
Discovering Concurrency Errors

João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

1 NOVA LINCS and NOVA University Lisbon, FCT, DI, Portugal
2 Brno University of Technology, Faculty of Information Technology, IT4Innovations

Centre of Excellence, Czech Republic

Abstract. Lots of concurrent software is being developed for the now
ubiquitous multicore processors. And concurrent programming is diffi-
cult because it is quite easy to introduce errors that are really hard to
diagnose and fix. One of the main obstacles to concurrent programming
is that threads are scheduled nondeterministically and their interactions
may become hard to predict and to devise. This chapter addresses the na-
ture of concurrent programming and some classes of concurrency errors.
It discusses the application of dynamic program analysis techniques to
detect, locate and diagnose some common concurrency errors like data
races, atomicity violations and deadlocks. This chapter also mentions
some techniques that can help with quality assurance of concurrent pro-
grams, regardless of any particular class of concurrency errors, like noise
injection and systematic testing, and it is closed by some prospects of
concurrent software development.

Keywords: Software Correctness, Quality Assurance, Nondeterminism, Con-
currency Errors, Atomicity Violations, Data Races, Deadlocks, Dynamic Analy-
sis, Noise Injection.

1 Introduction

The arrival of multi-core processors into computers, laptops, tablets, phones,
and other devices demands the development of software products that make use
of multi-threaded design to better use the available hardware resources. Modern
programming languages allow programmers to easily create multi-threaded pro-
grams, at the expense of a significant increase in the number and variety of errors
appearing in the code. The basic difficulty is introduced by the conflict between
safety and efficiency. It is not easy to set up the appropriate synchronisation
among threads ensuring safety and low overhead simultaneously. If the synchro-
nisation is too strict, the performance of the application degrades as the com-
putation power brought by the presence of several computational cores becomes
underused. On the other hand, if the concurrent program is under-synchronised,
some failures may occur, like wrong results and application crashes. As an exam-
ple of what can be the impact of a concurrency error, we refer to the Northeastern
U.S. blackout in August 2003, where a race condition error was identified as one
of the causes [59,60].

2 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Creating concurrent programs is more demanding on programmers, since
people usually think in a linear way. It is not easy to imagine the parallel execu-
tion and the possible interactions of dozens of threads, even if the programmer
concentrates on it; on the contrary, programmers think most of the time about
snippets of sequential code despite they may be executed in parallel. Moreover,
errors in concurrency are not only easy to create, but also very difficult to detect
and diagnose due to the nondeterministic nature of multi-threaded computation.
For instance, the error from Northeastern blackout has been unmasked about
eight weeks after the blackout [60]. Some concurrent errors may manifest rarely
or under special circumstances, making it difficult to discover them by testing
as well as to reproduce them while debugging.

This chapter is organised as follows. It starts with a discussion on the nature
of concurrent computations and on the errors that can arise from the execution
of concurrent programs, including a motivating example, in Section 2. Different
concurrency errors are then presented and classified in Section 3. Section 4 de-
scribes various approaches for monitoring the execution of concurrent programs
as monitoring allows one to obtain all the necessary information to perform
an analysis and detect errors. Follows a discussion on the detection of com-
mon classes of concurrency errors, with Section 5 addressing errors related to
atomicity violations, and Section 6 addressing deadlocks. The detection of less
common concurrency errors is discussed in Section 7. Techniques that can help
with quality assurance of concurrent programs, regardless of any particular class
of concurrency errors, like noise injection and systematic testing, are discussed
in Section 8. Section 9 sums up the chapter and provides some prospects for
concurrent software development.

2 Errors in Concurrency

To understand errors in concurrency, one first needs to understand the nature
of concurrent execution. The execution of a concurrent program is performed
simultaneously by several processes (they can be called threads or nodes as well).
All the processes have access to a shared memory that serves as a communication
mean among them.1 Additionally, each process has its own local memory that
can be typically accessed much faster than the shared memory. Although memory
in computers is usually organised in a hierarchy with several levels, each with
different size, speed, and price per bit, simple differentiation between shared and
local memory of processes is enough to show the basis of concurrent errors.

As the shared memory is usually much slower than the local memory, a typical
scenario of the execution performed by a process is copying data from the shared
memory to its local memory, performing the given computation using the local
memory, and storing the result back to the shared memory. At the first sight,
there is no problem with this operation model, however, this is true only if a single

1 In this Chapter, we concentrate on the shared memory paradigm, leaving behind the
distributed memory and message passing paradigms, which are covered elsewhere in
this book.

Discovering Concurrency Errors 3

process is working with that particular data in the shared memory. If two or more
processes are operating concurrently over the same data in the shared memory
(perceived by a programmer, for instance, as a shared variable), some problems
may arise. We illustrate this with the help of a very simple concurrent system.

Let us have a shared variable x, initialised to zero, and two threads operating
concurrently on x, one thread adding one to x and the other adding two to x.

x=0 . (x++ ‖ x+=2)

What will be the final value of the variable x after this computation ends?
The most obvious answer would be 3. However, it is not necessarily the case if
we take concurrency into account. First, it may happen that incrementing and
adding are not implemented using single instructions. For instance, they can be
implemented by a three steps procedure: 1) loading the value of a shared variable
x from the shared memory to the local memory (e.g., to a processor register);
2) adding the intended value to the local copy of x; and 3) storing the new value
of x back into the shared memory.

Here is an example in Java bytecode (no knowledge of Java neither of Java
bytecode is required to understand the example):

Thread 1: Thread 2:

load x load x

inc add 2

store x store x

Nothing bad happens if the threads do not interfere with each other while
executing. In the following, Thread 2 starts its work only after Thread 1 com-
pletes its whole execution. On the right-hand side we can see the evolution of
the values of the shared variable x and of its local copies x1 for Thread 1 and x2
for Thread 2. The outcome of the execution is highlighted by a frame.

Thread 1: Thread 2: x x1 x2

load x 0 0
inc 0 1
store x 1 1

load x 1 1
add 2 1 3

store x 3 3

The same outcome is achieved if Thread 1 starts its work after Thread 2
completes its executions. The problem occurs when the executions of these two
threads are interleaved. For instance, the first thread starts executing as in the
previous example, however, the second thread starts and loads the value of the
shared variable x before the first thread stores its result back. Then, the result
of Thread 1 is lost because it is overwritten by Thread 2 when it stores its own
result back to x, as illustrated by the example below.

4 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Thread 1: Thread 2: x x1 x2

load x 0 0
inc 0 1

load x 0 1 0
store x 1 1 0

add 2 1 2

store x 2 2

Yet another outcome can be seen if the result produced by Thread 2 is over-
written by Thread 1.

Thread 1: Thread 2: x x1 x2

load x 0 0
inc 0 1

load x 0 1 0
add 2 1 1 2
store x 2 1 2

store x 1 1

In this example, we can highlight two issues related to concurrency. First,
programmers usually write code in a more abstract level than what it is actu-
ally executed. When writing code, the programmer does not need to care (and
sometimes does not even know) about the underlying implementation. Rather,
it is quite natural to assume that adding a value to a variable is an atomic op-
eration. Thus, the non-atomicity of some operations is actually hidden from the
programmer and the concurrency errors are not easily visible in the source code.

It is commonly accepted that errors that are not realised by the program-
mer, because they are hidden in less frequent operations or branches of the
source code, can frequently be uncovered by a proper testing activity. And this
raises the second issue. When a code block contains a concurrency related error,
frequently there is a huge number of different ways this erroneous code block
can interact with the other code blocks of the program, and all but a few of
them will trigger the error. Thus, even when involving the erroneous code block,
the testing procedures most probably will not uncover the error, which will stay
hidden. The error will be uncovered only if one of the low-probable erroneous
interactions is exercised by the testing procedures. And this may happen very
seldom or, in some cases, even never!

The execution order of particular instructions by some given threads is called
thread interleaving. The set of all possible thread interleavings defines the se-
mantics of a concurrent program. In the previous example, there are 20 possible
thread interleavings from which most probably only two are common: one where
thread 1 executes before thread 2 and another where thread 2 executes before
thread 1. These two common interleavings have, moreover, special importance
because they can also be achieved by a sequential execution. Interleavings which

Discovering Concurrency Errors 5

are equivalent to some sequential execution are called serialisable. If all the possi-
ble thread interleavings are serialisable, the multi-threaded program is correct (of
course, provided that the sequential program is correct). This notion of correct-
ness of multiprocess programs called sequential consistency has been introduced
by Lamport in [42]. Obviously, our example is not sequentially consistent be-
cause it can produce results that cannot be obtained by a sequential execution
of the given threads.

3 Classification of Concurrency Errors

In general, we can think of a concurrency error as a behaviour that does not
respect the sequential consistency model, which, in a nutshell, means the be-
haviour/result could not be obtained by a sequential execution (i.e., it is unse-
rialisable). For efficient handling of concurrency errors, however, one needs to
use the divide-and-conquer strategy and concentrate and deal with only some
particular kinds of such errors at a time.

To classify concurrency errors, we can adopt classification of general pro-
gramming errors and distinguish between safety errors and liveness errors like
we have done in [19]. Safety errors violate safety properties of a program, i.e.,
they cause something bad to happen. They always have a finite witness lead-
ing to an error state, so, they may be seen as easier to detect. Liveness errors
are errors which violate liveness properties of a program, i.e., prevent something
good from happening. To detect them one needs to find an infinite path show-
ing that the intended behaviour cannot be achieved, and thus, it may be more
complicated to detect liveness errors.

In the following, however, we present the classes of concurrency errors rather
with respect to the underlying mechanism that leads to a failure. It allows us later
to address the practical aspects of error detection, focusing on some particular
errors that violate program safety, in the same way.

Atomicity Violation. The first group of concurrency errors we address in this
book chapter is related to wrong atomicity, i.e., some operations unintentionally
interfere with the execution of some other operations. We can define it more
formally as follows.

Definition 1 Atomicity Violation — A program execution violates atomicity
iff it is not equivalent to any other execution in which all code blocks which are
assumed to be atomic are executed serially.

We have already seen an atomicity violation in our example above where the
operations of incrementing and adding a value to a shared variable were not
executed atomically. This kind of concurrency errors is, however, usually treated
as a special subclass of atomicity violation called data race or race condition.

Definition 2 Data Race — A program execution contains a data race iff it
contains two unsynchronised accesses to a shared variable and at least one of
them is a write access.

6 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Data races are one of the most common and most undesirable phenomena
in concurrent programs. However, one should note that not all data races are
harmful. Data races that cannot cause application failures are often referred to
as benign data races and are sometimes intentionally left in concurrent programs.
As an example of a benign data race consider two unsynchronised threads, one
thread updating a shared integer variable with the percentage of the completed
work, and another thread reading this shared variable and drawing a progress
bar. Even in the absence of synchronisation between the threads, this program
will behave as expected and, thus, we are facing a benign data race.

Similar to data races with respect to the behaviour scheme, but rather differ-
ent regarding their origins, are the so-called high-level data races [4]. For instance,
consider a complex number whose real and imaginary values are protected by
two separate locks. Updating such complex number can never cause a data race
as presented in Definition 2, because the accesses to both parts of the complex
number are always protected by the corresponding lock. Nevertheless, when the
complex number is updated concurrently by two threads, the complex number
may, after both the updates, contain the real part from one of the updates and
the imaginary part from the other. This inconsistency did not occur directly on
the shared variables (the complex number real and imaginary parts) but on the
complex number itself as a whole, which is at the higher level of abstraction and,
therefore, it is called a high-level data race.

Deadlock. Deadlocks are another kind of safety concurrency errors. Actually,
one may see them as a consequence of tackling atomicity violations—to avoid, for
instance, data races, one should use locks to guard accesses to shared resources,
e.g., shared variables. Using locks in a wrong way may, however, cause a deadlock,
which is definitely undesirable because the application stops working.

Despite deadlocks being quite often studied in the literature, the understand-
ing of deadlocks still varies, depending on the specific setting being considered.
Here we stick to the meaning common in the classical literature on operating
systems. To define deadlocks in a general way, we assume that given any state
of a program: (1) one can identify threads that are blocked and waiting for some
event to happen; and (2) for any waiting thread t, one can identify threads that
could generate an event that would unblock t.

Definition 3 Deadlock — A program state contains a set S of deadlocked threads
iff each thread in S is blocked and waiting for some event that could unblock it,
but such an event could only be generated by a thread also in S.

Most works consider a special case of deadlocks, namely, the so-called Coff-
man deadlock [10]. A Coffman deadlock happens in a state in which four condi-
tions are met: (1) Processes have an exclusive access to the resources granted to
them, (2) processes hold some resources and are waiting for additional resources,
(3) resources cannot be forcibly removed from the tasks holding them (no pre-
emption on the resources), and (4) a circular chain of tasks exists in which each
task holds one or more resources that are being requested by the next task in the

Discovering Concurrency Errors 7

chain. Such a definition perfectly fits deadlocks caused by blocking lock opera-
tions but does not cover deadlocks caused by message passing (e.g., a thread t1
can wait for a message that could only be sent by a thread t2, but t2 is waiting
for a message that could only be sent by t1).

Order Violation. Order violations form a much less studied class of con-
currency errors than atomicity violations and deadlocks. An order violation is
a problem of a missing enforcement of some higher-level ordering requirements.2

An order violation can be defined as follows.

Definition 4 Order Violation — A program execution exhibits an order viola-
tion if some of its instructions are not executed in the expected order.

Missed Signal. Missed signals are another less studied class of concurrency
errors. The notion of missed signals assumes that it is known which signal is
intended to be delivered to which thread or threads. A missed signal error can
be defined as follows.

Definition 5 Missed Signal — A program execution contains a missed signal
iff there is a signal sent that is not delivered to the thread or threads for which
it was intended.

Since signals are often used to unblock waiting threads, a missed signal error
typically leads to a thread or threads being blocked forever and can lead to
a deadlock as well.

Starvation. Starvation is a behaviour that can cover several safety as well as
liveness (or mixed3) errors, such as the already discussed deadlocks and missed
signals, and the to be discussed livelocks and blocked threads. Starvation occurs
when a thread is waiting for an event that never happens. If the probability of
the event is very low but will eventually happen, the thread is not exhibiting
a starvation, but in these cases the performance degradation imposed by the
waiting for the event may become unacceptable and render the solution invalid
as would a starvation situation.

Definition 6 Starvation — A program execution exhibits starvation iff there
exists a thread which waits (blocked or continually performing some computation)
for an event that needs not to occur.

2 Some atomicity violations can be, actually, seen as a low-level violations of ordering
expectations and deadlocks, in addition, are often caused by a wrong order of locking
operations. Here, we do not consider atomicity violations and deadlocks as order
violations.

3 Mixed errors are errors that have both finite witnesses as well as infinite ones whose
any finite prefix does not suffice as a witness.

8 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Livelock and Non-Progress Behaviour. There are various different defi-
nitions of a livelock in the literature. Often, the works consider some kind of
a progress notion for expressing that a thread is making some useful work, i.e.,
doing something of what the programmer intended to be done. Then they see
a livelock as a problem when a thread is not blocked but is not making any
progress as well.

Definition 7 Livelock and Non-Progress Behaviour — An infinite program exe-
cution exhibits a non-progress behaviour iff there is a thread which is continually
performing some computation, i.e., it is not blocked, but it is not making any
progress either.

Blocked Thread. We speak about a blocked thread appearing within some
execution when a thread is blocked and waiting forever for some event which
can unblock it. Like for a deadlock, one must be able to say what the blocking
and unblocking operations are. The problem can then be defined as follows.

Definition 8 Blocked Thread — A program execution contains a blocked thread
iff the thread is waiting for some event to continue, and this event never occurs
in the execution.

The absence of some unblocking event may leave a thread blocked forever.
There may be many reasons for leaving a thread blocked. A common reason is
that a thread that was holding a lock ends unexpectedly, leaving another thread
(or threads) waiting forever for that lock to be released. Another common reason
are missed signals. Blocked threads may also be called orphaned threads [18].

4 Monitoring of Concurrent Program Execution

One of the strategies to find errors in concurrent programs makes use of dynamic
program analysis that, in turn, requires to observe and monitor the execution
of the program under analysis. To monitor the program execution, one needs
to inject additional code into selected locations of the original program, which
when executed will generate observation points for program analysis. There are
several levels at which such additional code can be inserted, including the source
code level, the level of the intermediate code, and the binary level.

From the three approaches above, inserting the monitoring code at the bi-
nary level has a big advantage of not requiring the source code of the program
under analysis. This is particularly important when dealing with proprietary or
legacy libraries whose source files are not available even for the developers of the
program under analysis. Another advantage might be that this kind of instru-
mentation is more precise in that the monitoring code can be inserted exactly
where necessary, and the placement is not affected by any optimisations possibly
made by the compiler. Yet another advantage is getting access to some low-level
information, such as register allocation, which might be important for some

Discovering Concurrency Errors 9

analyses. All these advantages come at the expense of sometimes loosing access
to various pieces of high-level information about the program (organisation of
complex data objects, names of variables, etc.).

There exist several frameworks for binary instrumentation, which can be used
to insert the execution-monitoring code into a program. They might be divided
into two groups: static and dynamic binary instrumentation frameworks. Static
binary instrumentation frameworks, e.g., PEBIL [44], insert monitoring code to
a program by rewriting the object or executable code of the program before it
is executed, thus generating a new modified version of the original program’s
binary file, which will be executed afterwards. Dynamic binary instrumentation
frameworks, e.g., PIN [49] and Valgrind [55], insert execution-monitoring code
to the program image in memory at runtime, leaving the program’s binary file
untouched.

An advantage of static binary instrumentation is that it does not suffer from
the overhead of instrumenting the code of a program every time it is executed.
On the other hand, it cannot handle constructions such as self-modifying and
self-generating code, which is not known before the program actually executes.
On the contrary, dynamic binary instrumentation is slower, but it can cover all
the code that is executed by a program. Furthermore, since the binary file of the
program is not modified in any way, the instrumentation is more transparent to
the user who can run some (possibly lengthy) analysis on the program and, at
the same time, use the program as usual. As the dynamic binary instrumentation
changes the in-memory image of the program, it also allows to instrument and
monitor shared libraries without requiring to generate and maintain two versions
of the library, one normal and the other instrumented.

Regardless of which type of the instrumentation approaches is used, there are
some issues that need to be dealt with when analysing multi-threaded programs
at the binary level [21]. One of these problems is the monitoring of function
calls/execution. This is because the monitoring code has to handle cases where
the control is passed among several functions by jumps, and the return is from
a different function than the one that was called. Another problem is that the
monitoring code must properly trigger notifications for various special types of
instructions such as atomic instructions, which access several memory locations
at once but in an atomic way, and conditional and repeatable instructions, which
might be executed more than once or not at all. Further, some pieces of infor-
mation about the execution of instructions and functions (such as the memory
locations accessed by them), which are crucial for various analyses, may be lost
once the instruction or function finishes its execution, and it is necessary to ex-
plicitly preserve this information for later use. Finally, in order to support various
multithreading libraries, the analysers must be abstracted from the particular
library used.

Inserting additional code needed for monitoring at the intermediate code level
is suitable for programming languages that use intermediate code like Java. It
does not require the source code of the application while it stays at a level of
abstraction that retains more information about the original program, making it

10 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

easier to explain the errors found than if the monitoring code is inserted at the
binary level. One may find useful tools, like RoadRunner [27], which provide an
instrumentation facility and allows one to fully concentrate on the development
of the analyser.

When the source code of the application is available, one may insert moni-
toring code directly into the application source code. Preparation of each such
application for analysis, however, requires some manual work even when aspect-
oriented programming is employed.

5 Detection of Atomicity Errors

In this section, we describe possible ways for detecting atomicity violations. We
start with the detection of data races as a special and very important case of
atomicity violations, and then we follow with the detection of general atomicity
violations, detecting first single and then multiple variable atomicity violations.

5.1 Detection of Data Races

To recall Definition 2, a data race occurs if there are two unsynchronised accesses
to a shared variable within the execution of a concurrent program and at least
one of them is a write access. To be able to identify an occurrence of a data race,
one thus needs to detect (1) which variables are shared by any two given threads,
and (2) whether all pairs of accesses to a given shared variable are synchronised.

As data races are a well-studied concurrency problem, many different tech-
niques have been proposed to tackle their detection. Dynamic techniques that
analyse one particular execution of a program are usually based on comput-
ing the so-called locksets and/or happens-before relations along the witnessed
execution. Static techniques often either look for particular code patterns that
are likely to cause a data race, or compute locksets and/or happens-before rela-
tions over all executions considered feasible by a static analyser [16, 39, 50, 54].
It is also possible to use type systems to detect and/or avoid data races by
design [23, 25, 73]. One may also consider model checking approach [67]. How-
ever, we discuss dynamic techniques and their principles in the remainder of this
section.

Lockset-based algorithms. The techniques based on locksets build on the
idea that all accesses to a shared variable should be guarded by a lock. A lockset
is defined as a set of locks that guard all accesses to a given variable. Detectors
then use the assumption that, if the lockset associated with a certain shared
variable is non-empty, i.e., all accesses to that variable are protected by at least
one lock, then no data race is possible.

The first algorithm which used the idea of locksets was Eraser [64]. The al-
gorithm maintains for each shared variable v a set C(v) of candidate locks for
v. When a new variable is initialised, its candidate set C(v) contains all possible
locks. Whenever a variable v is accessed, Eraser updates C(v) by intersecting

Discovering Concurrency Errors 11

C(v) and the set L(t) of locks held by the current thread at the moment. Eraser
warns about a possible data race if C(v) becomes empty for some shared vari-
able v along the execution being analysed. In order to reduce the number of
false alarms, Eraser introduces an internal state s(v) used to identify the ac-
cess pattern for each shared variable v: if the variable is used exclusively by one
thread, if it is written by a single thread and read by multiple threads, or if it
can be changed by multiple threads. The lockset C(v) is then modified only if
the variable is shared, and a data race is reported only if C(v) becomes empty
and s(v) is in the state denoting the case where multiple threads can access v
for writing.

The original Eraser algorithm designed for C programs has been modified
for programs written in object-oriented languages, e.g., [7, 8, 63, 76]. The main
modification (usually called as the ownership model) is inspired by the common
idiom used in object-oriented programs where the creator of an object is actually
not the owner of the object. Then, one should take into account that the creator
always accesses the object first and no explicit synchronisation with the owner
is needed, because the synchronisation is implicitly taken care of by the Java
virtual machine. This idea is reflected by adding a new internal state for the
shared variables. The modification introduces a small possibility of having false
negatives [41, 63], but greatly reduces the number of false alarms caused by the
object-oriented programming idiom.

Locksets-based techniques do not support other synchronisation mechanisms
than locks and thus, if other mechanisms are also used, these techniques may
produce too many false alarms.

Happens-before-based algorithms. The happens-before-based techniques
exploit the so-called happens-before relation [43] (denoted →), which is defined as
the least strict partial order that includes every pair of causally ordered events.
For instance, if an event x occurs before an event y in the same thread, then it is
denoted as x → y. Also, if x is an event creating some thread and y is an event
in that thread, then x → y. Similarly, if some synchronisation or communication
means is used that requires an event x to precede an event y, then x → y. All
notions of synchronisation and communication, such as sending and receiving
a message, unlocking and locking a lock, sending and receiving a notification,
etc., are to be considered. Detectors build (or approximate) the happens-before
relation among accesses to shared variables and check that no two accesses (out
of which at least one is for writing) can happen simultaneously, i.e., without
a happens-before relation between them.

Most happens-before-based algorithms use the so-called vector clocks intro-
duced in [51]. The idea of vector clocks for a message passing system is as follows.
Each thread t has a vector of clocks Tvc indexed by thread identifiers. One posi-
tion in Tvc holds the value of the clock of t. The other entries in Tvc hold logical
timestamps indicating the last event in a remote thread that is known to be in
the happens-before relation with the current operation of t. Vector clocks are
partially-ordered in a point-wise manner (v) with an associated join operation

12 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

(t) and the minimal element (0). The vector clocks of threads are managed as
follows: (1) initially, all clocks are set to 0; (2) each time a thread t sends a mes-
sage, it sends also its Tvc and then t increments its own logical clock in its Tvc

by one; (3) each time a thread receives a message, it increments its own logical
clock by one and further updates its Tvc according to the received vector T ′vc to
Tvc = Tvc t T ′vc.

Algorithms [61, 62] detect data races in systems with locks via maintaining
a vector clock Ct for each thread t (corresponding to Tvc in the original ter-
minology above), a vector clock Lm for each lock m, and two vector clocks for
write and read operations for each shared variable x (denoted Wx and Rx, re-
spectively). Wx and Rx simply maintain a copy of the Ct of the last thread that
accessed x for writing or reading, respectively. A read from x by a thread is
race-free if Wx v Ct (it happens after the last write of each thread). A write to
x by a thread is race-free if Wx v Ct and Rx v Ct (it happens after all accesses
to the variable).

Maintaining such a big number of vector clocks as above generates a consid-
erable overhead. Therefore, in [26], the vector clocks from above that were asso-
ciated with variables were mostly replaced by the so-called epochs. The epoch of
a variable v is represented as a tuple (t, c)v, where t identifies the thread that last
accessed v and c represents the value of its clock. The idea behind this optimisa-
tion is that, in most cases, a data race occurs between two subsequent accesses
to a variable. In such cases, epochs are sufficient to detect unsynchronised ac-
cesses. However, in cases where a write operation needs to be synchronised with
multiple preceding read operations, epochs are not sufficient and the algorithm
has to build an analogy of vector clocks for sequences of read operations.

A bit different detection approach has been introduced in TRaDe [9] where
a topological race detection [31] is used. This technique is based on an exact
identification of objects which are reachable from a thread. This is accomplished
by observing manipulations with references which alter the interconnection graph
of the objects used in a program—hence the name topological. Then, vector
clocks are used to identify possibly concurrently executed segments of code,
called parallel segments. If an object is reachable from two parallel segments,
a race has been detected. A disadvantage of this solution is its considerable
overhead.

Although the algorithms mentioned above exhibit good precision, their com-
putational demands are sometimes prohibitive, which inspired researchers to
come up with some combinations of happens-before-based and lockset-based al-
gorithms. These combinations are often called hybrid algorithms.

Hybrid algorithms. Hybrid algorithms such as [15,24,58,76] combine the two
approaches described above.

In RaceTrack [76], the notion of a threadset was introduced. The threadset
is maintained for each shared variable and contains information concerning the
threads currently working with the variable. The method works as follows. Each
time a thread performs a memory access on a variable, it forms a label consist-

Discovering Concurrency Errors 13

ing of the thread identifier and its current private clock value. The label is then
added to the threadset of the variable. The thread also uses its vector clock to
identify and remove from the threadset the labels that correspond to accesses
that are ordered before the current access. Hence, the threadset contains solely
the labels for accesses that are concurrent. At the same time, locksets are used
to track locking of variables, which is not tracked by the used approximation of
the happens-before relation. Intersections on locksets are applied if the approxi-
mated happens-before relation is not able to assure an ordered access to shared
variables. If an ordered access to a shared variable is assured by the approxi-
mated happens-before relation, the lockset of the variable is reset to the lockset
of the thread that is currently accessing it.

One of the most advanced lockset-based algorithms that also uses the happens-
before relation is Goldilocks [15]. The main insight of this algorithm is that lock-
sets can contain not only locks but also volatile variables (i.e., variables with
atomic access that may also be used for synchronisation) and, most importantly,
also threads. The appearance of a thread t in the lockset of a shared variable
v means that t is properly synchronised for using the given variable. The in-
formation about threads synchronised for using certain variables is then used
to maintain a transitive closure of the happens-before relation via the locksets.
The advantage of Goldilocks is that it allows locksets to grow during the compu-
tation when the happens-before relation is established between operations over
v. The basic Goldilocks algorithm is relatively expensive but can be optimised
by short circuiting the lockset computation (three cheap checks are sufficient for
ensuring race freedom between the last two accesses on a variable) and using
a lazy computation of the locksets (locksets are computed only if the previous
optimisation is not able to detect that some events are in the happens-before
relation). The optimised algorithm has a considerably lower overhead, in some
cases approaching the pure lockset-based algorithms.

A similar approach to Goldilocks but for the Java Path Finder model checker
has been presented in [40]. This algorithm does not map variables to locksets con-
taining threads and synchronisation elements (such as locks), but rather threads
and synchronisation elements to sets of variables. This modification is motivated
by the fact that the number of threads and locks is usually much lower than the
number of shared variables. Such a modification is feasible because model check-
ing allows the method to modify structures associated with different threads
at once. Methods based on dynamic analysis cannot use this modification and
locksets must be kept using the original relation.

5.2 Detection of Atomicity Violations

Taking into account the generic notion of atomicity, methods for detecting atom-
icity violations can be classified according to: (1) the way they obtain information
about which code blocks should be expected to execute atomically; (2) the notion
of equivalence of executions used (we will get to several commonly used equiva-
lences in the following); and (3) the actual way in which an atomicity violation
is detected (i.e., using static analysis, dynamic analysis, etc.).

14 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

As for the blocks to be assumed to execute atomically, some authors ex-
pect the programmers to annotate their code to delimit such code blocks [29].
Some other works come with predefined patterns of code which should typi-
cally execute atomically [32, 48, 66]. Yet other authors try to infer blocks to be
executed atomically, e.g., by analysing data and control dependencies between
program statements [72], where dependent program statements form a block
which should be executed atomically, or by finding access correlations between
shared variables [47], where a set of accesses to correlated shared variables should
be executed atomically (together with all statements between them).

Below, we first discuss approaches for detecting atomicity violations when
considering accesses to a single shared variable only and then those which con-
sider accesses to several shared variables.

Atomicity over one variable. Most of the existing algorithms for detecting
atomicity violations are only able to detect atomicity violations within accesses
to a single shared variable. They mostly attempt to detect situations where two
accesses to a shared variable should be executed atomically, but are interleaved
by an access from another thread.

In [72], blocks of instructions which are assumed to execute atomically are
approximated by the so-called computational units (CUs). CUs are inferred auto-
matically from a single program trace by analysing data and control dependencies
between instructions. First, a dependency graph is created which contains control
and read-after-write dependencies between all instructions. Then, the algorithm
partitions this dependency graph to obtain a set of distinct subgraphs which form
the CUs. The partitioning works in such a way that each CU is the largest group
of instructions where all instructions are control or read-after-write dependent,
but no instructions which access shared variables are read-after-write dependent,
i.e., no read-after-write dependencies are allowed between shared variables in the
same computational unit. Since these conditions are not sufficient to partition the
dependency graph to distinct subgraphs, additional heuristics are used. Atom-
icity violations are then detected by checking if the strict 2-phase locking (2PL)
discipline [17] is violated in a program trace. Violating the strict 2PL discipline
means that some CU has written or accessed a shared variable which another
CU is currently reading from or writing to, respectively (i.e., some CU accessed
a shared variable and before its execution is finished, another CU accesses this
shared variable). If the strict 2PL discipline is violated, the program trace is not
identical to any serial execution, and so seen as violating atomicity. Checking if
the strict 2PL discipline is violated is done dynamically during a program exe-
cution in case of the online version of the algorithm, or on a previously recorded
execution trace using the off-line version of the algorithm.

A much simpler approach of discovering atomicity violations was presented
in [48]. Here, any two consecutive accesses from one thread to the same shared
variable are considered an atomic section, i.e., a block which should be executed
atomically. Such blocks can be categorised into four classes according to the
types of the two accesses (read or write) to the shared variable. Serialisability is

Discovering Concurrency Errors 15

then defined based on analysis of what can happen when a block b of each of the
possible classes is interleaved with some read or write access from another thread
to the same shared variable which is accessed in b. Out of the eight total cases
arising in this way, four (namely, r-w-r, w-w-r, w-r-w, r-w-w) are considered
to lead to an unserialisable execution. However, the detection algorithm does
not consider all the unserialisable executions as errors. Detection of atomicity
violations is done dynamically in two steps. First, the algorithm analyses a set of
correct (training) runs in which it tries to detect atomic sections which are never
unserialisably interleaved. These atomic sections are called access interleaving
invariants (AI invariants). Then, the algorithm checks if any of the obtained
AI invariants is violated in a monitored run, i.e., if there is an AI invariant
which is unserialisably interleaved by an access from another thread to a shared
variable which the AI invariant (atomic section) accesses. While the second step
of checking AI invariants violation is really simple and can be done in a quite
efficient way, the training step to get the AI invariants can lead to a considerable
slowdown of the monitored application and has to be repeated if the code base
of the application changes (e.g., for a new version of the application).

A more complicated approach was introduced in [24, 69], where atomicity
violations are sought using the Lipton’s reduction theorem [46]. The approach is
based on checking whether a given run can be transformed (reduced) to a serial
one using commutativity of certain instructions (or, in other words, by moving
certain instructions back or forward in the execution timeline). Both [24] and [69]
use procedures as atomic blocks by default, but users can annotate blocks of code
which they assume to execute atomically to provide a more precise specification
of atomic sections for the algorithm. For the reduction used to detect atomic-
ity violations, all instructions are classified, according to their commutativity
properties, into 4 groups: (1) Left-mover instructions L that may be swapped
with the immediately preceding instruction; (2) Right-mover instructions R that
may be swapped with the immediately succeeding instruction; (3) Both-mover
instructions B that are simultaneously left and right mover, i.e., they may be
swapped with both the immediately preceding and succeeding instructions; and
(4) Non-mover instructions N that are not known to be left or right mover
instructions.

Classification of instructions to these classes is based on their relation to
synchronisation operations, e.g., lock acquire instructions are right-movers, lock
release instructions are left-movers, and race free accesses to variables are both-
movers (a lockset-based dynamic detection algorithm is used for checking race
freeness). An execution is then serialisable if it is deadlock-free and each atomic
section in this execution can be reduced to a form R∗N?L∗ by moving the in-
structions in the execution in the allowed directions. Here, N? represents a sin-
gle non-mover instruction and both-mover instructions B can be taken as either
right-mover instructions R or left-mover instructions L. Algorithms in both [24]
and [69] use dynamic analysis to detect atomicity violations using the reduction
algorithm described above.

16 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Other approaches using the Lipton’s reduction theorem [46] can be found
in [28, 68] where type systems based on this theorem are used to deal with
atomicity violations.

Atomicity over multiple variables. The above mentioned algorithms con-
sider atomicity of multiple accesses to the same variable only. However, there
are situations where we need to check atomicity over multiple variables, e.g.,
when a program modifies two or more interrelated variables in several atomic
blocks (such variables can represent, for instance, a point in a three-dimensional
space or the real and imaginary parts of a complex number). Even if we ensure
that all the read and write accesses to these variables are executed atomically,
the program can still have an unserializable execution. This happens when the
boundaries of the atomic block guarding the access to these variables are mis-
defined, and what should be a single atomic block was split into two or more
smaller atomic blocks. The interleaving of these smaller atomic blocks with other
atomic blocks may violate the integrity of the data and expose states that would
never be observed in a sequential execution. Nevertheless, the algorithms and
the detectors discussed above cannot address these multiple-variable atomicity
errors.

In [4], the problem of violation of atomicity of operations over multiple vari-
ables is referred to as a high-level data race. In the work, all synchronised blocks
(i.e., blocks of code guarded by the synchronized statement) are considered to
form atomic sections. The proposed detection of atomicity violations is based on
checking the so-called view consistency. For each thread, a set of views is gener-
ated. A view is a set of fields (variables) which are accessed by a thread within
a single synchronised block. From this set of views, a set of maximal views (maxi-
mal according to set inclusion) is computed for each thread. An execution is then
serialisable if each thread only uses views that are compatible, i.e., form a chain
according to set inclusion, with all maximal views of other threads. Hence, the
detection algorithm uses a dynamic analysis to check whether all views are com-
patible within a given program trace. Since the algorithm has to operate over
a high number of sets (each view is a set), it suffers from a big overhead. Dias et
al in [13] adapted this approach to apply static analysis techniques and extended
it to reduce the number of false warnings.

A different approach is associated with the Velodrome detector [29]. Here,
atomic sections (called transactions) are given as methods annotated by the user.
Detection of atomicity violations is based on constructing a graph of the transac-
tional happens-before relation (the happens-before relation among transactions).
An execution is serialisable if the graph does not contain a cycle. The detection
algorithm uses a dynamic analysis to create the graph from a program trace and
then checks it for a cycle. If a cycle is found, the program contains an atomicity
violation. Since creating the graph for the entire execution is inconvenient, nodes
that cannot be involved in a cycle are garbage-collected or not created at all.
Like the previous algorithm, Velodrome may suffer from a considerable overhead
in some cases, too.

Discovering Concurrency Errors 17

The simple idea of AI invariants described in [48] has been generalised for
checking atomicity over pairs of variables in [32, 66], where a number of prob-
lematic interleaving scenarios were identified. The user is assumed to provide
the so-called atomic sets that are sets of variables which should be operated
atomically. In [66] an algorithm to infer which procedure bodies should be the
so-called units of work w.r.t. the given atomic sets is proposed. This is done
statically using dataflow analysis. An execution is then considered serialisable if
it does not correspond to any of the problematic interleavings of the detected
units of work. An algorithm capable of checking unserialisability of execution of
units of work (called atomic-set-serialisability violations) is described in [32]. It
is based on a dynamic analysis of program traces. The algorithm introduces the
so-called race automata, which are simple finite state automata used to detect
the problematic interleaving scenarios.

There are also attempts to enhance well-known approaches for data race
analysis to detect atomicity violations over multiple variables. One method can
be found in [47], where data mining techniques are used to determine access
correlations among an arbitrary number of variables. This information is then
used in modified lockset-based and happens-before-based detectors. Since data
race detectors do not directly work with the notion of atomicity, blocks of code
accessing correlated variables are used to play the role of atomic sections. Access
correlations are inferred statically using a correlation analysis. The correlation
analysis is based on mining association rules [3] from frequent itemsets, where
items in these sets are accesses to variables. The obtained association rules are
then pruned to allow only the rules satisfying the minimal support and minimal
confidence constraints. The resulting rules determine access correlations between
various variables. Using this information, the two mentioned data race detector
types can then be modified to detect atomicity violations over multiple variables
as follows. Lockset-based algorithms must check if, for every pair of accesses
to a shared variable, the shared variable and all variables correlated with this
variable are protected by at least one common lock. Happens-before-based algo-
rithms must compare the logical timestamps not only with accesses to the same
variable, but also with accesses to the correlated variables. The detection can be
done statically or dynamically, depending on the data race detector used.

6 Detection of Deadlocks

As deadlock is connected with circular dependency among threads and shared
resources, the detection of deadlocks usually involves various graph algorithms.
For instance, the algorithm introduced in [57] constructs a thread-wait-for graph
dynamically and analyses it for a presence of cycles. Here, a thread-wait-for graph
is an arc-labelled digraph G = (V,E) where vertices V are threads and locks, and
edges E represent waiting arcs, which are classified (labelled) according to the
synchronisation mechanism used (join synchronisation, notification, finalisation,
and waiting on a monitor). A cycle in this graph involving at least two threads
represents a deadlock. A disadvantage of this algorithm is that it is able to

18 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

detect only deadlocks that actually happen. The following works can detect also
potential deadlocks that can happen but did not actually happen during the
witnessed execution.

In [33], a different algorithm called GoodLock for detecting deadlocks was
presented. The algorithm constructs the so-called runtime lock trees and uses
a depth-first search to detect cycles in it. Here, a runtime lock tree Tt = (V,E)
for a thread t is a tree where vertices V are locks acquired by t and there is
an edge from v1 ∈ V to v2 ∈ V when v1 represents the most recently acquired
lock that t holds when acquiring v2. A path in such a tree represents a nested
use of locks. When a program terminates, the algorithm analyses lock trees for
each pair of threads. The algorithm issues a warning about a possible deadlock
if the order of obtaining the same locks (i.e., their nesting) in two analysed trees
differs and no “gate” lock guarding this inconsistency has been detected.

The original GoodLock algorithm is able to detect deadlocks between two
threads only. Later works, e.g., [2, 6] improve the algorithm to detect deadlocks
among multiple threads. In [2], a support for semaphores and wait-notify syn-
chronisation was added. A stack to handle the so-called lock dependency relation
is used in [38] instead of lock trees. The algorithm computes the transitive clo-
sure of the lock dependency relation instead of performing a depth first search
in a graph. The modified algorithm uses more memory but the computation is
much faster.

Static approaches can be employed also for deadlock detection. A purely
data-flow-based interprocedural static detector of deadlocks called RacerX has
been presented in [16] while a bottom-up data-flow static analysis is used to
detect deadlocks in [70]. Both algorithms produce many false alarms due to the
approximations they use. A combination of symbolic execution, static analysis,
and SMT solving is used in [11] to automatically derive the so-called method
contracts guaranteeing deadlock-free executions.

7 Detection of Other Errors in Concurrency

So far, we have covered detection of data races, atomicity violations, and dead-
locks that are the most common concurrency errors in practice. In this section,
we briefly touch detection of other concurrency errors, such as order violations,
missed signals, and non-progress behaviour.

For detecting order violations one needs to be able to decide if, for a given
execution, the instructions were or were not executed in the right order. There
are only a few detection techniques which are able to detect order violations.
These techniques try to detect that some instructions are executed in a wrong
order by searching for specific behavioural patterns [77] or by comparing the
order of instructions in a testing run with the order witnessed in a series of
preceding, correct program runs [74].

Similarly to order violations, there are just a few methods for detecting missed
signals. Usually, the problem is studied as part of detecting other concurrency

Discovering Concurrency Errors 19

problems, e.g., deadlocks. There is also an approach that uses pattern-based
static analysis to search for code patterns that may lead to missed signals [37].

It is also possible to use contracts for concurrency [65] to detect some of
the errors mentioned above. A contract for concurrency allows one to enumerate
sequences of public methods of a module that are required to be executed atom-
ically. Even though such contracts were designed to primarily capture atomicity
violations, they are capable of capturing order violations and missed signals as
well. Contracts may be written by a developer or inferred automatically from
the program (based on its typical usage patterns) [65].

There are two methods [12,20] for dynamically verifying that such contracts
are respected at program runtime. In particular, the first method [20] belongs
among the so-called lockset-based dynamic analyses, whose classic example is
the Eraser algorithm for data race detection [64]. Their common feature is that
they track sets of locks that are held by various threads and used for various
synchronisation purposes. The tracked lock sets are used to extrapolate the syn-
chronisation behaviour seen in the witnessed test runs, allowing one to warn
about possible errors even when they do not directly appear in the witnessed
test runs.

While the lockset-based method works well in many cases, it may produce
both false positives and negatives. Some of these problems are caused by the
method itself as lockset-based methods are imprecise in general. However, many
of the problems are caused by the limitations of the (basic) contracts which do
not allow one to precisely describe which situations are errors and which are not.
To address this problem, the notion of contracts for concurrency was extended
in [12] to allow them to reflect both the data flow between the methods (in
that a sequence of method calls only needs to be atomic if they manipulate the
same data) and the contextual information (in that a sequence of method calls
needs not be atomic wrt all other sequences of methods but only some of them).
The paper then proposes a method for dynamic validation of contracts based on
the happens-before relation which utilises vector clocks in a way optimised for
contract validation. This method does not suffer from false alarms and supports
the extended contracts.

One of the most common approaches for detecting non-progress behaviour
in finite-state programs is to use model checking and search for non-progress cy-
cles [35]. In case of infinite-state programs, a long enough path of non-progress
actions in the state space is often sufficient for proving a non-progress be-
haviour [30]. A similar approach is also used in dynamic techniques where dy-
namic monitoring [34] of an execution is performed in order to find an execution
where no progress action is reached for a long period of time.

8 Boosting Detection of Errors in Concurrency

In this section, we discuss techniques that can help with quality assurance of
concurrent programs regardless of particular class of concurrency errors, namely,
noise injection and systematic testing.

20 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Noise injection. Noise injection inserts delays into the execution of selected
threads aiming at promoting the occurrence of low-probable interleavings that
otherwise would happen very seldom or even never. This approach allows to
test time-sensitive synchronisation interleavings that could hide latent errors.
Noise injection is also able to test legal interleavings of actions which are far
away from each other in terms of execution time and in terms of the number
of concurrency-relevant events [14] between those actions during average execu-
tions provided that the appropriate noise is injected into some of the threads. In
a sense, the approach is similar to running the program inside a model checker
such as JPF [67] with a random exploration algorithm enabled. However, mak-
ing purely random scheduling decisions may be less efficient than using some
of the noise heuristics which influence the scheduling at some carefully selected
places important from the point of view of synchronisation only. The approach
of noise injection is mature enough to be used for testing of real-life software,
and it is supported by industrial-strength tools, such as IBM Java Concurrency
Testing Tool (ConTest) [14] and the Microsoft Driver Verifier, where the tech-
nique is called delay fuzzing [1]. A recent tool supporting noise-based testing of
concurrent C/C++ code on the binary level is ANaConDA [12,22].

Systematic testing. Systematic testing of concurrent programs [36, 52, 53, 71]
has become popular recently. The technique uses a deterministic control over
the scheduling of threads. A deterministic scheduler is sometimes implemented
using intense noise injection keeping all threads blocked except the one chosen for
making a progress. Often, other threads which do not execute synchronisation-
relevant instructions or which do not access shared memory are also allowed to
make progress concurrently.

The systematic testing approach can be seen as execution-based model check-
ing which systematically tests as many thread interleaving scenarios as possible.
Before execution of each instruction which is considered as relevant from the
point of view of detecting concurrency-related errors, the technique computes
all possible scheduler decisions. The concrete set of instructions considered as
concurrency-relevant depends on the particular implementation of the technique
(often, shared memory accesses and synchronisation relevant instructions are
considered as concurrency-relevant). Each such a decision point is considered
a state in the state space of the system under test, and each possible decision is
considered an enabled transition at that state. The decisions that are explored
from each state are recorded in the form of a partially ordered happens-before
graph [52], totally ordered list of synchronisation events [71], or simply in the
form of a set of explored decisions [36]. During the next execution of the program,
the recorded scheduling decisions can be enforced again when doing a replay or
changed when testing with the aim of enforcing a new interleaving scenario.

As the number of possible scheduling decisions is high for complex programs,
various optimisations and heuristics reducing the number of decisions to ex-
plore have been proposed. For example, the locality hypothesis [52] says that
most concurrency-related errors can be exposed using a small number of pre-
emptions. This hypothesis is exploited in the CHESS tool [52], which limits the

Discovering Concurrency Errors 21

number of context switches taking place in the execution (iteratively increasing
the bound on the allowed number of context switches). Moreover, the tool also
utilises a partial-order reduction algorithm blocking exploration of states equal to
the already explored states (based on an equivalence defined on happens-before
graphs). Some further heuristics are then mentioned below when discussing the
related approach of coverage-driven testing.

However, despite a great impact of the various reductions, the number of
thread interleavings to be explored remains huge for real-life programs, and
therefore the approach provides great benefit mainly in the area of unit test-
ing [36, 52]. The systematic testing approach is not as expensive as full model
checking, but it is still quite costly because one needs to track which schedul-
ing scenarios of possibly very long runs have been witnessed and systematically
force new ones. The approach makes it easy to replay an execution where an er-
ror was detected, but it has problems with handling various external sources of
nondeterminism (e.g., input events).

Systematic testing offers several important benefits over noise injection. Its
full control over the scheduler allows systematic testing to precisely navigate the
execution of the program under test, to explore different interleavings in each
run, and to also replay interesting runs (if other sources of nondeterminism, such
as input values, are handled). It allows the user to get information about what
fraction of (discovered) scheduling decisions has already been covered by the
testing process. On the other hand, the approach suffers from various problems,
such as handling external sources of nondeterminism (user actions in GUI, client
requests) as well as with continuously running programs where its ability to
reuse already collected information is limited. In all those problematic cases,
noise injection can be successfully used. Moreover, the performance degradation
introduced by noise injection is significantly lower.

Coverage-driven testing. An approach related to systematic testing is the
approach of coverage-driven testing implemented in the Maple tool [75]. Maple
attempts to influence the scheduling such that the obtained coverage of several
important synchronisation idioms (called iRoots) is maximised. These idioms
capture several important memory access patterns that are shown to be often
related with error occurrences. Maple uses several heuristics to likely increase
the coverage of iRoots. The technique provides lower guarantees of finding an
error than systematic testing, but it is more scalable. The Maple tool [75] limits
the number of context switches to two and additionally gets use of the value-
independence hypothesis which states that exposing a concurrency error does not
depend on data values. Moreover, the Maple tool does not consider interleavings
where two related actions executed in different threads are too far away from
each other. The distance of such actions is computed by counting actions in one
of the threads, and the threshold is referred to as a vulnerability window [75]. The
approach of Maple does not support some kinds of errors (e.g., value-dependent
errors or some forms of deadlocks). Multiple of the heuristics that Maple uses
are based on randomisation. Maple can thus be viewed as being in between of
systematic testing and noise-based testing.

22 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

9 Conclusions

In this chapter, we have explained problems connected with concurrent execution
of programs on modern multi-core devices, listed common errors that can arise
from concurrency and described possibilities how particular kinds of concurrency
errors can be detected. We have also mentioned noise injection and systematic
testing that can support the discovery of concurrency errors.

Understanding the problems connected with concurrency is the first and in-
evitable step to produce high quality concurrent software. We, however, believe
that detection of concurrency errors followed by their manual elimination by
a programmer is not the only way to handle failures caused by concurrency. In
contrast to many other kinds of software defects, concurrency errors have one
admirable feature emerging from usually huge space of possible thread interleav-
ings which provides us with redundancy that can be employed for automatic
correction of the error. If we are able to automatically detect and localise the
concurrency defect, we can propose a fix to a programmer or heal it fully auto-
matically at runtime because the set of interleavings contains, besides interleav-
ings leading to a failure, also interleavings that lead to a correct outcome. This
is not possible for most of other programmers mistakes because the intended
behaviour of the program cannot be inferred automatically.

For instance, if a data race over a shared variable is detected, it can be healed
by introducing a new lock for guarding this shared variable. That means that
a code acquiring the new lock is inserted before each access to the variable, while
a code releasing the lock is inserted after the access. As a reader can guess, adding
a lock without knowledge of other locking operations can introduce a deadlock
which may be even worse problem than the original data race. Another approach
of healing data races we have studied [41] exploits noise injection technique. As
noise injection can be used for increasing probability of spotting a concurrency
errors by changing probabilities of particular interleavings it can also be used
in an opposite manner to significantly reduce probability of interleavings that
lead to a fault. This approach cannot introduce a deadlock, however, it does not
guarantee that the error is fully covered. Other types of concurrency problems
such as deadlocks [56] and atomicity violations [45] can be covered automatically
as well.

One may also expect that there will be available programming paradigms
like transactional memory [5] in the future that reduce or eliminate chances of
creating concurrency errors.

Acknowledgment. This work was partially supported by the ARVI EU COST
ACTION IC1402. Further, the Czech authors were supported by the EU ECSEL
project Aquas, the internal BUT FIT project FIT-S-17-4014, and the IT4IXS
project: IT4Innovations Excellence in Science (LQ1602). The Portuguese author
was also supported by the Portuguese Science Foundation and NOVA LINCS
(ref. UID/CEC/04516/2013).

Discovering Concurrency Errors 23

References

1. Power Framework Delay Fuzzing. Online at: http://msdn.microsoft.com/en-
us/library/hh454184(v=vs.85).aspx (April 2013)

2. Agarwal, R., Stoller, S.D.: Run-time Detection of Potential Deadlocks for Programs
with Locks, Semaphores, and Condition Variables. In: Proc. of PADTAD’06. pp.
51–60. ACM, New York, NY, USA (2006)

3. Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules Between Sets of
Items in Large Databases. In: SIGMOD’93: Proceedings of the 1993 ACM SIGMOD
international conference on Management of data. pp. 207–216. ACM, New York,
NY, USA (1993)

4. Artho, C., Havelund, K., Biere, A.: High-Level Data Races. In: VVEIS’03: The First
International Workshop on Verification and Validation of Enterprise Information
Systems. Angers, France (2003)

5. Ayguade, E., Cristal, A., Unsal, O.S., Gagliardi, F., Smith, B., Valero, M., Harris,
T.: Transactional memory: An overview. IEEE Micro 27, 8–29 (2007)

6. Bensalem, S., Havelund, K.: Dynamic Deadlock Analysis of Multi-threaded Pro-
grams. In: Proc. of HVC’05. pp. 208–223. volume 3875 of LNCS, Springer-Verlag,
Berlin, Heidelberg (2006)

7. Bodden, E., Havelund, K.: Racer: Effective Race Detection Using Aspectj. In: IS-
STA’08: Proceedings of the 2008 international symposium on Software testing and
analysis. pp. 155–166. ACM, New York, NY, USA (2008)

8. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Effi-
cient and Precise Datarace Detection for Multithreaded Object-oriented Programs.
In: PLDI’02: Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation. pp. 258–269. ACM, New York, NY,
USA (2002)

9. Christiaens, M., Bosschere, K.D.: TRaDe: Data Race Detection for Java. In:
ICCS’01: Proceedings of the International Conference on Computational Science-
Part II. pp. 761–770. Springer-Verlag, London, UK (2001)

10. Coffman, E.G., Elphick, M., Shoshani, A.: System Deadlocks. ACM Comput. Surv.
3, 67–78 (June 1971)

11. Deshmukh, J., Emerson, E.A., Sankaranarayanan, S.: Symbolic Deadlock Analysis
in Concurrent Libraries and Their Clients. In: ASE’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering. pp.
480–491. IEEE, Washington, DC, USA (2009)

12. Dias, R.F., Ferreira, C., Fiedor, J., Lourenço, J.M., Smrčka, A., Sousa, D.G., Voj-
nar, T.: Verifying concurrent programs using contracts. In: Proc. of ICST’17. IEEE
Computer Society, Washington, DC, USA (2017)

13. Dias, R.J., Pessanha, V., Lourenço, J.M.: Precise detection of atomicity violations.
In: Biere, A., Nahir, A., Vos, T. (eds.) Hardware and Software: Verification and
Testing, Lecture Notes in Computer Science, vol. 7857, pp. 8–23. Springer Berlin
/ Heidelberg (Nov 2013)

14. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for
Testing Multi-threaded Java Programs. Concurrency and Computation: Practice
and Experience 15(3-5), 485–499 (2003)

15. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: A Race and Transaction-aware Java
Runtime. In: Proc. of PLDI’07. pp. 245–255. ACM, New York, NY, USA (2007)

16. Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions
and Deadlocks. SIGOPS Oper. Syst. Rev. 37(5), 237–252 (2003)

24 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

17. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The Notions of Consistency
and Predicate Locks in a Database System. Commun. ACM 19, 624–633 (November
1976), http://doi.acm.org/10.1145/360363.360369

18. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
IPDPS’03: Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Processing. p. 286.2. IEEE Computer Society, Washington, DC, USA
(2003)

19. Fiedor, J., Křena, B., Letko, Z., Vojnar, T.: A uniform classification of com-
mon concurrency errors. In: Proceedings of the 13th International Conference
on Computer Aided Systems Theory - Volume Part I. pp. 519–526. EURO-
CAST’11, Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/10.

1007/978-3-642-27549-4_67

20. Fiedor, J., Letko, Z., Lourenço, J., Vojnar, T.: Dynamic validation of contracts
in concurrent code. In: Computer Aided Systems Theory–EUROCAST 2015. pp.
555–564. No. 9520, Springer-Verlag (2015)

21. Fiedor, J., Vojnar, T.: Noise-based testing and analysis of multi-threaded C/C++
programs on the binary level. In: PADTAD’12. pp. 36–46. ACM (2012)

22. Fiedor, J., Vojnar, T.: ANaConDA: A Framework for Analysing Multi-threaded
C/C++ Programs on the Binary Level. In: Proc. of RV’13. pp. 35–41. volume
7687 of LNCS, Springer-Verlag (2013)

23. Flanagan, C., Freund, S.N.: Type-based Race Detection for Java. In: PLDI’00:
Proceedings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation. pp. 219–232. ACM, New York, NY, USA (2000)

24. Flanagan, C., Freund, S.N.: Atomizer: A Dynamic Atomicity Checker for Multi-
threaded Programs. SIGPLAN Not. 39(1), 256–267 (2004)

25. Flanagan, C., Freund, S.N.: Type Inference Against Races. Sci. Comput. Program.
64(1), 140–165 (2007)

26. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: PLDI’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation. pp. 121–133. ACM, New York, NY, USA
(2009)

27. Flanagan, C., Freund, S.N.: The roadrunner dynamic analysis framework for con-
current programs. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering. pp. 1–8. PASTE
’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/1806672.
1806674

28. Flanagan, C., Freund, S.N., Lifshin, M., Qadeer, S.: Types for Atomicity: Static
Checking and Inference for Java. ACM Trans. Program. Lang. Syst. 30(4), 1–53
(2008)

29. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: A Sound and Complete Dynamic
Atomicity Checker for Multithreaded Programs. SIGPLAN Not. 43(6), 293–303
(2008)

30. Godefroid, P.: Software model checking: The verisoft approach. Form. Methods
Syst. Des. 26(2), 77–101 (2005)

31. Goubault, E.: Geometry and Concurrency: A User’s Guide. Mathematical. Struc-
tures in Comp. Sci. 10(4), 411–425 (2000)

32. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic Detection of Atomic-set-
serializability Violations. In: ICSE’08: Proceedings of the 30th international con-
ference on Software engineering. pp. 231–240. ACM, New York, NY, USA (2008)

http://doi.acm.org/10.1145/360363.360369
http://dx.doi.org/10.1007/978-3-642-27549-4_67
http://dx.doi.org/10.1007/978-3-642-27549-4_67
http://doi.acm.org/10.1145/1806672.1806674
http://doi.acm.org/10.1145/1806672.1806674

Discovering Concurrency Errors 25

33. Havelund, K.: Using Runtime Analysis to Guide Model Checking of Java Programs.
In: Proceedings of the 7th International SPIN Workshop on SPIN Model Checking
and Software Verification. pp. 245–264. Springer-Verlag, London, UK (2000)

34. Ho, A., Smith, S., Hand, S.: On deadlock, livelock, and forward progress. Tech.
rep., University of Cambridge (2005)

35. Holzmann, G.: Spin model checker, the: primer and reference manual. Addison-
Wesley Professional (2003)

36. Hong, S., Ahn, J., Park, S., Kim, M., Harrold, M.J.: Testing Concurrent Programs
to Achieve High Synchronization Coverage. In: Proc. of ISSTA’12. pp. 210–220.
ACM, New York, NY, USA (2012)

37. Hovemeyer, D., Pugh, W.: Finding concurrency bugs in java. In: 23rd Annual ACM
SIGACTSIGOPS Symposium on Principles of Distributed Computing (PODC
2004) Workshop on Concurrency and Programs (July 2004)

38. Joshi, P., Park, C.S., Sen, K., Naik, M.: A Randomized Dynamic Program Analysis
Technique for Detecting Real Deadlocks. In: PLDI’09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementation.
pp. 110–120. ACM, New York, NY, USA (2009)

39. Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast and Accurate Static
Data-race Detection for Concurrent Programs. In: CAV’07. pp. 226–239 (2007)

40. Kim, K., Yavuz-Kahveci, T., Sanders, B.A.: Precise Data Race Detection in a
Relaxed Memory Model Using Heuristic-Based Model Checking. In: ASE. pp. 495–
499. IEEE (2009)

41. Křena, B., Letko, Z., Tzoref, R., Ur, S., Vojnar, T.: Healing Data Races On-the-fly.
In: Proc. of PADTAD’07. pp. 54–64. ACM, New York, NY, USA (2007)

42. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (Sep 1979), http:
//dx.doi.org/10.1109/TC.1979.1675439

43. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7), 558–565 (1978)

44. Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: Pebil: Efficient static binary
instrumentation for linux. In: ISPASS’10. pp. 175–183 (2010)

45. Letko, Z., Vojnar, T., Křena, B.: Atomrace: Data race and atomicity violation de-
tector and healer. In: Proceedings of the 6th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging. pp. 7:1–7:10. PADTAD ’08, ACM, New
York, NY, USA (2008), http://doi.acm.org/10.1145/1390841.1390848

46. Lipton, R.J.: Reduction: A Method of Proving Properties of Parallel Programs.
Commun. ACM 18(12), 717–721 (1975)

47. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: MUVI:
Automatically Inferring Multi-variable Access Correlations and Detecting Related
Semantic and Concurrency Bugs. SIGOPS Oper. Syst. Rev. 41(6), 103–116 (2007)

48. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting Atomicity Violations via
Access Interleaving Invariants. In: Proc. of ASPLOS’06. pp. 37–48. ACM, New
York, NY, USA (2006)

49. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: Proc. of PLDI’05. ACM (2005)

50. Masticola, S.P., Ryder, B.G.: Non-concurrency Analysis. In: PPOPP’93: Proceed-
ings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming. pp. 129–138. ACM, New York, NY, USA (1993)

http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://doi.acm.org/10.1145/1390841.1390848

26 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

51. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms: proceedings of the International Workshop on Parallel
and Distributed Algorithms. Elsevier Science Publishers (1988), citeseer.ist.

psu.edu/mattern89virtual.html
52. Musuvathi, M., Qadeer, S., Ball, T.: CHESS: A Systematic Testing Tool for Con-

current Software. Tech. Rep. MSR-TR-2007-149, Microsoft Research (2007)
53. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding

and reproducing heisenbugs in concurrent programs. In: OSDI’08. pp. 267–280.
USENIX Association, Berkeley, CA, USA (2008), http://dl.acm.org/citation.
cfm?id=1855741.1855760

54. Naik, M., Aiken, A., Whaley, J.: Effective Static Race Detection for Java. SIG-
PLAN Not. 41(6), 308–319 (2006)

55. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI’07. pp. 89–100. ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1250734.1250746

56. Nir-Buchbinder, Y., Tzoref, R., Ur, S.: Deadlocks: From Exhibiting to Healing, pp.
104–118. Springer Berlin Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.
org/10.1007/978-3-540-89247-2_7

57. Nonaka, Y., Ushijima, K., Serizawa, H., Murata, S., Cheng, J.: A Run-Time Dead-
lock Detector for Concurrent Java Programs. In: APSEC’01: Proceedings of the
Eighth Asia-Pacific on Software Engineering Conference. p. 45. IEEE, Washington,
DC, USA (2001)

58. O’Callahan, R., Choi, J.D.: Hybrid Dynamic Data Race Detection. In: PPoPP’03:
Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice
of parallel programming. pp. 167–178. ACM, New York, NY, USA (2003)

59. Park, S., Vuduc, R.W., Harrold, M.J.: Falcon: Fault localization in concurrent
programs. In: Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1. pp. 245–254. ICSE ’10, ACM, New York, NY,
USA (2010), http://doi.acm.org/10.1145/1806799.1806838

60. Poulsen, K.: Tracking the blackout bug (2004), http://www.securityfocus.com/
news/8412

61. Pozniansky, E., Schuster, A.: Efficient On-the-fly Data Race Detection in Multi-
threaded C++ Programs. In: Proc. of PPoPP’03. pp. 179–190. ACM, New York,
NY, USA (2003)

62. Pozniansky, E., Schuster, A.: MultiRace: Efficient On-the-fly Data Race Detection
in Multithreaded C++ Programs: Research Articles. Concurr. Comput. : Pract.
Exper. 19(3), 327–340 (2007)

63. von Praun, C., Gross, T.R.: Object Race Detection. In: Proc. of OOPSLA’01. pp.
70–82. ACM, New York, NY, USA (2001)

64. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A Dy-
namic Data Race Detector for Multi-threaded Programs. In: Proc. of SOSP’97. pp.
27–37. ACM, New York, NY, USA (1997)

65. Sousa, D.G., Dias, R.J., Ferreira, C., Lourenço, J.M.: Preventing atomicity viola-
tions with contracts. arXiv preprint arXiv:1505.02951 (may 2015), http://arxiv.
org/abs/1505.02951

66. Vaziri, M., Tip, F., Dolby, J.: Associating Synchronization Constraints with Data
in an Object-oriented Language. In: POPL’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. pp. 334–
345. ACM, New York, NY, USA (2006)

67. Visser, W., Havelund, K., Brat, G., Park, S.: Model Checking Programs. In: Proc.
of ASE’00. p. 3. IEEE Computer Society, Washington, DC, USA (2000)

citeseer.ist.psu.edu/mattern89virtual.html
citeseer.ist.psu.edu/mattern89virtual.html
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://doi.acm.org/10.1145/1250734.1250746
http://dx.doi.org/10.1007/978-3-540-89247-2_7
http://dx.doi.org/10.1007/978-3-540-89247-2_7
http://doi.acm.org/10.1145/1806799.1806838
http://www.securityfocus.com/news/8412
http://www.securityfocus.com/news/8412
http://arxiv.org/abs/1505.02951
http://arxiv.org/abs/1505.02951

Discovering Concurrency Errors 27

68. Wang, L., Stoller, S.D.: Static Analysis of Atomicity for Programs with Non-
blocking Synchronization. In: PPoPP’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming. pp. 61–71. ACM,
New York, NY, USA (2005)

69. Wang, L., Stoller, S.D.: Runtime Analysis of Atomicity for Multithreaded Pro-
grams. IEEE Trans. Softw. Eng. 32(2), 93–110 (2006)

70. Williams, A., Thies, W., Ernst, M.D.: Static Deadlock Detection for Java Libraries.
In: ECOOP 2005—Object-Oriented Programming, 19th European Conference. pp.
602–629. Glasgow, Scotland (July 27–29, 2005)

71. Wu, J., Tang, Y., Hu, G., Cui, H., Yang, J.: Sound and Precise Analysis of Paral-
lel Programs through Schedule Specialization. In: Proc. of PLDI’12. pp. 205–216.
ACM, New York, NY, USA (2012)

72. Xu, M., Bod́ık, R., Hill, M.D.: A Serializability Violation Detector for Shared-
memory Server Programs. SIGPLAN Not. 40(6), 1–14 (2005)

73. Yang, Y., Gringauze, A., Wu, D., Rohde, H.: Detecting Data Race and Atomicity
Violation via Typestate-Guided Static Analysis. Tech. Rep. MSR-TR-2008-108,
Microsoft Research (2008)

74. Yu, J., Narayanasamy, S.: A case for an interleaving constrained shared-memory
multi-processor. SIGARCH Comput. Archit. News 37(3), 325–336 (2009)

75. Yu, J., Narayanasamy, S., Pereira, C., Pokam, G.: Maple: A Coverage-driven Test-
ing Tool for Multithreaded Programs. In: Proc. of OOPSLA’12. pp. 485–502. ACM,
New York, NY, USA (2012)

76. Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. SIGOPS Oper. Syst. Rev. 39(5), 221–234 (2005)

77. Zhang, W., Sun, C., Lu, S.: Conmem: detecting severe concurrency bugs through
an effect-oriented approach. In: ASPLOS ’10: Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming languages and operating
systems. pp. 179–192. ACM, New York, NY, USA (2010)

	 Discovering Concurrency Errors
	Introduction
	Errors in Concurrency
	Classification of Concurrency Errors
	Monitoring of Concurrent Program Execution
	Detection of Atomicity Errors
	Detection of Data Races
	Detection of Atomicity Violations

	Detection of Deadlocks
	Detection of Other Errors in Concurrency
	Boosting Detection of Errors in Concurrency
	Conclusions

