Healing Data Races On-The-Fly

Bohuslav Kfena
Brno University of Technology
Bozetéchova 2, Brno
CZ 612 66, Czech Republic
krena@fit.vutbr.cz

Shmuel Ur
IBM, Haifa Research Lab
Haifa University Campus
Haifa, 31905, Israel
ur@il.ibm.com

ABSTRACT

Testing of concurrent software is extremely difficult. Despite
all the progress in the testing and verification technology,
concurrent bugs, the most common of which are deadlocks
and races, make it to the field. This paper describes a set of
techniques, implemented in a tool called ConTest, allowing
concurrent programs to self-heal at run-time.

Concurrent bugs have the very desirable property for heal-
ing that some of the interleaving produce correct results
while in others bugs manifest. Healing concurrency prob-
lems is about limiting, or changing the probability of in-
terleaving, such that bugs will be seen less. When heal-
ing concurrent programs, if a deadlock does not result from
limiting the interleaving, we are sure that the result of the
healed program could have been in the original program and
therefore no new functional bug has been introduced.

In this initial work which deals with different types of
data races, we suggest three types of healing mechanisms:
(1) changing the probability of interleaving by introducing
sleep or yield statements or by changing thread priorities,
(2) removing interleaving using synchronisation commands
like locking and unlocking certain mutexes or waits and no-
tifies, and (3) removing the result of “bad interleaving” by
replacing the value of variables by the one that “should” have
been taken. We also classify races according to the relevant
healing strategies to apply.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Verification

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

PADTAD’07, July 9, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-748-3/07/000%5.00.

Zdenék Letko
Brno University of Technology
Bozetéchova 2, Brno
CZ 612 66, Czech Republic
xletko0O0O@stud.fit.vutbr.cz

Rachel Tzoref
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
rachelt@il.ibm.com

Tomas Vojnar

Brno University of Technology

BoZetéchova 2, Brno
CZ 612 66, Czech Republic
vojnar@fit.vutbr.cz

Keywords

Concurrency, Testing, Self-healing

1. INTRODUCTION

The increasing popularity of concurrent programming—
for the Internet as well as on the server side—has brought
the issue of concurrent defect analysis to the forefront. Con-
current defects such as unintentional data races or deadlocks
are difficult and expensive to uncover and analyse, and such
faults often escape to the field. Having new dual core or
hyper-threaded processors (which is the case of all general
purpose processors currently in production) in personal com-
puters makes the testing of multi-threaded programs even
more important. The programs that used to work well on
single-threaded and single-CPU-core processors are now ex-
hibiting problems. As a result, large companies such as IBM,
Intel, and Microsoft have now dedicated teams that work on
tools and methodologies for the multi-threaded domain.

Work on race detection, the most common way to find
concurrency bugs, [33, 35, 23, 28, 17, 2, 3, 6] has been going
on for a long time. Race detection tools suffer from the
dual problem of having too many false alarms as well as not
identifying some of the races. Other available techniques
(such as static analysis or model checking) do not solve the
problem in a satisfiable way either.

Even with the best testing and/or verification techniques
available, problems still escape to the field. Moreover, even
if the problem is known, there are situations in which it
is not easy to fix it. Examples include situations in which
the software is embedded in hardware which has no remote
connection or when replacing is very expensive. In such
situations, it would be very desirable if the software could fix
its concurrency problems itself on-the-fly. This is a strong
motivation for developing software self-healing techniques,
which is an idea that we pursue in this paper.

In general, a self-healing approach may consist of the fol-
lowing steps:

1. problem detection—before any self-healing action
can be performed, it is necessary to detect that some-
thing is wrong with the system,

2. problem localisation—when an incorrect behaviour
of the monitored system is witnessed, one has to find

the root cause of the problem,

3. problem healing—applying a fix to the problem
found in the localisation stage,

4. healing assurance—by an application of the self-
healing action, the system and its behaviour are mod-
ified in the hope that the problem will be resolved
while no new problem will be introduced to the sys-
tem. However, it is desirable to check/prove whether
this goal was achieved or not.

We apply the above self-healing methodology to fixing
data races in concurrent programs in the following way:

Problem detection. Currently, we are able to moni-
tor execution of concurrent programs written in Java by an
instrumentation of the Java byte-code. The crucial diffi-
culty within debugging of concurrent programs—which one
must address for a successful development of concurrent
software—is a huge number of possible execution interleav-
ings which results in a very low probability of finding a bug
during testing. The instrumentation of Java byte-code has
therefore an additional aim—not only to monitor the pro-
gram execution, but also to increase the probability of a con-
current bug exhibition by adding some noise. For the in-
strumentation and noise injection, we use the tool ConTest
that is described in Sec. 6.1 in more detail. For the ac-
tual detection of data races on top of ConTest, we then use
a modification of the Eraser algorithm [35]".

Problem localisation. Locating the source of the de-
tected problem is often a hard task even for humans. The
approach we concentrate here on consists in developing an
oracle specialised on a particular class of concurrent bugs,
more specifically data races. We, in particular, consider or-
acles based on looking for pre-specified data race bug pat-
terns in the code with the aid of information collected by
the data race detector that is used to detect problems. An-
other possible approach—which we do not discuss in detail
here—is using a large number of tests with different instru-
mentation points and statistical evaluation [37]. Both of
these approaches can be successfully combined with formal
methods (like model checking or static analysis) in order to
reduce the number of false alarms. Formal methods can be
in principle applied without any support, but some of them
suffer from false alarms too, or—on the other hand—incur
a state explosion problem, and hence do not scale well.

Problem healing. Our healing approach depends on the
category of races found. There are two major kinds of races:

Atomicity races—races that are caused by violation of
wrong assumptions that some blocks of code will be exe-
cuted atomically. These races are characterised by the fact
that if the block of code is executed without an context
switch the race does not occur. We explain how to heal
such races on-the-fly. Our healing techniques include reduc-
ing the likelihood of a race by changing the probability of the
“bad” timing scenario, or removing the “bad” interleavings
by introducing an appropriate synchronisation.

Inherent races—races not related to atomicity. The re-
sult of a computation in this type of race depends only on

Our choice of Eraser for the current version of our heal-
ing framework was motivated by the possibility of its easy
implementation. In the future, we plan to experiment with
other race detection algorithms such as [19].

the order of events between different threads, and not on the
fine-grained interleavings. The lost notify bug pattern [16] is
one example of such a problem. Another example is simply
executing A=3 in one thread and A=4 in another. Our heal-
ing approach for inherent races is more complicated. First,
when we detect a race, we query an oracle about the state
of the program (“good” or “bad”). We need the oracle in
order to learn which of the orders is better. Then we can
try to force the right order. This can be done by changing
the probability of the “bad” timing scenario, by overriding
results, or by forcing the appropriate order.

Healing assurance. One cannot hope that self-healing
will work in general under any circumstances. One can find
healing techniques (such as introducing new locks) that will
always fix the given problem, but—on the other hand—they
may cause another problem, such as a deadlock. Conversely,
there are techniques that are not risky (such as adding calls
to sleep()), but that do not guarantee they will solve the
given bug. Therefore, once we are about to use a certain
healing strategy for a certain specific case, it is desirable to
check whether the chosen strategy will be effective and safe
(i.e. whether it will solve the encountered problem without
introducing any further problems). To tackle this problem,
we suggest to use a suitable formal verification technique
(like model checking or static analysis) albeit in a limited
fashion allowing one to deal with real-life software systems.

Plan of the rest of the paper. In Sec. 2, we define
the basic terms used and describe the Eraser algorithm that
we apply for detecting data races. In Sec. 3, we describe
healing of atomicity problems. Healing of inherent races is
then covered in Sec. 4. We briefly discuss healing assurance
in Sec. 5. We discuss our preliminary implementation of
some of the presented ideas and give the first experimental
results in Sec. 6. Finally, we briefly comment on the related
work in Sec. 7 and we conclude in Sec. 8.

2. BACKGROUND

A data race in a concurrent program occurs when two
threads access a shared memory location, the accesses are
unordered by any (explicit or implicit) synchronisation, and
at least one of these accesses is a write access. Data races
are usually considered to be bugs as they can lead to an
unpredictable behaviour of the program.

Since deciding whether a program contains a data race is
computationally hard, most research on data race detection
focuses on the so-called apparent data races [30]. These are
races in which two threads access a shared memory loca-
tion, at least one of theses accesses is a write access, and
no explicit synchronisation mechanism (such as a mutex or
a barrier) prevents the threads from a concurrent access.
Apparent data races are approximations of data races, i.e.
not every apparent race is a true data race. However, they
are much easier to detect.

The main approaches to detection of apparent data races
include static and dynamic analysis. The static analysis ap-
proach [4, 15, 17, 25] is based on a compile-time analysis of
the code. This approach is able to analyse the whole code
at once, but it often suffers from many false alarms. The dy-
namic analysis approach tries to detect a race in a specific
execution of the program. In this approach, information is
collected during the execution and analysed either on-the-
fly [10, 13, 14, 23, 31, 34, 35, 38, 32| or when the execution

terminates [1, 28, 29]. Dynamic analysis suffers from less
false alarms than the static approach since it reports ap-
parent races that actually occurred during the execution.
However, it is less complete in the sense that it concentrates
on specific executions of the program. Other approaches to
detection of apparent data races include, e.g. model check-
ing [12], which can in theory detect all data races without
producing any false alarms (at least when the system can
be viewed as finite-state). However, model checking is ex-
tremely costly, and despite the recent advances in software
model checking [5, 9, 22|, it is still not applicable beyond
relatively small pieces of the most critical code.

One of the most popular on-the-fly race detection algo-
rithms is the Eraser algorithm [35] which was originally
proposed to find data races in C programs. Since our race
detector implementation relies on Eraser, we describe it in
more detail in Subsection 2.1.

A stronger requirement than a lack of races is atomic-
ity. A block of code is atomic [20] if for every interleaved
execution of the program in which the block is executed,
there is an equivalent run of the program where the block
is executed sequentially (without interleaving with other
threads). It is argued that many faults in multi-threaded
code (e.g. many occurrences of data races) are the result
of non-atomic blocks [18, 21, 20, 39, 40]. Similarly to race
detection, atomicity checking includes static analysis meth-
ods [21, 20, 24, 40] and dynamic analysis methods [18, 39],
which check atomicity at run-time.

2.1 The Eraser Algorithm

The Eraser algorithm [35] is based on the consideration
that every shared variable should be protected by a lock.
Since Eraser has no way of knowing which locks are intended
to protect which variables, it must deduce the protection re-
lation from the execution history. For each shared variable
v, Eraser maintains the set C(v) of candidate locks for v.
This set contains those locks that have protected v for the
computation so far. That is, alock [is in C'(v) if, in the com-
putation up to that point, every thread that has accessed v
was holding [at the moment of the access. When a new vari-
able is initialised, its candidate set C'(v) contains all possible
locks. When the variable is accessed, Eraser updates C'(v)
by the intersection of C(v) and the set of locks held by the
current thread. If some lock ! consistently protects v, it will
remain in C(v) till the end of the execution run.

In order to reduce false alarms, Eraser takes into account
that the following situations will not cause any problem de-
spite they can be determined as data races by the definition
given above:

e A shared variable can be initialised without holding
a lock if it becomes really shared only after its initial-
isation.

e A shared variable is written during the initialisation
only and it is read-only after.

e Read-write locks allow multiple readers to simultane-
ously access a shared variable but allow an access of
a single writer only.

Eraser reflects these situations in the following way. As
long as a variable has been accessed by a single thread only,
reads and writes have no effect on the candidate set C(v).
Since simultaneous reads of a shared variable are not races,

Eraser reports races only after an initialised variable has be-
come write-shared by more than one thread. These assump-
tions lead to introducing internal states Virgin, Ezclusive,
Shared, and Shared-Modified for each shared variable with
the following meanings (and transitions depicted in Fig. 1):

e Virgin—the variable has not been initialised yet.

e FEzclusive—the variable is accessed only by the thread
which initialised it.
e Shared—the variable is read by multiple threads.

e Shared-Modified—the variable is read and written by
multiple threads.

e Race—a data race on this variable has been detected
(due to no or a wrong lock has been used when access-
ing the variable).

First thread wr First thread rw/rd

Other thread wr Other thread rd

Thread rd/wr

with proper lock Thread rd

Thread wr
with proper lock

Shared-Modified

Thread rd/wr
without proper lock

Thread wr
without proper lock

Thread rd/wr

Figure 1: Possible states of a shared variable

The basic Eraser algorithm has been modified in various
ways in the literature. In our approach, in order to further
reduce false alarms, we implemented an extension of Eraser
by the ownership model [18, 38, 11]. In this approach, build-
ing of the set C'(v) of candidate locks is delayed to reflect
the following typical initialisation pattern used in Java pro-
grams: A variable v is created by a thread t;, and then
another thread ¢» (which is, e.g. started only after the cre-
ation of v is finished) accesses v and writes an initialisation
value into it. To reflect this pattern in Eraser, the Ezclusive
state is split into two states—t1 accesses v in Ezxclusivel,
then once to starts working with v, the state is changed to
Ezclusive2. Subsequently, if another thread ¢3 different from
t2 (but possibly equal to ¢1) accesses v, we set C'(v) to the
locks held by t3, go to either Shared or Shared-Modified and
further behave as in the basic Eraser.

Clearly, the ownership model introduces a risk of missing
some races because some unprotected access can be hidden
by the transition from Ezclusivel to Ezclusive2 or from FEz-
clusive2 to Shared [38]. However, practical experience shows

that this modification brings more positive impacts (due to
reducing false alarms) than negative ones. In our imple-
mentation, the use of this feature is optional, but in the
experiments that we describe, it was successfully applied.

3. HEALING ATOMICITY VIOLATIONS

One of the common kinds of bugs causing apparent data
races is a wrong atomicity assumption taken by a program-
mer. In other words, the programmer forgets that there can
be a thread switch in a certain place in the code, which may
lead to severe consequences. In this section, we discuss how
to heal this kind of races. The solution is to reduce, or al-
together remove, the likelihood that the scheduler will do
a thread switch within the area in which it is better not to
have a thread switch. Healing of the more complex inherent
races is described in Sec. 4.

In order to be able to heal apparent data races stemming
from an atomicity violation, we identify bug patterns causing
such a violation. In this work, we, in particular, consider
three concrete, very frequent bug patterns described bellow.
A deeper study of other possible bug patterns is a part of
our future work.

3.1 Atomicity Violation Bug Patterns

A common bug pattern causing an atomicity violation in
Java is a pattern that we call the load-store bug pattern. It
is an assignment statement that is translated into the byte-
code as a sequence of instructions consisting of one or more
load instructions on a shared variable followed by one store
instruction on the same variable. An elementary example
of this pattern is the statement x++. The corresponding
byte-code is shown in Fig. 2. At first, the current value of
the shared variable is loaded into the local memory of the
thread by the instruction at line 2, then the local copy is
incremented by instructions at lines 5 and 6, and finally, the
result from the local memory is stored back to the variable
at line 7.

2: getfield #2
5: iconst_1

6: iadd

7: putfield #2

Figure 2: Byte-code of the x++ statement

A load-store bug pattern is usually caused by forgetting
that the source code is translated into the byte-code with
a different level of operations granularity.

Another atomicity violation bug pattern we consider is
the test-and-use bug pattern which can be understood as
a special case of the so-called two-stage access bug pattern
[16]. The test-and-use bug pattern is a conditional state-
ment where the condition is checked at the beginning of the
statement and then the result is used inside the statement
without making sure that the condition still holds. An ex-
ample of a code fragment containing the test-and-use bug
pattern is in Fig. 3.

The byte-code representation of the conditional statement
is in Fig. 4. The value of the shared variable p is loaded to
the local memory at lines 0 and 1. Then, the condition is
tested at line 4. If p is not null, then the value of p is loaded
once again (by the instructions at lines 8 and 9) followed by

if (p != null) {
P = p.next;
X

Figure 3: Example of the test-and-use bug pattern

loading the value of p.next (by lines 7 and 12) and storing
it back to p at line 15.

0 aload_O

1 getfield #2
4: ifnull 18
7: aload_O

8: aload_O

9: getfield #2
12: getfield #3
15: putfield #2

Figure 4: Byte-code of the example from Fig. 3

A similar bug pattern called the repeated test-and-use bug
pattern arises in loops. An example of this bug pattern is
demonstrated by the while loop in Fig. 5.

while (p !'= null) {
P = p.next;
}

Figure 5: A while loop showing an example of the
repeated test-and-use bug pattern

At the byte-code level, there is no instruction for while
loops, which are implemented by instructions for tests and
jumps as can be seen in Fig. 6. The byte-code instructions
are similar to the byte-code of the conditional statement.
The only difference is the goto instruction at line 18 which
closes the loop.

For each atomicity violation bug pattern, one has to pro-
pose an appropriate healing pattern describing how to apply
particular healing actions when the given bug pattern is de-
tected. We consider two classes of possible healing actions,
namely influencing the scheduler and adding synchronisa-
tion.

3.2 Influencing the Scheduler

The first class of healing actions that we consider exploits
the nature of concurrency bugs—mnamely, the fact that they
often occur only for a small subset of all possible program
execution schedules. In order to exploit this fact, we try
to influence the scheduling of threads such that a detected
concurrency bug will not show up any more (or at least show
with a smaller probability). In Java, this can be achieved
via forcing a context switch by statements like yield() or
sleep(0) or via temporary changes of the threads priorities.

In particular, the load-store bug pattern can be healed by
forcing a context switch just before the appropriate critical
assignment statement. The goal is to execute the statement
at the beginning of a new scheduling time slice that is given
to the thread that forced the context switch after it is again

0 aload_O

1 getfield #2
4: ifnull 21
7: aload_O

8: aload_0

9: getfield #2
12: getfield #3
15: putfield #2
18: goto 0

Figure 6: Byte-code of the while loop from Fig. 5

scheduled to run. This increases the chance of the criti-
cal statement to be finished without an interruption. For
example, in order to increase the chances of the x++ state-
ment considered above to execute atomically, yield() can
be called just before the instruction getfield #2 from line 2
in Fig. 2.

Another possibility of how to use a forced context switch
for healing the load-store bug pattern is to maintain an indi-
cation whether some thread has started but not yet executed
a critical assignment statement and if so, force a context
switch before any attempt to access the variable from an-
other thread. This should give the processor back to the
thread that was interrupted in the middle of a critical as-
signment and allow it to safely finish the statement. The
approach can also be combined with the former one.

Adjusting of the threads priorities can be used to heal
the load-store bug patterns by increasing the priority of the
thread that is about to execute a critical assignment state-
ment. The priority is then restored to the original value
after the critical statement is executed. The increased pri-
ority should cause the processor to be granted to the given
thread and allow it to finish the critical statement atomically
while other threads are forced to wait.

The healing solutions proposed above for the load-store
bug pattern can also be used for healing the test-and-use bug
pattern without any modification. However, when dealing
with the repeated test-and-use bug pattern, we should be
more careful. When using the healing solution based on
forcing a context switch, e.g. via yield(), we must ensure
that the context switch is forced after each iteration of the
loop. Further, increasing of the thread priority for the whole
execution of the loop is not generally applicable due to it can
cause serious problems like starvation. The thread priority
can thus be increased only for one iteration of the loop, then
it must be decreased (possibly with a forced context switch
to allow other threads to run) and increased again for next
iteration of the loop.

Let us stress that the healing actions we just described do
not guarantee that a bug is always healed but they decrease
the probability that the bug will actually show up. These
healing actions can also introduce a significant overhead in
some cases, for instance, when healing the repeated test-and-
use bug pattern. On the other hand, these healing methods
are safe because if they are applied carefully (e.g. we have
to be prepared for handling the InterruptedException that
the sleep() method in Java may throw), they do not intro-
duce any new bug. Thus, we can apply them without any
healing assurance.

3.3 Adding Synchronisation Actions

We now examine another approach to healing atomicity
violation bugs that is based on adding new ezplicit synchro-
nisation actions. In particular, the synchronisation actions
we add are based on a suitable use of mutexes (locks).

Occurrences of the load-store as well as test-and-use bug
patterns can be healed by introducing a new lock 1 that pro-
tects the shared variable v which is a subject of the detected
data race. It is necessary to guarantee that the lock 1 will
be held by every thread when it accesses v. In addition, the
lock 1 must be held during the entire execution of the criti-
cal statement forming the detected bug. This means to put
1.lock() before this statement and 1.unlock() after it (or
after the last access to v within the statement). Introducing
a new lock in the described way leads to a considerable over-
head. Sometimes, we are able to guess—using information
given to us by the data race detector used—which out of the
locks already in use (let us mark it by 1v) is used in the pro-
gram for guarding the shared variable v. In such a case, it
is not necessary to introduce a new lock 1—instead, we can
heal the bug by introducing 1v.lock() and lv.unlock()
to the same places as above. This solution does not influ-
ence the application efficiency so much, however, unlike the
former solution, it is not guaranteed that it always succeeds.

Healing of the repeated test-and-use bug pattern using
additional locks faces the same problems as healing of this
pattern by influencing the scheduling. We introduce a new
lock 1 or guess an already used lock 1v as within healing
the test-and-use bug pattern above. We call 1.1ock() or
lv.lock() at the beginning of each loop (e.g. just before
executing the instruction at line 1 in Fig. 6) and 1.unlock()
or 1v.unlock() after the last access to the shared variable
v in the loop body (e.g. just after the execution of the
instruction at line 15 of the same byte-code fragment).

The described healing by introducing synchronisation on
a new lock is able to completely remove the detected bug,
but—on the other hand—it can introduce new (and even
more dangerous) bugs. In particular, we can cause a dead-
lock this way. Thus, an application of such a healing action
requires healing assurance that is discussed in Sec. 5 (or
a use of locks with a time-out).

Remark. Performing automatic healing actions does not
make sense during the software development phase. Instead,
a bug should be reported to a developer together with a sug-
gestion how to correct it. This can significantly reduce the
time spent on program debugging and thus reduce the de-
velopment costs.

4. HEALING INHERENT RACES

In Sec. 3, we discussed healing of races that occur due
to a violation of an atomicity assumption. However, there
are other causes for data races that do not relate to atom-
icity violation, and hence different healing methods should
be considered for them. Consider, for example, the simple
program in Fig. 7 where two threads access a shared vari-
able done. Threadl sets it to false, and Thread?2 sets it to
true. The execution starts with Threadl. There is an im-
plicit assumption that the execution of Thread2 ends after
the execution of Threadl, hence there is no explicit mech-
anism to guarantee the intended order of events, i.e. that
when the program ends, the value of done is true.

Threadl Thread2

1) for (int i=1;i<100;i++) {
2) print(i);
3)

4) done=true

1) done=false

Figure 7: An inherent race

In this example, adding a lock that should be obtained
before the accesses to done will not heal the race. The rea-
son is that executing atomically any segment of code in ei-
ther thread does not guarantee a certain order of accesses
to done. Namely, the race does not occur due to atomicity
violation but rather to a missing logic that would guarantee
a certain order of events. Note also that there is a notion of
an intended order of accesses here—first, Threadl, and then
Thread?2, i.e. the possible orders of accesses to the shared
variable can be classified as “good” and “bad”.

We define a data race as an inherent race? if the following
conditions hold:

e Executing any segment of code in each thread atom-
ically does not determine an order of accesses to the
shared variable.

e The different orders in which the shared variable is ac-
cessed can be classified as “good” and “bad” according
to the expected behaviour of the program.

It stems from the definition of an inherent data race that
in order to detect such a race, one should have a notion of
what are “good” and “bad” (buggy) runs of the program.
This can be done by a user indication provided through an
oracle, which receives different details about the run, such
as its output and run-time, and labels the run accordingly.
It also stems from the definition that races that involve an
atomicity violation are not inherent races. However, even if
the race is due to an atomicity violation, it may be difficult
to classify it correctly. In our approach, we let such cases to
be treated as though they were inherent.

The healing approach for inherent races is more compli-
cated than for races involving an atomicity violation. For
the latter case (described in Sec. 3), the healing attempts to
cause the atomic execution of a code segment. For inherent
races, it is first required to learn what are the “good” and
“bad” orders of execution of the statements that access the
shared variable. Only once such information is collected,
healing can take place. Thus, the healing of inherent races
requires a preliminary stage in which the program is run
multiple times, in each run the order of execution with re-
spect to the race is recorded and classified as either “good”
or “bad” according to the oracle that observes the outcome
of the program.

2Note that inherent races could even be defined indepen-
dently of the notion of data races that we gave in Sec. 2
since they can appear even if all accesses to the involved
shared variable are guarded by locks. We do not consider
such a situation here as we suppose a data race detector to
be used for detecting bugs, which does not allow us to de-
tect the more general kind of inherent races. However, if one
uses another way of detecting bugs, the healing techniques
we describe could be applied even in the more general case.

Once this data is collected, we would like to enforce “good”
orders in the following runs of the program, or at least pre-
vent “bad” orders. We suggest two different approaches. The
first approach is to change the scheduling of the program (in
a similar way as within the self-healing of atomicity violation
described in Sec. 3.2). This can be done by adding wait ()
and notify() statements before the accesses to the shared
variable. The wait() statement should have a time-out in
order to avoid introducing deadlocks into the program due
to the lost notify bug pattern. Another option is to change
the timing of the program: we keep track of the order of
execution with respect to the race. If the next access to the
variable will result in a “bad” order, we try to prevent the
next access, for example by changing threads priorities, or
inserting calls to sleep() or yield(). Similarly, if the next
access to the variable will result in a “good” order, we try to
prevent a context switch, for example by changing threads
priorities. The advantage of changing timing is that it is
safe as was already discussed in Sec. 3.2. The drawback is
that it does not guarantee the healing of the race, but rather
only increases the probability for a “good” order.

The second approach for healing inherent races concen-
trates on multiple write accesses to a shared variable. This
approach does not prevent “bad” orders from occurring, but
rather once a run is identified as “bad”, tries to override the
race. For example, in the program in Fig. 7, assume we
learned that the “good” order is first setting done to false
and then to true, and the other order is “bad”. Now assume
that done is first set to true by Thread2. This will clas-
sify the run as bad. Once done is set to false by Threadi,
the healing will override its value with the value written by
Thread2. Note that this healing approach will not result in
a “good” order, but rather is an attempt to revert a “bad”
order into a “good” one. This approach is of course not safe.
For example, if the value of the shared variable is read by
some thread before it is overridden, this can result in an
inconsistent state. To check that such a situation cannot
happen (or at least cannot easily happen), one should use
some of the healing assurance methods mentioned in Sec. 5.

5. HEALING ASSURANCE

When we apply advanced healing actions (like adding
a new lock within healing an atomicity bug or when overrid-
ing values within inherent race healing), we can potentially
introduce new and even more dangerous bugs (e.g. a dead-
lock). Therefore, as a part of our future work, to ensure
that a new bug cannot be introduced by a self-healing ac-
tions, we intend to explore the use of suitable formal veri-
fication techniques (like model checking or static analysis).
Moreover, formal verification can also be used for ensuring
that a selected healing action really fixes the detected bug.
Otherwise, a different healing action should be taken into
account or no self-healing action should be performed at all
(due to an application of a healing action usually entails
some performance drop).

We should take into account that model checking of a com-
plete state space is not possible when dealing with large real-
life software systems. However, we can apply it at least in
a limited fashion. For example, on the modified software sys-
tem that we try to heal, we may run bounded model checking
in a limited neighbourhood of the state in which a problem
was located—we first backtrack a few steps and then do
a systematic or heuristic state space search—and check how

the system behaves. The number of forward/backward steps
in the state space search may be adjusted according to the
amount of available computing resources.

In many cases, even a simple static analysis (possibly run
on the byte-code level of the Java programs that we con-
sider) may help a lot too. For instance, when we introduce
a new lock and unlock calls on some mutex in order to get
rid of some data race, we might subsequently check whether
in the scope of the introduced lock/unlock pair there may
be (perhaps indirectly) required some further locks. If this
is not the case, there is no danger of the healing introduc-
ing a deadlock. In practice, the race conditions may often
occur in very simple statements (such as x++) where static
checking that no locks will be acquired is easy.

6. PRELIMINARY RESULTS AND
EXPERIMENTS

Here, we briefly describe prototype tools that we have de-
veloped and summarise our first results that we have already
achieved in the data race self-healing.

6.1 ConTest

ConTest is an automated tool for testing concurrent soft-
ware. It is designed to discover bugs in concurrency by a re-
peated execution of an instrumented code. The objective
of ConTest is to make multithreaded bugs materialise while
having a minimal impact on the user and software perfor-
mance. ConTest provides us with three essential services:
instrumentation, heuristic noise injection, and a listeners
architecture.

The ConTest instrumentation works on the Java byte-
code level. An instrumentator adds calls of ConTest’s meth-
ods at different locations. ConTest is called during an ex-
ecution of the instrumented software, e.g. when a shared
variable is accessed, a thread is started or stopped, or some
synchronisation events occur, etc.

Noise injection is a technique that forces different legal
interleavings for each execution of a test in order to check
that the test continues to perform correctly. In a sense, it
simulates the behaviour of other possible schedulers. When
a call of ConTest from the execution of instrumented soft-
ware is received, the noise heuristic decides, randomly or
based on a specific bug-finding technique, if some kind of
delay is needed. This technique increases the probability of
finding a bug.

Finally, ConTest contains a unified listeners architecture
that provides an easy to use interface to the execution trace
of the instrumented software. Tools of third parties can reg-
ister Java listeners to specific actions. If a listener (or a set of
listeners) is registered to the event, the code of the listener
(or listeners) is executed when the event arises. ConTest
provides two events to most of the actions—the so-called
before and after events. The before action events allow lis-
teners to be executed before an action is performed. The
after action events allow listeners to be executed after the
action is performed. This allows tools using the ConTest lis-
teners architecture to have enough control over the instru-
mented software. Variable access, thread events, monitor
events, and some synchronisation primitives are supported
by the ConTest listeners architecture in the current version.

The ConTest tool can be used by classical testing tools
with a higher probability of revealing a concurrent bug. An-

other possibility is to develop specialised tools for detecting
particular classes of concurrent bugs. As an example of this
approach, we have built a data race detector on top of Con-
Test as described in the following.

6.2 Data Race Detection

Java contains more synchronisation primitives than only
(explicit) locks [8], including, for instance, implicit locks,
wait-notify, and join synchronisation. Java implicit locks are
mutexes implementing monitor-like critical sections quoted
by the synchronised statement. Out of these synchronisa-
tion mechanisms, we currently concentrate on implicit locks
and we also have some support for the join synchronisa-
tion. Moreover, the restriction of our race detector to im-
plicit locks is only due to the ConTest listener architecture,
on top of which our date race detector is built, whose cur-
rent version does not provide listeners for Java explicit locks
(defined in the java.util.concurrent package)—once this
support is added, our race detector is ready to deal with
explicit locks too.

Using the ConTest listeners architecture, our race detec-
tor detects thread activation and termination events via the
ThreadBegin and ThreadEnd listeners. A use of Java implicit
locks is detected by the MonitorEnter and MonitorExit lis-
teners which are called when a thread tries to lock some
object (i.e. to access its monitor). The access to variables is
monitored by the BeforeVarRead and BeforeVarWrite lis-
teners and join synchronisation is detected by the AfterJoin
listener. The listeners provide us with useful information
concerning the events—e.g. the identification of the object
over which an event is performed and the relevant line in
the Java source code.

Our race detector implementation is based on the Eraser
algorithm [35] extended with the ownership model [18, 38,
11] as described in Sec. 2. We have modified this version of
Eraser to add some support for Java join synchronisation to
further reduce the false alarms ratio.

The simple extension we did to Eraser to add some sup-
port of the Java join synchronisation mechanism was moti-
vated by a relatively high rate of false alarms that we were
receiving in some Java programs building on this standard
Java synchronisation. In Java, if a thread ¢; calls the join()
method of another thread t2, it ensures that all the events
of the thread ¢ are executed before the events following the
join() call in the thread ¢;. Based on this, we can make
the following assumption: there is no race possible between
successfully join-synchronised threads after a successful join.
This assumption based on the happened-before relation has
been reflected in our data race detector as follows.

Each thread ¢ maintains a set of threads S(t). A termi-
nated thread ¢; is added into the set S(t) after a success-
ful join synchronisation with the thread t. Each variable v
maintains a set of threads T'(v). A thread ¢ is added to the
set T'(v) when ¢ accesses v. If a thread t is accessing a vari-
able v and S(¢) U {t} D T'(v), we know that the thread ¢ is
the last currently existing thread accessing v and all others
have been successfully join synchronised with ¢. Then, the
variable v changes its status back to Exclusive2, its C'(v)
is set to contain all possible locks, and T'(v) contains only
the current thread ¢. This modification helps us to rapidly
decrease the number of false alarms produced in environ-
ments based on loops or in situations where the last thread
finalises shared global variables.

In our race detector, we have also implemented a simple
heuristics that suggests which lock should have been used by
the thread that caused a data race. This information can
subsequently be used in self-healing as described in Sec. 3.3
or, during the software development phase, be provided to
the developer as a hint of what lock was probably omit-
ted. The heuristics is inspired by an assumption that if
some threads have already used a lock for accessing a shared
variable v, then the same lock should be used by all other
threads. The set of locks to be used in self-healing (or to be
suggested to a developer) is the set C'(v) of candidate locks
just before it becomes empty (by an access to v without
holding a proper lock).

Of course, the above approach does not guarantee that
the suggestion is always correct. For instance, when the
first thread accessing a shared variable uses a wrong lock,
other threads are suggested to use the same wrong lock too.
The number of such wrong suggestions can be reduced by
postponing the suggestion after the run when we have more
information. For that reason, we maintain an additional set
C(v,t) of candidate locks for each shared variable v € V and
each thread ¢t € T where V is the set of all shared variables
and T is the set of all threads. After the run, we calculate
the intersection C’(v) of C(v,t) of all threads excluding the
threads Ty.g4y causing a race:

C'(v) = ﬂ

te€T\{Tpuggy}

C(v,t)

In most cases, the set C’(v) contains a lock or locks that
should be used when accessing the variable v.

We have implemented our race detector also as an Eclipse
plug-in [7]. So developers can test their applications using
our race detector straight from their integrated development
environment.

6.3 Data Race Healing

A healing action can have the form of a source code mod-
ification followed by recompiling and restarting the applica-
tion. However, this is quite invasive and expensive approach
which can be applied for some types of applications only.
Currently, we exploit a more gentle approach that consists
in performing healing actions on-the-fly through the Con-
Test listener architecture.

We enriched our data race detector to not only use the
BeforeVarRead and BeforeVarWrite listeners, but also the
AfterVarRead and AfterVarWrite ones. This allows us to
work with a quite a fine granularity over the byte-code. Our
implementation is able to start a selected healing technique
just before the first access of a critical variable and end it
just after the last access within the block that should be
atomic.

So far, we implemented a self-healing approach for simple
load-store bug patterns like x++ only. The race detector is
monitoring the access to variables with respect to their posi-
tions in the Java source code. For each variable v, a set A(v)
of lines in the source code is maintained. Whenever there
are at least two consequent accesses to the variable v at the
same line of the source code (the information about the line
is given to us by ConTest) and the first access is a read and
the last is a write, the line number is added into A(v). The
lines in A(v) are used as those about which we assume that
they should be executed atomically when a race on v hap-

pens. As an alternative to building A(v) at the run-time,
it can also be obtained in advance using static analysis or
simply by saving the set from the previous runs of the race
detector.

When the race detector identifies a race over a variable v,
the variable gets into the Eraser’s Race state. From then on,
if we detect via the listeners that such a variable v is about
to be accessed on a line which is in A(v), we assume that
a critical section, which should be run atomically, is about to
be performed, and one of the healing techniques described
in Sec. 3.2 and 3.3 can be applied. Using the listener ar-
chitecture, we then inject the appropriate healing actions
before the critical section and (unless we use the simple
yield() /sleep()-based healing) also after it (i.e. behind
the last write access to the critical variable in the section).
Moreover, in the case of healing by adding a new lock, it
is not enough to only cover accesses to the critical variable
v from lines in A(v). We have to apply locking for all the
other accesses too, the only difference being that in their
case we assume the critical section to span only the appro-
priate single access to the variable. Also, in the case when
we force a context switch in threads that are not the ones
that entered, but not yet left the critical section, a healing
action is needed at all accesses to the critical variable.

As was mentioned in Sec. 3, we can choose between two
classes of healing techniques—influencing the scheduler or
adding synchronisation. We have implemented several tech-
niques from both classes. In particular, we implemented
forced context switches via calling yield() method both in
all threads accessing a critical variable v as well as only in
those who are about to start using v while somebody else is
already using v. We also implemented the healing by chang-
ing priorities and by adding new synchronisation locks.®> As
an extension of healing by changing priorities, we addition-
ally implemented a technique intended for multi-processor
computers where lower priority threads could still run on
other processors. In order to tackle this problem, we have
a pre-prepared group of high-priority, dummy, but load pro-
ducing processes that are normally blocked. Once a healing
starts, they are unblocked for a while to block other proces-
sors than the one on which a critical thread is running.

6.4 Experiments

We have evaluated our data race detector on several exam-
ples including those from real software—e.g. a web crawler
algorithm with 19 classes and 1200 lines of code, embedded
in an IBM product. Our data race detector proved to be
able to detect even rarely exhibited data races. Of course,
the race detector still produces some false alarms. This is
typically the case when some peculiar synchronisation mech-
anisms and/or various optimisations are used (e.g. some
true races are left in the code because they are harmless).

So far, we have made self-healing experiments for the
load-store bug pattern only. We have used a simple bank
account program simulating bank accounts where multiple
account threads perform simple changes to the particular ac-
counts and the total balance of the bank (using simple arith-
metic operations like BankTotal += sum;) without a proper

%We have not implemented the re-use of already existing
locks suggested by the data race detector for healing. The
reason is that ConTest currently does not listen on events
on explicit locks and so it can suggests us with implicit locks
only, but those cannot be fully manipulated explicitly.

synchronisation over the global balance variable BankTotal.
When no such operation is interrupted, the final balance
corresponds to the performed operations. However, if some
operation with a bank account is interrupted, the final bal-
ance may get wrong.

We made all the tests on 1-, 2-, and 4-processor comput-
ers for 600 executions of the problematic line and for 2, 3,
5, 10, and 15 working threads. We have also simulated dif-
ferent frequencies of executing the problematic piece of code
by adding some safe code to the account thread loop. The
percentage of the execution time spent in the dangerous sec-
tion ranged from 5% to 1,8 * 107°%. Each of the tests was
done 100 times, and the number of cases where the balance
was wrong was measured.

The best results from the point of view of removing the
race were—not surprisingly—achieved when using a new ex-
plicit lock as in its case, a success is guaranteed. Results
achieved by the techniques influencing the scheduler were
not so positive. Some of them were able to significantly de-
crease the probability of the race to reveal when they were
added directly to the code. However, when used on-the-fly
in conjunction with the race detector, they did not provide
very positive results. This is probably because the race de-
tector is called before and after each access to the healed
variable which significantly extends the critical section and
therefore increases the probability of a context switch and
a race manifestation. Despite this and the limited number
of tests we performed as yet, we witnessed a scenario where
this approach was also quite successful as described below.
In the future, we need to tune our implementation in order
not to interfere with the healing effects we want to achieve.

Figure 8 shows the situation with influencing the sched-
uler on a 2-processor machine (2x Intel Pentium Xeon 1.7
GHz, 1 GB RAM) with 1,8 + 1072% of the execution time
spent in the dangerous section described above. Four sets of
results are presented concerning (1) the original code with-
out the race detector, (2) the situation with the race detec-
tor enabled, but without healing, (3) healing by increasing
the priority of a critical thread, and (4) healing by a yield
in threads that see that somebody is in the critical section.
Healing by a new explicit lock is not presented because it
heals the race in all cases. As we can see, in the original code,
the race manifestation dramatically changes between 2 and
5 threads in conflict, but still does not get over 50%. A use
of the race detector increases the manifestation to nearly
100% and healing then decreases this influence again. Due
to the reason described in the previous paragraph, we do not
get below the original fault rate when using healing based
on influencing the scheduling. An exception is the case with
2 working threads and the use of yield() on threads that
notice that some other thread is in the critical section. The
decrease when compared with the use of a data race detec-
tor without healing is, however, significant and gives us an
indication that even the simple healing techniques based on
influencing scheduling can achieve much better results when
we optimise our implementation. Moreover, measurements
on more different programs are still needed.

Our tests also approved that the probability of a race man-
ifestation rapidly increases with the number of processors
and the number of threads in conflict. If these numbers are
high, healing by influencing the scheduler does not help too
much. The situation becomes better if the problematic code
is very rarely executed (which is, however, the case of many

Healing efficiency - 2 processors
100 T

o e T T E

80 f =
70 F 4

60 - o]

Race manifestation in %

0 L L L

2 3 5 10 15
Number of threads in conflict

Without race detector
With race detector --------
Healing by priority ---------
Healing by yield on others threads

Figure 8: Race healing efficiency

bugs that really escape from the development phase to the
field). Then there are usually only two threads in conflict
and influencing the scheduler helps.

The slowdown of the application run in conjunction with
our techniques depends on the number of instrumented
points in the code and on the additional synchronisation
overhead introduced by the race detector caused by gather-
ing information about locks, threads, and variables. The
slowdown we witnessed on our simple case study ranged
from almost negligible values up to about a 3.75-times slower
run (for 4 processors and 15 working threads).? To optimise
these values, the number of instrumented points can be re-
duced by a suitable static analysis done in advance. The
synchronisation overhead can then decreased by a further
optimisation of our algorithms.

7. RELATED WORK

Research on methods of self-healing of various aspects of
software (such as concurrency, functional aspects, perfor-
mance, etc.) is currently getting momentum. As for what
concerns self-healing (or fault tolerance) of problems in con-
currency, there appeared multiple works in the area of dis-
tributed systems (such as [36, 26]). However, the closest
work to what we present here is probably the approach ap-
plied by the ToleRace tool [27]. ToleRace concentrates on
the so-called asymmetric races (a data race between a re-
gion of code accessing some shared variables after certain
locks were taken and a region of code where these variables
are accessed without the locks). The approach is based on
transforming the critical regions of code such that they ma-
nipulate local copies of the shared variables and at the end
of the region check whether a race on a shared variable hap-
pened. If this was the case and it was a read-write race,
ToleRace can “tolerate” it by producing the correct result
based on the local copies of shared variables. If a write-write
race occurs, ToleRace cannot heal it and just announces the
problem. ToleRace has a low overhead and can in safe way
significantly decrease the appearance of read-write races. On
the other hand, it is less general than our approach both in

“Note that we were not yet using any bounded model check-
ing nor static analysis to ensure safety of healing by adding
new synchronisation locks.

terms of the races it can detect as well as in terms of what it
can heal—as we have already said, ToleRace does not heal
write-write races and it does also not solve races on vari-
ables referring to external resources (such as files) whose
local copy cannot be created.

8. CONCLUSION

We have shown in this work how we apply self-healing
in the context of fixing data races in concurrent Java pro-
grams. We have discussed multiple common bug patterns
leading to data races and proposed possible self-healing ac-
tions to be taken when such a bug pattern is detected. We
have implemented some of our ideas and obtained a prelim-
inary experimental evidence about their behaviour showing
that they indeed have a high potential to be useful in prac-
tice despite there is still a large space for improving our
implementation.

Concurrency self-healing (and self-healing in general) can
be used within development as well as within production
phase of the software life cycle. It seems that it is not suit-
able to apply the whole self-healing cycle for mission critical
applications (like avionics, aviation, nuclear plants, military,
etc.) due to huge impacts of a possible application failure.
Developers as well as customers would risk a failure caused
by not healing the system rather than to risk a failure caused
by the self-healing. However, even for critical applications,
concurrency self-healing can be very useful—it may help in
finding concurrency bugs and also to suggest their possible
solution. Moreover, even for critical applications, the self-
healing approach can be applied also within the production
phase. When some hard to reveal problem occurs at the cus-
tomer place (it can be thousands kilometers far away from
the development team), the application should be with some
carefulness remotely switched to the self-healing monitoring
and debugging mode (without taking the healing actions) in
order to report the bug to the developers.

Despite we have already achieved first results in self-heal-
ing, we are still at the beginning. Within the problem de-
tection, we intend to make the tool ConTest working also on
C/C++ code in order to make it available for a wide range of
applications. Oracles for other common concurrency prob-
lems can be build and localisation methods can be improved.
The healing techniques that we have not yet implemented
are to be implemented and tested. Efficient implementation
strategies for the healing techniques that we have proposed
are to be sought to (1) increase their healing efficiency and
(2) to decrease the slowdown they impose when applied. We
will also extend the set of possible healing actions. Last in
the list but definitely not last in the importance is a prac-
tical application of formal methods (model checking and/or
static analysis) within self-healing. It includes their applica-
tion for problem localisation in order to reduce the number
of false alarms, and for healing assurance to prove that a bug
was covered by a healing action and a new one has not been
introduced.

9. ACKNOWLEDGEMENTS.

This work is partially supported by the European Com-
munity under the Information Society Technologies (IST)
programme of the 6th FP for RTD—project SHADOWS
contract IST-035157. The authors are solely responsible for
the content of this paper. It does not represent the opinion

of the European Community, and the European Community
is not responsible for any use that might be made of data
appearing therein. This work is also supported by the Czech
Ministry of Education under the project Security-Oriented
Research in Information Technology, contract CEZ MSM
0021630528, and by the Czech Science Foundation under
the contracts 102/07/0322 and 102/06,/P076.

10. REFERENCES

[1] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.
Netzer. Detecting Data Races on Weak Memory
Systems. In Proc. of ISCA’91, 1991. ACM Press.

[2] C. Artho, K. Havelund, and A. Biere. High-level Data
Races. In Proc. of VVEIS’03, Angers, France, 2003.

[3] C. Artho, K. Havelund, and A. Biere. Using
Block-Local Atomicity to Detect Stale-Value
Concurrency Errors. In Proc. of ATVA’04, LNCS
3299, 2004. Springer.

[4] V. Balasundaram and K. Kennedy. Compile-time
Detection of Race Conditions in a Parallel Program.
In Proc. of ICS’89, 1989. ACM Press.

[5] T. Ball and S. Rajamani. The SLAM Toolkit. In Proc.
of CAV’01, LNCS 2102. Springer, 2001.

[6] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A
Theory of Data Race Detection. In Proc. of
PADTAD’06, 2006. ACM Press.

[7] W. Beaton and J. d. Rivieres. Eclipse Platform
Technical Overview. Technical report, The Eclipse
Foundation, 2006.

[8] T. P. e. a. Brian Goetz. Java Concurrency in Practice.
Addison-Wesley, 2006.

[9] S. Chaki, E. Clarke, A. Groce, J. Ouaknine,

O. Strichman, and K. Yorav. Efficient Verification of
Sequential and Concurrent C Programs. Formal
Methods in System Design, 25(2-3):129-166, 2004.

[10] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall,
and A. F. Stark. Detecting Data Races in CILK
Programs that Use Locks. In Proc. of SPAA’98, 1998.
ACM Press.

[11] J. Choi, K. Lee, A. Loginov, R. O’Callahan,

V. Sarkar, and M. Sridharan. Efficient and Precise
Data Race Detection for Multithreaded
Object-Oriented Programs, 2002.

[12] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[13] A. Dinning and E. Schonberg. An Empirical
Comparison of Monitoring Algorithms for Access
Anomaly Detection. In Proc. of PPOPP’90, 1990.
ACM Press.

[14] A. Dinning and E. Schonberg. Detecting Access
Anomalies in Programs with Critical Sections. In
Proc. of PADD’91, 1991. ACM Press.

[15] P. A. Emrath and D. A. Padua. Automatic Detection
of Nondeterminacy in Parallel Programs. In Proc. of
PADD’88, 1988. ACM Press.

[16] E. Farchi, Y. Nir, and S. Ur. Concurrent Bug Patterns
and How To Test Them. In Proc. of IPDPS’03, 2003.
IEEE Computer Society.

[17] C. Flanagan and S. N. Freund. Detecting Race
Conditions in Large Programs. In Proc. of PASTE’01,
2001. ACM Press.

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

C. Flanagan and S. N. Freund. Atomizer: A Dynamic
Atomicity Checker for Multithreaded Programs. In
Proc. of POPL’04, 2004. ACM Press.

T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks:
Efficiently computing the happens-before relation
using locksets. Proceedings of the Workshop on Formal
Approaches to Testing and Runtime Verification, 2006.
C. Flanagan and S. Qadeer. Types for Atomicity. In
Proc. of TLDI’03, 2003. ACM Press.

S. N. Freund and S. Qadeer. Exploiting Purity for
Atomicity. IEEE Transaction on Software
Engineering, 31(4):275-291, 2005.

T. A. Henzinger, R. Jhala, R. Majumdar, and

G. Sutre. Software Verification with Blast. In Proc. of
10th SPIN Workshop, LNCS 2648, 2003. Springer.

A. Ttzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai.
Toward Integration of Data Race Detection in DSM
Systems. Journal of Parallel and Distributed
Computing, 59(2):180-203, 1999.

R. J. Lipton. Reduction: A Method of Proving
Properties of Parallel Programs. Communications of
the ACM, 18(12):717-721, 1975.

J. Mellor-Crummey. Compile-time Support for
Efficient Data Race Detection in Shared-Memory
Parallel Programs. In Proc. of PADD’93, 1993. ACM
Press.

N. Mittal and V.K. Garg. Finding Missing
Synchronization in a Distributed Computation Using
Controlled Re-Execution. In Distributed Computation,
2004.

R. Nagpaly, K. Pattabiramanz, D. Kirovski, and

B. Zorn. ToleRace: Tolerating and Detecting Races.
In Proc. of STMCS’07, 2007.

R. Netzer and B. Miller. Detecting Data Races in
Parallel Program Executions. In Advances in
Languages and Compilers for Parallel Computing,
1990 Workshop, 1990. MIT Press.

R. H. B. Netzer and B. P. Miller. Improving the
Accuracy of Data Race Detection. Proc. of
PPOPP’91, published in ACM SIGPLAN NOTICES,
26(7):133-144, 1991.

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

R. H. B. Netzer and B. P. Miller. What Are Race
Conditions?: Some Issues and Formalizations. ACM
Lett. Program. Lang. Syst., 1(1):74-88, 1992.

D. Perkovic and P. J. Keleher. A Protocol-Centric
Approach to On-the-Fly Race Detection. IEEE
Transactions on Parallel and Distributed Systems,
11(10), 2000.

E. Pozniansky and A. Schuster. Efficient On-the-Fly
Data Race Detection in Multithreaded C++
Programs. In Proc. of PPoPP’03, 2003. ACM Press.
B. Richards and J. R. Larus. Protocol-based Data
Race Detection. In Proc. SIGMETRICS Symposium
on Parallel and Sistributed Tools, 1998. ACM Press.
M. Romnsse and K. D. Bosschere. Recplay: A Fully
Integrated Practical Record/Replay System. ACM
Transactions on Computer Systems, 17(2):133-152,
1999.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector
for Multi-threaded Programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391-411, 1997.

A. Tarafdar and V.K. Garg VK. Software Fault
Tolerance of Concurrent Programs Using Controlled
Re-Execution. In Proc. of DISC’99, 1999.

R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting
Where it Hurts—An Automatic Concurrent
Debugging Technique. In Proc. of ISSTA 07, to
appear. ACM Press, 2007.

C. von Praun and T. R. Gross. Object Race
Detection. In Proc. of OOPSLA’01, 2001. ACM Press.
L. Wang and S. D. Stoller. Run-time Analysis for
Atomicity. In Proc. of RV’08, ENTCS 89(2), 2003.
Elsevier.

L. Wang and S. D. Stoller. Static Analysis of
Atomicity for Programs with Non-blocking
Synchronization. In PPoPP’05, 2005. ACM Press.

