(h), i.e. it is referenced by a store variable or reachable
from an allocated location in the heap, but it is not allocated in the heap itself. The
set loc(S) = img(s)∪ dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in the stateS.

For any two statesS1 = 〈s1,h1〉 andS2 = 〈s2,h2〉 such that (i)s1 ands2 agree on
the evaluation of common variables (∀x ∈ dom(s1) ∩ dom(s2) . s1(x) = s2(x)) and
(ii) h1 andh2 have disjoint domains (dom(h1) ∩ dom(h2) = /0), we denote byS1⊎S2 =

3

〈s1∪s2,h1⊕h2〉 thedisjoint unionof S1 andS2. The disjoint union is undefined if one
of the above conditions does not hold.

Trees and Tree Automata.Let Σ be a countable alphabet andN∗ be the set of se-
quences of natural numbers. Letε ∈ N

∗ denote the empty sequence andp.q denote the
concatenation of two sequencesp,q∈ N

∗. We say thatp is aprefixof q if q= p.q′ for
someq′ ∈ N

∗. A setX ⊆ N
∗ is prefix-closediff p∈ X⇒ q∈ X for each prefixq of p.

A tree t overΣ is a finite partial functiont : N∗⇀ f in Σ such thatdom(t) is a finite
prefix-closed subset ofN∗ and, for eachp ∈ dom(t) and i ∈ N, we havet(p.i) 6= ⊥
only if t(p. j) 6= ⊥, for all 0≤ j < i. The sequencesp ∈ dom(t) are calledpositions
in the following. Given two positionsp,q∈ dom(t), we say thatq is thei-th successor
(child) of p if q= p.i, for somei ∈N. We denote byD(t) = {−1,0, . . . ,N} thedirection
alphabetof t, whereN = max{i ∈ N | ∃p ∈ N

∗ . p.i ∈ dom(t)}, and we letD+(t) =
D(t) \ {−1}. By convention, we have(p.i).(−1) = p, for all p ∈ N

∗ and i ∈ D+(t).
Given a treet and a positionp∈ dom(t), we define thearity of the positionp as #t(p) =
max{d ∈D+(t) | p.d ∈ dom(t)}+1.

A (finite, non-deterministic, bottom-up)tree automaton(abbreviated as TA in the
following) is a quadrupleA= 〈Q,Σ,∆,F〉, whereΣ is a finite alphabet,Q is a finite set
of states, F ⊆Q is a set offinal states, Σ is an alphabet, and∆ is a set oftransition rules
of the formσ(q1, . . . ,qn)→ q, for σ ∈ Σ, andq,q1, . . . ,qn ∈Q. Given a tree automaton
A= 〈Q,Σ,∆,F〉, for each ruleρ = (σ(q1, . . . ,qn)−→ q), we define its size as|ρ|= n+1.
The size of the tree automaton is|A| = ∑ρ∈∆ |ρ|. A run of A over a treet : N∗ ⇀ f in Σ
is a functionπ : dom(t)→ Q such that, for each nodep∈ dom(t), whereq= π(p), if
qi = π(p.i) for 1≤ i ≤ n, then∆ has a rule(t(p))(q1, . . . ,qn)→ q. We write t

π
=⇒ q

to denote thatπ is a run ofA over t such thatπ(ε) = q. We uset =⇒ q to denote that
t

π
=⇒ q for some runπ. Thelanguageof A is defined asL(A) = {t | ∃q∈ F, t =⇒ q}.

2.1 Separation Logic

The syntax ofbasic formulaeof Separation Logic (SL) is given below:

α ∈ Var\ {nil}; x ∈ Var;
Π ::= α = x | Π1∧Π2
Σ ::= emp | α 7→ (x1, . . . ,xn) | Σ1 ∗Σ2 , for somen> 0
ϕ ::= Σ∧Π | ∃x . ϕ

A formula of the form
∧n

i=1 αi = xi defined by theΠ nonterminal in the syntax above
is said to bepure. The atomic propositionemp, or any formula of the form⋆k

i=1αi 7→
(xi,1, . . . ,xi,ni), for somek> 0, is said to bespatial. A variablex is said to befree in ϕ if
it does not occur under the scope of any existential quantifier. We denote byFV(ϕ) the
set of free variables. A variableα ∈ FV(Σ)\ {nil} is said to beallocated(respectively,
referenced) in a spatial formulaΣ if it occurs on the left-hand (respectively, right-hand)
side of a propositionα 7→ (x1, . . . ,xn) of Σ.

In the following, we shall use two equality relations. Thesyntactic equality, denoted
σ ≡ ς, means thatσ andς are the same syntactic object (formula, variable, tuple of
variables, etc.). On the other hand, by writingx=Π y, for two variablesx,y∈Var and
a pure formulaΠ, we mean that the equality of the values ofx andy is implied byΠ.

A system ofinductive definitions(inductive system)P is a set of rules of the form
{

Pi(xi,1, . . . ,xi,ni)≡ |
mi
j=1 Ri, j(xi,1, . . . ,xi,ni)

}k

i=1
(1)

4

where{P1, . . . ,Pk} is a set ofpredicates, xi,1, . . . ,xi,ni are calledformal parameters,
and the formulaeRi, j are called therules of Pi . Each rule is of the formRi, j(x) ≡
∃z . Σ∗Pi1(y1)∗ . . .∗Pim(ym) ∧ Π, wherex∩z= /0, and the following holds:
1. Σ 6≡ emp is a non-empty spatial formula3, called theheadof Ri, j .
2. Pi1(y1), . . . ,Pim(ym) is a tuple ofpredicate occurrences, called thetail of Ri, j , where
|y j |= ni j , for all 1≤ j ≤m.

3. Π is a pure formula, restricted such that, for all formal parametersβ ∈ x, we allow
only equalities of the formα =Π β, whereα is allocated inΣ.4

4. for all 1≤ r,s≤m, if xi,k ∈ yr , xi,l ∈ ys, andxi,k =Π xi,l , for some 1≤ k, l ≤ ni , then
r = s; a formal parameter of a rule cannot be passed to two or more subsequent
occurrences of predicates in that rule.5

The size of a ruleR is denoted by|R| and defined inductively as follows:|α = x| =
1, |emp| = 1, |α 7→ (x1, . . . ,xn)| = n+ 1, |ϕ•ψ| = |ϕ|+ |ψ|, |∃x . ϕ| = |ϕ|+ 1, and
|P(x1, . . . ,xn)| = n. Here,α ∈ Var\ {nil}, x,x1, . . . ,xn ∈ Var, and• ∈ {∗,∧}. The size
of an inductive system (1) is defined as|P | = ∑k

i=1 ∑mi
j=1 |Ri, j |. A rooted system〈P ,Pi〉

is an inductive systemP with a designated predicatePi ∈ P .

lr

n

n

n n n

n

n

ll

root

l

l lr r

r

l r l r l r l r

hd

next

prev
tl

n
next

prev

next

prev

next

prevprev

next
p

Fig. 1.Top: A DLL. Bottom: A TLL.

Example 1.To illustrate the use of in-
ductive definitions (with the above restric-
tions), we first show how to define a pred-
icate DLL(hd, p, tl ,n) describing doubly-
linked lists of length at least one. As de-
picted on the top of Fig. 1, the formal
parameterhd points to the first allocated
node of such a list,p to the node pointed
to by theprevselector ofhd, tl to the last
node of the list (possibly equal tohd), and
n to the node pointed to by thenextselector fromtl . This predicate can be defined as
follows: DLL(hd, p, tl ,n)≡ hd 7→ (n, p) ∧ hd= tl | ∃x. hd 7→ (x, p)∗DLL(x,hd, tl ,n).

Another example is the predicateTLL(r, ll , lr) describing binary trees with linked
leaves whose root is pointed to by the formal parameterr, the left-most leaf is pointed to
by ll , and the right-most leaf points tolr as shown in the bottom of Fig. 1:TLL(r, ll , lr)≡
r 7→ (nil ,nil , lr) ∧ r = ll | ∃x,y,z. r 7→ (x,y,nil)∗TLL(x, ll ,z)∗TLL(y,z, lr). �

The semantics of SL is given by themodel relation|=, defined inductively, on the
structure of formulae, as follows:

S|= emp ⇐⇒ dom(h) = /0
S|= α 7→ (x1, . . . ,xn) ⇐⇒ s= {(α, ℓ0),(x1, ℓ1), . . . ,(xn, ℓn)} and

h= {〈ℓ0,λi . if 1 ≤ i ≤ n thenℓi else⊥〉}
for someℓ0, ℓ1, . . . , ℓn ∈ Loc

S|= ϕ1∗ϕ2 ⇐⇒ S1 |= ϕ1 andS2 |= ϕ2 for someS1,S2 : S1⊎S2 = S
S|= ∃x . ϕ ⇐⇒ 〈s[x← ℓ],h〉 |= ϕ for someℓ ∈ Loc
S|= Pi(xi,1, . . . ,xi,ni) ⇐⇒ S|= Ri, j(xi,1, . . . ,xi,ni), for some 1≤ j ≤mi , in (1)

3 In practice, we allow frontier or root rules to haveempty heads.
4 This restriction can be lifted at the expense of an exponential blowup in the size of the TA.
5 The restriction can be lifted by testing double allocation as in [14] (with an exponential cost).

5

The semantics of= and∧ are classical for first order logic. Note that we adopt here the
strict semantics, in which a points-to relationα 7→ (x1, . . . ,xn) holds in a state consist-

ing of a single cell pointed to byα that has exactlyn outgoing edgess(α) k
−→S s(xk),

1≤ k≤ n, leading either towards the single allocated locations(α) (if s(xk) = s(α)) or
towards dangling locations (ifs(xk) 6= s(α)). The empty heap is specified byemp.

A stateSis a model of a predicatePi iff it is a model of one of its rulesRi, j . For a state
S that is a model ofRi, j , the inductive definition of the semantics implies existence of
a finiteunfolding tree: this is a tree labeled with rules of the system in such a way that,
whenever a node is labeled by a rule with a tailPi1(y1), . . . ,Pim(ym), it has exactlym
children such that thej-th child, for 1≤ j ≤ m, is labeled with a rule ofPi j (see the
middle part of Fig. 2—a formal definition is given in [16].

Given an inductive systemP , predicatesPi(x1, . . . ,xn) andPj(y1, . . . ,yn) of P with
the same number of formal parametersn, and a tuple of variablesx where|x|=n, theen-
tailment problemis defined as follows:Pi(x) |=P Pj(x) : ∀S . S|= Pi(x)⇒ S|= Pj(x).

2.2 Connectivity, Spanning Trees and Local States
In this section, we define two conditions ensuring that entailments in the restricted SL
fragment can be decided effectively. The notion of aspanning treeis central for these
definitions. Informally, a stateShas a spanning treet if all allocated locations ofScan
be placed int such that there is always an edge inS in between every two locations
placed in a parent-child pair of positions (see Fig. 2 for twospanning trees).

Definition 2. Given a state S= 〈s,h〉, a spanning treeof S is a bijective tree t: N∗→

dom(h) such that∀p∈ dom(t)∀d ∈D+(t) . p.d ∈ dom(t)⇒∃k∈N . t(p)
k
−→S t(p.d).

Given an inductive systemP , let S= 〈s,h〉 be a state andPi ∈ P be an inductive
definition such thatS |= Pi . Our first restriction, calledconnectivity(Def. 3), ensures
that the unfolding tree of the definition ofPi is also a spanning tree ofS (cf. Fig. 2,
middle). In other words, each locationℓ ∈ dom(h) is created by an atomic proposition
of the formα 7→ (x1, . . . ,xn) from the unfolding tree of the definitionPi, and, moreover,

by Def. 2, there exists an edgeℓ
k
−→S ℓ

′ for any parent-child pair of positions in this tree
(cf. thenext edges in Fig. 2).

For a basic quantifier-free SL formulaϕ ≡ Σ∧Π and two variablesx,y∈ FV(ϕ),
we say thaty is ϕ-reachablefrom x iff there is a sequencex =Π α0, . . . ,αm =Π y, for
somem≥ 0, such that, for each 0≤ i < m, αi 7→ (βi,1, . . . ,βi,pi) is an atomic proposition
in Σ, andβi,s =Π αi+1, for some 1≤ s≤ pi . A variablex∈ FV(Σ) is called aroot of Σ
if every variabley∈ FV(Σ) is ϕ-reachable fromx.

Definition 3. Given a systemP = {Pi ≡ |
mi
j=1Ri, j}

n
i=1 of inductive definitions, a rule

Ri, j(xi,1, . . . ,xi,k) ≡ ∃z . Σ ∗Pi1(y1) ∗ . . . ∗Pim(ym)∧Π of a predicate Pi(xi,1, . . . ,xi,k) is
connectediff there exists a formal parameter xi,ℓ of Pi, 1≤ ℓ ≤ k, such that (i) xi,ℓ is
a root of Σ and (ii) for each j= 1, . . . ,m, there exists0≤ s< |y j | such that(y j)s is
(Σ∧Π)-reachable from xi,ℓ and xi j ,s is a root of the head of each rule of Pi j . The system
P is said to beconnectedif all its rules are connected.

For instance, theDLL andTLL systems from Ex. 1 are both connected. Our second

restriction, calledlocality, ensures that every edgeℓ
k
−→S ℓ

′, between allocated locations
ℓ,ℓ′ ∈ dom(h), involves locations that are mapped to a parent-child pair of positions in
some spanning tree ofS.

6

Definition 4. Let S= 〈s,h〉 be a state and t: N∗→ dom(h) be a spanning tree of S. An

edgeℓ
k
−→S ℓ

′ with ℓ,ℓ′ ∈ dom(h) is said to belocalw.r.t. a spanning tree t iff there exist
p∈ dom(t) and d∈D(t)∪{ε} such that t(p) = ℓ and t(p.d) = ℓ′. The tree t is alocal
spanning treeof S iff t is a spanning tree of S and S has only local edges w.r.t. t. The
state S islocal iff it has a local spanning tree.

[DLL2]

[DLL2]

[DLL2]

[DLL2]

[DLL1]

hd
p

next prev

tl
n

next prev

next prev

next prev

prev

next

Fig. 2. Two spanning trees of
a DLL. The middle one is an
unfolding tree when labeled
byDLL1≡ hd 7→ (n, p)∧hd=
tl and DLL2 ≡ ∃x. hd 7→
(x, p)∗DLL(x,hd, tl ,n).

For instance, theDLL system of Ex. 1 is local, while
theTLL system is not (e.g. then edges between leaves
cannot be mapped to parent-child pairs in the spanning
tree that is obtained by taking thel andr edges of the
TLL). In this paper, we address the locality problem by
giving a sufficient condition (a syntactic check of the
inductive system, prior to the generation of TA) able
to decide the locality on all of the practical examples
considered (Sec. 3.2). The decidability of locality of
general inductive systems is an interesting open prob-
lem, considered for future research.

Definition 5. A systemP = {Pi(xi,1, . . . ,xi,ni)}
k
i=1 is

said to belocal if and only if each formal parameter
xi, j of a predicate Pi is either (i) allocated in each rule
of Pi and (y) j is referenced at each occurrence Pi(y),
or (ii) referenced in each rule of Pi and (y) j is allo-
cated at each occurrence Pi(y).

This gives a sufficient (but not necessary) condition ensuring that any stateS, such that
S |= Pi, has a local spanning tree, ifP is a connected local system. The condition is
effective and easily implemented (see Sec. 3.2) by the translation from SL to TA.

3 From Separation Logic to Tree Automata

The first step of our entailment decision procedure is building a TA for a given inductive
system. Roughly speaking, the TA we build recognizes unfolding trees of the inductive
system. The alphabet of such a TA consists of small basic SL formulae describing the
neighborhood of each allocated variable, together with a specification of the connec-
tions between each such formula and its parent and children in the unfolding tree. Each
alphabet symbol in the TA is called atile. Due to technical details related to the en-
coding of states as trees of SL formulae, the most space in this section is dedicated to
the definition of tiles. Once the tile alphabet is defined, thestates of the TA correspond
naturally to the predicates of the inductive system, and thetransition rules correspond
to the rules of the system.

3.1 Tiles, Canonical Tiles, and Quasi-canonical Tiles

A tile is a tupleT = 〈ϕ,x−1,x0, . . . ,xd−1〉, for somed ≥ 0, whereϕ is a basic SL
formula, and eachxi is a tuple of pairwise distinct variables, called aport. We further
assume that all ports contain only free variables fromϕ and that they are pairwise
disjoint. The variables fromx−1 are said to beincoming, the ones fromx0, . . . ,xd−1 are
said to beoutgoing, and the ones frompar(T) = FV(ϕ)\ (x−1∪ . . .∪xd−1) are called

7

parameters. Thearity of a tile T = 〈ϕ,x−1, . . . ,xd−1〉 is the number of outgoing ports,
denoted by #(T) = d. We denoteform(T)≡ ϕ andport i(T)≡ xi , for all−1≤ i < d.

Given tilesT1 = 〈ϕ,x−1, . . . ,xd−1〉 andT2 = 〈φ,y−1, . . . ,ye−1〉 such thatFV(ϕ)∩
FV(φ) = /0, we define thei-composition, for some 0≤ i < d, such that|xi | = |y−1|:
T1⊛i T2 = 〈ψ,x−1, . . .xi−1,y0, . . . ,ye−1,xi+1, . . . ,xd−1〉whereψ≡∃xi∃y−1 . ϕ∗φ∧xi =

y−1.6 For a positionq∈N∗ and a tileT, we denote byT〈q〉 the tile obtained by renaming
each variablex in the ports ofT by x〈q〉. A tree t labeled with tiles corresponds to
a tile defined inductively, for anyp ∈ dom(t), as:T (t, p) = t(p)〈p〉⊛0 T (t, p.0)⊛1
T (t, p.1) . . . ⊛#(p)−1T (t, p.(#t(p)−1)). The SL formulaΦ(t)≡ form(T (t,ε)) is said
to be thecharacteristic formulaof t.

Canonical tiles.We first define a class of tiles that encode local states (Def. 4) with
respect to the underlying tile-labeled spanning trees. We denote byT = 〈(∃z) z 7→
(y0, . . . ,ym−1)∧Π,x−1, . . . ,xd−1〉 a tile whose spatial formula is either (i)∃z . z 7→
(y0, . . . ,ym−1) or (ii) z 7→ (y0, . . . ,ym−1) with z∈ par(T). A tile T = 〈(∃z) z 7→ (y0, . . . ,
ym−1)∧Π, x−1, . . . ,xd−1〉 is said to becanonicalif each portxi can be factorized as
x f w

i ·x
bw
i (distinguishingforward links going from the root to the leaves andbackward

links going in the opposite direction, respectively) such that:
1. xbw

−1≡〈yh0, . . . ,yhk〉, for some ordered sequence 0≤ h0 < .. . < hk <m, i.e. the back-
ward incoming tuple consists only of variables referenced by the unique allocated
variablez, ordered by the corresponding selectors.

2. For all 0≤ i < d, x f w
i ≡ 〈y j0, . . . ,y jki

〉, for some ordered sequence 0≤ j0 < .. . <

jki < m. As above, each forward outgoing tuple consists of variables referenced by
the unique allocated variablez, ordered by the corresponding selectors.

3. For all 0≤ i, j < d, if (x f w
i)0 ≡ yp and(x f w

j)0 ≡ yq, for some 0≤ p< q< m (i.e.
yp 6≡ yq), theni < j. This means that the forward outgoing tuples are ordered by the
selectors referencing their first element.

4. (x f w
−1∪xbw

0 ∪ . . .∪xbw
d−1)∩{y0, . . . ,ym−1}= /0 andΠ≡ x f w

−1 = z ∧
∧d−1

i=0 xbw
i = z.7

We denote byport f w
i (T) andportbw

i (T) the tuplesx f w
i andxbw

i , respectively, for all
−1≤ i < d. The set of canonical tiles is denoted asT c.

Definition 6. A tree t: N∗⇀ f in T
c is calledcanonicaliff #(t(p)) = #t(p) for any p∈

dom(t) and, moreover, for each0≤ i < #t(p), |port f w
i (t(p))| = |port f w

−1(t(p.i))| and
|portbw

i (t(p))|= |portbw
−1(t(p.i))|.

An important property of canonical trees is that each state that is a model of the
characteristic formulaΦ(t) of a canonical treet (i.e. S |= Φ(t)) can be uniquely de-
scribed by alocal spanning tree u: dom(t)→ Loc, which has the same structure as
t, i.e. dom(u) = dom(t). Intuitively, this is because each variableyi , referenced in an
atomic propositionz 7→ (y0, . . . ,ym−1) in a canonical tile, is allocated only if it belongs
to the backward part of the incoming portxbw

−1 or the forward part of some outgoing

port x f w
i . In the first case,yi is equal to the variable allocated by the parent tile, and

in the second case, it is equal to the variable allocated by the i-th child. An immediate
consequence is that any two models ofΦ(t) differ only by a renaming of the allocated
locations, i.e. they are identical up to isomorphism.

6 For two tuplesx = 〈x1, . . . ,xk〉 andy = 〈y1, . . . ,yk〉, we writex = y for
∧k

i=1 xi = yi .
7 For a tuplex = 〈x1, . . . ,xk〉, we writex = z for

∧k
i=1xi = z.

8

hd
p

next prev

tl
n

next

prev
x0 y1

y0 x1

next

prev

y0 x1

p

next prev

next prev

next prev

prev

next

next
prev

ϕ: ∃z. z (y0,y1)
/\ z = x0
/\ z = x1

ϕ: hd (y0,p)
/\ hd = x1

next

prev
x0 y1

y0 x1

ϕ: ∃z. z (y0,y1)
/\ z = x0
/\ z = x1

next

prev
x0 y1

y0 x1

ϕ: ∃z. z (y0,y1)
/\ z = x0
/\ z = x1

prev
x0 y1

ϕ: tl (n,y1)
/\ z = x0

n

next

y1 x0y0 x1

ϕ: ∃z. z (y0,y1)
/\ z = x0 /\ z = x1

next

prev

x0 y1

y0 x1

/\ z = x0
/\ z = x1

prev

x0 y1

/\ z = x0

n

next

ϕ: ∃z. z (y0,y1)

ϕ: tl (n,y1)

next

prev

x1 y0

y1 x0

ϕ: ∃z. z (y0,y1)
/\ z = x0
/\ z = x1

next

x1 y0

ϕ: hd (y0,p)
/\ hd = x1

p

prev

r

Fig. 3. The DLL from Fig. 1 with two of its canonical trees (re-
lated by a canonical rotationr).

Example 2 (cont.
of Ex. 1). To il-
lustrate the notion
of canonical trees,
Fig. 3 shows two
canonical trees for
a given DLL. The
tiles are depicted as
big rectangles con-
taining the appropri-
ate basic formula as
well as the input and
output ports. In all
ports, the first vari-
able is in the for-
ward and the sec-
ond in the backward
part. �

Quasi-canonical tiles.We next define a class of tiles that encode non-local states in
order to extend our decision procedure to handle entailments between non-local induc-
tive systems. In addition to local edges between neighboring tiles, quasi-canonical tiles
allow to define sequences of equalities between remote tiles. This extension is used
to specify non-local edges within the state. A tileT = 〈ϕ∧Π,x−1, . . . ,xd−1〉 is said
to bequasi-canonicalif and only if each portxi can be factorized asx f w

i · x
bw
i · x

eq
i ,

〈ϕ, x f w
−1 ·x

bw
−1, . . . , x f w

d−1 ·x
bw
d−1〉 is a canonical tile,Π is pure formula, and:

1. for each 0≤ i < |xeq
−1|, either(xeq

−1)i ∈ FV(ϕ) or (xeq
−1)i =Π (xeq

k) j for some unique

indices 0≤ k< d and 0≤ j < |x f w
k |.

2. for each 0≤ k< d and each 0≤ j < |xeq
k |, either(xeq

k) j ∈ FV(ϕ) or exactly one of
the following holds: (i)(xeq

k) j =Π (xeq
−1)i for some unique index 0≤ i < |xeq

−1| or
(ii) (xeq

k) j =Π (xeq
r)s for some unique indices 0≤ r < d and 0≤ s< |xeq

r |.
3. For anyx,y∈

⋃d−1
i=−1xeq

i , we havex=Π y only in one of the cases above.
We denoteporteq

i (T) ≡ xeq
i , for all −1 ≤ i < d. The set of quasi-canonical tiles is

denoted byT qc. The next definition of quasi-canonical trees extends Def. 6to the case
of quasi-canonical tiles.

Definition 7. A tree t : N∗ ⇀ f in T qc is quasi-canonicaliff #(t(p)) = #t(p) for any

p ∈ dom(t) and, moreover, for each0≤ i < #t(p), |port f w
i (t(p))| = |port f w

−1(t(p.i))|,
|portbw

i (t(p))|= |portbw
−1(t(p.i))|, and|porteq

i (t(p))|= |porteq
−1(t(p.i))|.

Example 3 (cont. of Ex. 1).For an illustration of the notion of quasi-canonical trees,
see Fig. 4, which shows a quasi-canonical tree for the TLL from Fig. 1. The figure uses
the same notation as Fig. 3. In all the ports, the first variable is in the forward part, the
backward part is empty, and the rest is the equality part. �

3.2 Building a TA for an Inductive System
In the rest of this section, we consider thatP is a connected inductive system (Def. 3)—
our construction will detect and reject disconnected systems. Given a rooted system

9

x0 y0

/\ ll = x0

n
ϕ: ll (nil,nil,y0)

l r

y1 x2y0 x1

nroot

x0 x1

y0 x2 y1 x3 x4

l r
n

ϕ: ∃z. z (y0,y1,nil)
/\ z = x0
/\ x2 = x3
/\ x1 = x4

x0 x1

y1 x4y0 x2 x3

l r

ϕ: ∃z. z (y0,y1,nil)
/\ z = x0
/\ x1 = x2
/\ x3 = x4

ϕ: root (y0,y1,nil) /\ x1 = x2

n

l r
ll

x0 x1 y0

n

l r
ϕ: ∃z. z (nil,nil,y0)

/\ z = x0
/\ z = x1

x0 x1 y0

n

l r
ϕ: ∃z. z (nil,nil,y0)

/\ z = x0
/\ z = x1

x0 x1

l r
lr

ϕ: ∃z. z (nil,nil,lr)
/\ z = x0
/\ z = x1

n

Fig. 4. A quasi-canonically tiled tree for the tree with linked leaves from Fig. 1.

〈P ,Pr〉, the first ingredient of our decision procedure for entailments is a procedure for
building a TA that recognizes all unfolding trees of the inductive definition ofPr in
the systemP . The first steps of the procedure implement aspecializationof the rooted
system with respect to a tupleα = 〈α1, . . . ,αnr 〉 of actual parameters forPr , not used
in P . For space reasons, the specialization steps are describedonly informally here (for
a detailed description of these steps, see [16]).

The first step is an elimination of existentially quantified variables that occur within
equalities with formal parameters or allocated variables from all rules ofP . Second,
each rule ofP whose head consists of more than one atomic propositionα 7→ (x1, . . . ,xn)
is split into several new rules, containing exactly one suchatomic proposition. At
this point, any disconnected inductive system (Def. 3) passed to the procedure is de-
tected and rejected. The final specialization step consistsin propagating the actual pa-
rametersα through the rules. A formal parameterxi,k of a rule Ri, j(xi,1, . . . ,xi,ni) ≡
∃z . Σ ∗Pi1(y1) ∗ . . . ∗Pim(ym)∧Π is directly propagatedto some (unique) parameter
of a predicate occurrencePi j , for some 1≤ j ≤ m, if and only if xi,k 6∈ FV(Σ) and
xi,k ≡ (yi j)ℓ, for some 0≤ ℓ < |yi j |, i.e. xi,k is neither allocated nor pointed to by the
head of the rule before being passed on toPi j . We denote direct propagation of parame-
ters by the relationxi,k ❀ xi j ,ℓ wherexi j ,ℓ is the formal parameter ofPi j which is mapped
to the occurrence of(yi j)ℓ. We say thatxi,k is propagatedto xr,s if xi,k ❀

∗ xr,s where❀∗

denotes the reflexive and transitive closure of the❀ relation. Finally, we replace each
variabley of P by the actual parameterα j provided thatxr, j ❀

∗ y. It is not hard to
show that the specialization procedure runs in timeO(|P |), hence the size of the output
system is increased by a linear factor only.

Example 4 (cont. of Ex. 1).As an example of specialization, let us consider the pred-
icateDLL from Ex. 1, with parametersDLL(a,b,c,d). After the parameter elimination
and renaming the newly created predicates, we have a callQ1 (without parameters) of
the following inductive system:

Q1() ≡ a 7→ (d,b) ∧ a= c | ∃x. a 7→ (x,b)∗Q2(x,a)
Q2(hd, p) ≡ hd 7→ (d, p) ∧ hd= c | ∃x. hd 7→ (x, p)∗Q2(x,hd)

�

We are now ready to describe the construction of a TA for a specialized rooted
system〈P ,Pr〉. First, for each predicatePj(x j ,1, . . . ,x j ,n j) ∈ P , we compute several sets

of parameters, calledsignatures: sig f w
j = {x j ,k | x j ,k is allocated in each rule ofPj , and

(y)k is referenced in each occurrencePj(y) of Pj}, sigbw
j = {x j ,k | x j ,k is referenced

in each rule ofPj , and(y)k is allocated at each occurrencePj(y) of Pj}, and, finally,

10

sig
eq
j = {x j ,1, . . . ,x j ,n j} \ (sig

f w
j ∪sig

bw
j). The signatures of an inductive system can

be used to implement thelocality test(Def. 5): the systemP = {P1, . . . ,Pk} is local if
and only ifsigeq

i = /0 for each 1≤ i ≤ k.

Example 5 (cont. of Ex. 4).The signatures for the system in Ex. 4 are:sig
f w
1 = sigbw

1 =

sig
eq
1 = /0 andsig f w

2 = {hd},sigbw
2 = {p},sigeq

2 = /0. The fact that, for eachi = 1,2,
we havesigeq

i = /0 implies that theDLL system is local. �

The procedure for building a TA from a rooted system〈P ,Pr〉 with actual param-
etersα is denoted asSL2TA(P ,Pr ,α) in the following. For each ruleRj ,ℓ in the sys-
tem, theSL2TA procedure creates a quasi-canonical tile whose incoming and outgoing
portsxi are factorized asx f w

i ·x
bw
i ·x

eq
i according to the precomputed signaturessig

f w
j ,

sigbw
j , andsigeq

j , respectively. The backward part of the input portxbw
−1 and the for-

ward parts of the output ports{x f w
i }i≥0 are sorted according to the order of incoming

selector edges from the single points-to formula which constitutes the head of the rule.
The output ports{xi}i≥0 are sorted within the tile according to the order of the selector
edges pointing to(x f w

i)0 for eachi ≥ 0. Finally, each predicate namePi is associated
with a stateqi , and for each inductive rule, the procedure creates a transition rule in the
TA. The final state of the TA then corresponds to the root of thesystem (see Algorithm
in [16]). The invariant used to prove the correctness of thisconstruction is that when-
ever the TA reaches a stateqi it reads an unfolding tree whose root is labeled with a
rule Ri, j of the definition of a predicatePi. The following lemma summarizes the TA
construction:

Lemma 1. Given a rooted system〈P ,Pr(xr,1, . . . ,xr,nr)〉 whereP = {Pi}
k
i=1 is a con-

nected inductive system,1≤ r ≤ k, andα = 〈α1, . . . ,αni 〉 is a tuple of variables not in
P , let A= SL2TA(P ,Pr ,α). Then, for every state S, we have S|= Pr(α) iff there exists
t ∈ L(A) such that S|= Φ(t). Moreover,|A|= O(|P |).

∆ =

〈a 7→ (d,b)∧a = c, /0〉()→ q1 〈a 7→ (x,b), /0,(x,a)〉(q2) → q1
〈∃hd′.hd′ 7→ (d, p)∧hd= c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2) → q2

Example 6 (cont.
of Ex. 5).For the
specialized induc-
tive systemP =
{Q1,Q2} from Ex. 4, we obtain the TA A = SL2TA(P ,Q1,〈a,b,c,d〉) =
〈Σ,{q1,q2},∆,{q1}〉 where∆ is shown above. �

4 Rotation of Tree Automata

In this section we deal with polymorphic representations ofstates, i.e. situations when a
state can be represented by different spanning trees, with different tilings. In this section
we show that, for states with local spanning trees only (Def.4), these trees are related
by arotation relation.

4.1 Rotation as a Transformation of TA

We start by defining rotation as a relation on trees. Intuitively, two treest1 andt2 are re-
lated by a rotation whenever we can obtaint2 from t1 by picking a positionp∈ dom(t1)
and making it the root oft2, while maintaining int2 all edges fromt1 (Fig. 5).

11

Definition 8. Given two trees t1, t2 : N∗⇀ f in Σ and a bijective mapping r: dom(t1)→
dom(t2), we say that t2 is an r-rotationof t1, denoted by t1 ∼r t2 if and only if: ∀p ∈
dom(t1)∀d ∈D+(t1) : p.d ∈ dom(t1)⇒∃e∈D(t2) . r(p.d) = r(p).e. We write t1∼ t2
if there exists a bijective mapping r: dom(t1)→ dom(t2) such that t1∼r t2.

t1 t2

ε

0 1

00 01

ε

0
1 2

20

r

Fig. 5.An example of a rotation.

An example of a rotationr of a treet1
to a treet2 such thatr(ε) = 2, r(0) = ε,
r(1) = 20, r(00) = 0, and r(01) = 1 is
shown in Fig. 5. Note that, e.g., forp =
ε ∈ dom(t1) and d = 0 ∈ D+(t1), where
p.d = ε.0 ∈ dom(t1), we gete = −1 ∈
D(t2), andr(ε.0) = 2.(−1) = ε.

In the rest of this section, we define rotation on canonical and quasi-canonical trees.
These definitions are refinements of Def. 8. Namely, the change in the structure of the
tree is mirrored by a change in the tile alphabet labeling thetree in order to preserve the
state which is represented by the (quasi-)canonical tree.

A substitutionis an injective partial functionσ : Var ⇀ f in Var. Given a basic for-
mulaϕ and a substitutionσ, we denote byϕ[σ] the result of simultaneously replacing
each variablex (not necessarily free) that occurs inϕ by σ(x). For instance, ifσ(x) = y,
σ(y) = z, andσ(z) = t, then(∃x,y . x 7→ (y,z)∧z= x)[σ]≡ ∃y,z . y 7→ (z, t) ∧ t = y.

Definition 9. Given two canonical trees t,u : N∗⇀ f in T
c and a bijective mapping r:

dom(t)→ dom(u), we say that u is acanonical rotationof t, denoted t∼c
r u, if and only

if t ∼r u and there exists a substitutionσp : Var⇀ f in Var for each p∈ dom(t) such that
form(t(p))[σp]≡ form(u(r(p))) and, for all0≤ i < #t(p), there exists j∈D(u) such
that r(p.i) = r(p). j and:

port f w
i (t(p))[σp] ≡ if j ≥ 0 thenport f w

j (u(r(p))) elseportbw
−1(u(r(p)))

portbw
i (t(p))[σp] ≡ if j ≥ 0 thenportbw

j (u(r(p))) elseport f w
−1(u(r(p)))

We write t∼c u if there exists a mapping r such that t∼c
r u.

Example 7 (cont. of Ex. 2).The notion of canonical rotation is illustrated by the canon-
ical rotationr relating the two canonical trees of a DLL shown in Fig. 3. In its case, the
variable substitutions are simply the identity in each node. Note, in particular, that when
the tile 0 of the left tree (i.e., the second one from the top) gets rotated to the tile 1 of the
right tree (i.e., the right successor of the root), the inputand output ports get swapped
and so do their forward and backward parts. �

The following lemma is the key for proving completeness of our entailment check-
ing for local inductive systems: if a (local) state is a modelof the characteristic formulae
of two different canonical trees, then these trees must be related by canonical rotation.

Lemma 2. Let t : N∗ ⇀ f in T
c be a canonical tree and S= 〈s,h〉 be a state such that

S|= Φ(t). Then, for any canonical tree u: N∗⇀ f in T
c, we have S|= Φ(u) iff t ∼c u.

In the following, we extend the notion of rotation to quasi-canonical trees:

Definition 10. Given two quasi-canonical trees t,u : N∗⇀ f in T
qc and a bijective map-

ping r : dom(t)→ dom(u), we say that u is aquasi-canonical rotationof t, denoted
t ∼qc

r u, if and only if t∼c
r u and|porteq

i (t(p))| = |porteq
j (u(r(p)))| for all p ∈ dom(t)

and all0≤ i < #t(p),−1≤ j < #t(p) such that r(p.i) = r(p). j. We write t∼qc u if there
exists a mapping r such that t∼qc

r u.

12

Algorithm 1 Rotation Closure of Quasi-canonical TA.
input a quasi-canonical TAA= 〈Q,Σ,∆,F〉
output a TA Ar where:
L(Ar) = {u : N∗⇀ f in T

qc | ∃t ∈ L(A) . u∼qc t}
function ROTATETA(A)

Ar ← A
assumeAr ≡ 〈Qr ,Σ,∆r ,Fr 〉
for all ρ ∈ ∆ do

assumeρ≡ T(q0, . . . ,qk)→ q
assumeT ≡ 〈ϕ,x−1,x0, . . . ,xk〉
if x−1 6= /0 or q 6∈ F then

assume x−1 ≡ x f w
−1 ·x

bw
−1 ·x

eq
−1

if xbw
−1 6= /0 then
Qrev←{qrev | q∈Q}
(Qρ,∆ρ)← (Q∪Qrev∪{qf

ρ},∆)
p← POSITIONOF(xbw

−1,ϕ)
xswap← xbw

−1 ·x
f w
−1 ·x

eq
−1

Tnew← 〈ϕ,〈〉,x0, . . . ,xp,xswap, . . . ,xk〉

∆ρ←∆ρ∪{Tnew(q0 . . .qp,qrev . . .qk)−→ qf
ρ}

(∆ρ,)← ROTTR(q,∆,∆ρ, /0,F)

Aρ ← 〈Qρ,Σ,∆ρ ,{q
f
ρ}〉

Ar ← Ar ∪Aδ
return Ar

function ROTTR(q,∆,∆new,V,F)
V← V∪{q}
for all (U(s0, . . . ,sℓ)→ s) ∈ ∆ do

for all 0≤ j ≤ ℓ such thatsj = q do
assumeU = 〈ϕ,x−1,x0, . . . ,x j , . . . ,xℓ〉
assume xj ≡ x f w

j ·x
bw
j ·x

eq
j

if x−1 = /0 and s∈ F then
xswap← xbw

j ·x
f w
j ·x

eq
j

U ′← 〈ϕ,xswap,x0, . . . ,x j−1,x j+1, . . . ,xℓ〉
∆new← ∆new∪{U ′(s0 . . .sj−1 . . .sℓ)−→ qrev}

else
x−1 ≡ x f w

−1 ·x
bw
−1 ·x

eq
−1

if xbw
−1 6= /0 then
ports← 〈x0, . . . ,x j−1,x j+1, . . . ,xℓ〉
states← (s0, . . . ,sj−1,sj+1, . . . ,sℓ)

xswap← xbw
−1 ·x

f w
−1 ·x

eq
−1

p← INSERTOUTPORT(xswap,ports,ϕ)
INSERTLHSSTATE (srev,states, p)

Unew← 〈ϕ,xbw
j ·x

f w
j ·x

eq
j ,ports〉

∆new← ∆new∪{Unew(states)→ qrev}
if s 6∈ V then

(∆new,V)← ROTTR(s,∆,∆new,V,F)

return (∆new,V)

The increase in expressivity (i.e. the possibility of defining non-local edges) comes
at the cost of a loss of completeness. The following lemma generalizes the necessity
direction (⇐) of Lemma 2 for quasi-canonical tiles. Notice that the sufficiency (⇒)
direction does not hold in general.

Lemma 3. Let t,u : N∗ ⇀ f in T
qc be quasi-canonical trees such that t∼qc u. For all

states S, if S|= Φ(t), then S|= Φ(u).

4.2 Implementing Rotation as a Transformation of TA

This section describes the algorithm that produces the closure of a quasi-canonical tree
automaton (i.e. a tree automaton recognizing quasi-canonical trees only) under rota-
tion. The result is a TA that recognizes all treesu : N∗⇀ f in T

qc such thatt ∼qc u for
some treet recognized by the input TAA= 〈Q,Σ,∆,F〉. Algorithm 1 (theROTATETA
procedure) describes the rotation closure whose result is alanguage-theoretic union
of A and the TAAρ, one for each ruleρ of A. The idea behind the construction of

Aρ = 〈Qρ,Σ,∆ρ,{q
f
ρ}〉 can be understood by considering a treet ∈ L(A), a runπ :

dom(t)→Q, and a positionp∈ dom(t), which is labeled with the right hand side of the
ruleρ = T(q1, . . . ,qk)−→ q of A. ThenL(Aρ) will contain the rotated treeu, i.e.t ∼qc

r u,
where the significant positionp is mapped into the root ofu by the rotation function
r, i.e. r(p) = ε. To this end, we introduce a new ruleTnew(q0, . . . ,qrev, . . . ,qk) −→ qf

ρ
where the tileTnew mirrors the change in the structure ofT at positionp, andqrev ∈
Qρ is a fresh state corresponding toq. The construction ofAρ continues recursively
(procedureROTTR), by considering every rule ofA that hasq on the left hand side:
U(q′1, . . . ,q, . . . ,q

′
ℓ) −→ s. This rule is changed by swapping the roles ofq and s and

producing a ruleUnew(q′1, . . . ,s
rev, . . .q′ℓ) −→ qrev whereUnew mirrors the change in the

structure ofU . Intuitively, the states{qrev|q∈Q}mark the unique path from the root of
u to r(ε) ∈ dom(u). The recursion stops when either (i)s is a final state ofA, (ii) The

13

tile U does not specify a forward edge in the direction marked byq, or (iii) all states of
A have been visited.

Lemma 4. Let A= 〈Q,T qc,∆,F〉 be a TA, and Ar = ROTATETA(A) be the TA defining
the rotation closure of A. ThenL(Ar) = {u | u : N∗ ⇀ f in T

qc, ∃t ∈ L(A) . u∼qc t}.
Moreover,|Ar |= O(|A|2).

The main result of this paper is given by the following theorem. The entailment
problem for inductive systems is reduced, in polynomial time, to a language inclusion
problem for tree automata. The inclusion test is always sound (if the answer is yes, the
entailment holds), and complete, if the right-hand side is alocal system (Def. 4).

Theorem 1. Let P =
{

Pi ≡ |
mi
j=1 Ri, j

}k

i=1
be a connected inductive system. Then, for

any two predicates Pi(xi,1, . . . ,xi,ni) and Pj(x j ,1, . . . ,x j ,n j) of P such that ni = n j , and
for any tuple of variablesα = 〈α1, . . . ,αni 〉 not used inP , the following holds for A1 =
SL2TA(P ,Pi ,α) and A2 = SL2TA(P ,Pj ,α):

– (Soundness)Pi(α) |=P Pj(α) if L(A1)⊆ L(Ar
2) and

– (Completness)Pi(α) |=P Pj(α) only ifL(A1)⊆ L(Ar
2) provided〈P ,Pj〉 is local.

∆ =

〈a 7→ (b,d)∧a = c, /0〉()→ q1 〈a 7→ (x,b), /0,(x,a)〉(q2) → q1
〈∃hd′.hd′ 7→ (d, p)∧hd= c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2) → q2
〈∃hd′.hd′ 7→ (d, p)∧hd = c∧hd′ = hd, /0,(p,hd)〉(qrev

2) → qf in
〈a 7→ (x,b),(a,x)〉() → qrev

2
〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd,(hd,x),(p,hd)〉(qrev

2) → qrev
2

〈∃hd′.hd′ 7→ (x, p)∧hd′ = hd, /0,(x,hd),(p,hd)〉(q2 ,qrev
2) → qf in

Example 8 (cont. of
Ex. 6). When ap-
plied on the tree au-
tomatonA, the op-
eration of rotation
closure produces the
tree automatonAr = 〈Σ,{q1,q2,qrev

2 ,qf in},∆,{q1,qf in}〉 where∆ is shown above. �

5 Complexity

In this section, we provide tight complexity bounds for the entailment problem in the
fragment of SL with inductive definitions under consideration, i.e., with theconnectiv-
ity and locality restrictions. The first result shows the need forconnectivitywithin the
system: allowing disconnected rules leads to undecidability of the entailment problem.
As a remark, the general undecidability of entailments for SL with inductive definitions
has already been proven in [1]. Our proof stresses the fact that undecidability occurs
due the lack of connectivity within some rules.

Theorem 2. Entailment is undecidable for inductive systems with disconnected rules.

The second result of this section provides tight complexitybounds for the entail-
ment problem for local connected systems. We must point out that EXPTIME-hardness
of entailments in the fragment of [14] was already proved in [1]. The result below is
stronger since the fragment under consideration is a restriction of the fragment from
[14] obtained by applying the locality condition.

Theorem 3. Entailment is EXPTIME-complete for local connected inductive systems.

6 Experiments

We implemented a prototype tool called SLIDE (Separation Logic with Inductive DEfi-
nitions) [15] that takes as input two rooted systems〈Plhs,Plhs〉 and〈Prhs,Prhs〉 and tests

14

Table 1.Experimental results. The upper table contains local systems, while the lower table non-
local ones. Sizes of initial TA (col. 3,4) and rotated TA (col. 5) are in numbers of states/transitions.

EntailmentLHS|= RHS Answer |Alhs| |Arhs| |Ar
rhs|

DLL(a,nil ,c,nil) |= DLLrev(a,nil ,c,nil) True 2/4 2/4 5/8
DLLrev(a,nil ,c,nil) |= DLLmid(a,nil ,c,nil) True 2/4 4/8 12/18
DLLmid(a,nil ,c,nil) |= DLL(a,nil ,c,nil) True 4/8 2/4 5/8

∃x,n,b. x 7→ (n,b)∗DLLrev(a,nil ,b,x)∗DLL(n,x,c,nil) |= DLL(a,nil ,c,nil) True 3/5 2/4 5/8
DLL(a,nil ,c,nil) |= ∃x,n,b. x 7→ (n,b)∗DLLrev(a,nil ,b,x)∗DLL(n,x,c,nil) False 2/4 3/5 9/13
∃y,a. x 7→ (y,nil)∗y 7→ (a,x)∗DLL(a,y,c,nil) |= DLL(x,nil ,c,nil) True 3/4 2/4 5/8
DLL(x,nil ,c,nil) |= ∃y,a. x 7→ (nil ,y)∗y 7→ (a,x)∗DLL(a,y,c,nil) False 2/4 3/4 8/10
∃x,b.DLL(x,b,c,nil)∗DLLrev(a,nil ,b,x) |= DLL(a,nil ,c,nil) True 3/6 2/4 5/8

DLL(a,nil ,c,nil) |= DLL0+(a,nil ,c,nil) True 2/4 2/4 5/8
TREEpp(a,nil) |= TREErev

pp(a,nil) True 2/4 3/8 6/11
TREErev

pp(a,nil) |= TREEpp(a,nil) True 3/8 2/4 5/10

TLLpp(a,nil ,c,nil) |= TLLrev
pp(a,nil ,c,nil) True 4/8 4/8 13/22

TLLrev
pp(a,nil ,c,nil) |= TLLpp(a,nil ,c,nil) True 4/8 4/8 13/22

∃l ,r,z. a 7→ (l ,r,nil ,nil)∗TLL(l ,c,z)∗TLL(r,z,nil) |= TLL(a,c,nil) True 4/7 4/8 13/22
TLL(a,c,nil) |= ∃l ,r,z. a 7→ (l ,r,nil ,nil)∗TLL(l ,c,z)∗TLL(r,z,nil) False 4/8 4/7 13/21

the validity of the entailmentPlhs |=Plhs∪Prhs Prhs. Table 1 lists the entailment queries
on which we tried out our tool; all examples are public and available on the web [15].
The upper part of the table contains local systems, whereas the bottom part contains
non-local systems. Apart from theDLL andTLL predicates from Sect. 2.1, the con-
sidered entailment queries contain the following predicates:DLLrev (resp.DLLmid) that
encodes a DLL from the end (resp. middle),DLL0+ that encodes a possibly empty DLL,
TREEpp encoding trees with parent pointers,TREErev

pp that encodes trees with parent
pointers defined starting with an arbitrary leaf,TLLpp encoding TLLs with parent point-
ers, andTLLrev

pp which encodes TLLs with parent pointers starting from theirleftmost
leaf. Columns|Alhs|, |Arhs|, and|Ar

rhs| of Table 1 provide information about the number
of states/transitions of the respective TA. The tool answered all queries correctly (de-
spite the incompleteness for non-local systems), and the running times were all under 1
sec. on a standard PC (Intel Core2 CPU, 3GHz, 4GB RAM).

We also compared the SLIDE tool to the CYCLIST [5] theorem prover on the exam-
ples from the CYCLIST distribution [13]. Both tools run in less than 1 sec. on the ex-
amples from their common fragment of SL. CYCLIST does not handle examples where
rotation is needed, while SLIDE fails on examples that generate an unbounded number
of dangling pointers and are outside of the decidable fragment of [14].

7 Conclusion

We presented a novel decision procedure for the entailment problem in a non-trivial
subset of SL with inductive predicates, which deals with theproblem that the same
recursive structure may be represented differently, when viewed from different entry
points. To this end, we use a special operation, which closesa given TA representation
w.r.t. the rotations of its spanning trees. Our procedure issound and complete for induc-
tive systems with local edges. We have implemented a prototype tool which we tested
through a number of non-trivial experiments, with encouraging results.

Acknowledgment.This work was supported by the Czech Science Foundation under
the project 14-11384S, the EU/Czech IT4Innovations Centreof Excellence project
CZ.1.05/1.1.00/02.0070, and the internal BUT projects FIT-S-12-1 and FIT-S-14-2486.

15

References

1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine. Foundations
for decision problems in separation logic with general inductive predicates. InProc. of
FOSSACS’14, volume 8412 ofLNCS, pages 411–425, 2014.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. InProc. CAV’07, volume 4590 ofLNCS. Springer,
2007.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation logic. In
Proc. of FSTTCS’04, volume 3328 ofLNCS. Springer, 2004.

4. A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. Vojnar. Antichain-based universality
and inclusion testing over nondeterministic finite tree automata. InProc. of CIAA, volume
5148 ofLNCS. Springer, 2008.

5. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In
APLAS, pages 350–367, 2012.

6. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic and its
neighbours. InProceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer
Science, LICS ’10, pages 130–139, 2010.

7. C. Calcagno and D. Distefano. Infer: An automatic programverifier for memory safety of c
programs. InProc. of NASA Formal Methods’11, volume 6617 ofLNCS. Springer, 2011.

8. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. InProc. of CONCUR’11, volume 6901 ofLNCS. Springer,
2011.

9. K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool for checking manipulation of
dynamic data structures using separation logic. InProc. of CAV’11, volume 6806 ofLNCS.
Springer, 2011.

10. C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional Entailment Checking for a
Fragment of Separation Logic. Technical Report FIT-TR-2014-01, FIT, Brno University of
Technology, 2014.

11. C. Enea, V. Saveluc, and M. Sighireanu. Compositional invariant checking for overlaid and
nested linked lists. InProc. of ESOP’13, pages 129–148, 2013.

12. J. Flum and M. Grohe.Parameterized Complexity Theory. Springer-Verlag New York, Inc.,
2006.

13. N. Gorogiannis. Cyclist: a cyclic theorem prover framework.
URL: https://github.com/ngorogiannis/cyclist/.

14. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width ofseparation logic with recursive
definitions. InProc. of CADE-24, volume 7898 ofLNCS. Springer, 2013.

15. R. Iosif, A. Rogalewicz, and T. Vojnar. Slide: Separation logic with inductive definitions.
URL: http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/.

16. R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding entailments in inductive separation logic
with tree automata.CoRR, abs/1402.2127, 2014.

17. O. Lengal, J. Simacek, and T. Vojnar. Vata: a tree automata library.
URL: http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/.

18. J. Navarro Prez and A. Rybalchenko. Separation logic modulo theories. InAPLAS, volume
8301 ofLNCS, pages 90–106, 2013.

19. H. H. Nguyen and W.-N. Chin. Enhancing program verification with lemmas. InProc of
CAV’08, volume 5123 ofLNCS. Springer, 2008.

20. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using smt. InProc. of
CAV’13, volume 8044 ofLNCS, 2013.

21. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic with trees and data. In
Proc. of CAV’14, LNCS, 2014.

22. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InProc. of
LICS’02. IEEE CS Press, 2002.

16

