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Brno University of Technology
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ABSTRACT
The paper proposes a novel algorithm called AtomRace for
a dynamic detection of data races. Data races are detected
as a special case of atomicity violations on atomic sections
specially de�ned to span just particular read/write instruc-
tions and the transfer of control to and from them. A key
ingredient allowing AtomRace to e�ciently detect races on
such short atomic sections is a use of techniques for a care-
ful injection of noise into the scheduling of the monitored
programs. The approach is very simple, fully automated,
avoids false alarms, and allows for a lower overhead and
better scalability than many other existing dynamic data
race detection algorithms. We illustrate these facts by a set
of experiments with a prototype implementation of Atom-
Race. Moreover, we also show that AtomRace can be easily
extended to not only detect races, but also to automatically
heal them. Further, AtomRace can also be applied to de-
tect atomicity violations on more general atomic sections
than those used for the data race detection. They can be
de�ned by the user or obtained by some static analysis.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Veri�cation

General Terms
Veri�cation

1. INTRODUCTION
Concurrent, or multi-threaded, programming has become
popular. New technologies such as multi-core processors
have become widely available and cheap enough to be used
even in common computers. Thus, true concurrency moves
from computing centres to everyday life. However, as con-
current programming is far more demanding, its increased
use leads to a signi�cantly increased number of bugs that ap-
pear in commercial software due to errors in synchronization

of its concurrent threads. This stimulates a more intensive
research in the �eld of detecting and removing of such bugs.

This article proposes an architecture for detecting and on-
the-�y healing of data races and atomicity violations in Java.
The architecture is based on a novel algorithm, which we call
AtomRace. AtomRace detects only true bugs and does not
produce false alarms�at least in the case of data races. In
the case of atomicity problems, the same result is achieved if
the algorithm is provided with a correct de�nition of atomic
sections of the code. If they are not provided, they can
be approximated either via static or dynamic analysis, of
course, with a certain loss of precision. The algorithm scales
well and produces only a moderate overhead which allows it
to be used not only during testing but also in the �eld.

The article is organized as follows. The rest of this sec-
tion contains a short overview of state of the art in data
race and atomicity violation detection and healing followed
by a short introduction of our approach. Section 2 describes
the proposed architecture, including the way how the Atom-
Race algorithm is incorporated into a self-healing machin-
ery. The AtomRace detection algorithm is introduced in
Section 3, followed by a description of the static analysis
used for obtaining the correct atomicity sections of the ap-
plication. Healing capabilities of the AtomRace extensions
are discussed in Section 5. Finally, a few experiments docu-
ment the main outcomes of our solution.

1.1 Data Race and Atomicity Detection and
Healing Techniques

Veri�cation problems for programs written in general pro-
gramming languages are usually undecidable, which is, of
course, the case of race detection too. Therefore, tools for
data race and atomicity violation detection are based on
detecting data races dynamically when only one execution
trace is analyzed, or statically, using various approximative
and/or semi-algoritmic solutions. Up to now, many di�er-
ent approaches of this form have been proposed. Below, we
brie�y summarise some of them.

Most current dynamic analysis tools are based on tracking
the so-called locksets using the observation that if every sha-
red variable is protected by a lock, there is no possibility of
operations on this variable being simultaneous, and there-
fore a race is not possible. A popular such algorithm is
Eraser [25], later improved with an ownership model [30].
However, a problem of lockset-based algorithms is a high



number of false alarms when other than a lock-based syn-
chronization is used. One way how to reduce the number
of false alarms is to use the Lamport's happens-before re-
lation [14]. A combination of the happens-before relation
with the lockset-based approach is, e.g., used in [3, 21, 6,
32, 13]. The works [21] and [32] are based on using the
so-called vector clocks [17] monitoring the happens-before
relation. Probably, the most advanced algorithm combining
the happens-before relation with locksets is the Goldilocks
algorithm [6], which not only shrinks the so-far computed
locksets while monitoring an evolving run of a program, but
also allows them to grow.

Some further works are then motivated by the fact that data
race freedom does not imply correct synchronization. A con-
cept of high-level data races has been described in [1], to-
gether with a method of detecting them using the so-called
view consistency. In [29], a principle of method consistency
extends the view consistency to accommodate the scope of
methods as a consistency criterion. In [9], a similar notion
of method atomicity is studied. As the granularity on the
level of methods may be too coarse, yet other approaches
have then been proposed based on the principle of serializ-
ability [31, 16, 28], which exploits the idea that two consec-
utive accesses from one thread to a shared variable should
not be interleaved with an unserializable access from another
thread. In particular, the AVIO tool [16] introduces a notion
of access interleaving invariants (AI invariants) identifying
a number of patterns how concurrent threads can access a
shared variable, which are then classi�ed according to their
possible undesirable e�ects.

On the other hand, numerous static analyses have been
introduced to detect data races and atomicity violations.
To infer violations in the synchronization, they use, e.g.,
primarily �ow insensitive type-based systems [8, 23, 24] or
mostly �ow sensitive static versions of lockset algorithms [7,
19, 12]. Further, there also exist works for detecting data
races using specialised model checking techniques�cf., e.g.,
[10, 5].

All the previous work focused only on detecting data races
and atomicity violation. We have focused in our previous
work also on healing them on-the-�y [13]. ToleRace [18]
also tries to detect and remove the detected races from the
application by duplicating of shared data inside a critical
section and so provides an illusion of atomicity when the
shared data is updated. If a con�ict among copies occurs,
ToleRace can in some cases solve it and so hide or tolerate
the problem.

1.2 The AtomRace Approach
AtomRace is a new dynamic data race and atomicity vio-
lation detection algorithm. As for detecting data races, it
is based directly on the de�nition of a (low-level) data race
which says that a data race occurs if two or more threads
access a shared variable and at least one access is for writing
and there is no explicit synchronization which prevent these
accesses from being simultaneous. Thus, a data race can
be detected by �nding a situation when such an access sce-
nario occurs. In AtomRace, this is detected as a special case
of an atomicity violation when atomic sections are de�ned
simply as sequences of instructions BeforeAccessEvent, i,

AfterAccessEvent where i is a read or write instruction on
shared data and BeforeAccessEvent/AfterAccessEvent
are special instructions that are added by instrumentation
before/after i. Of course, a data race happens only when at
least one of two colliding atomic sections is based on a write
instruction. The probability of spotting a collision of this
kind in a regular program is low, however, we exploit noise
injection techniques [27, 4] that may signi�cantly increase
this probability�which is actually proven to be the case
by our experiments. Note that this mechanism of detecting
data races does not generate false alarms.

Further, the atomic sections monitored by AtomRace may
be extended to span more subsequent instructions on a sha-
red variable to detect not only data races but other kinds
of problems in synchronization. Such sequences may be ob-
tained from the AI invariants, may be prede�ned by the
user, or obtained by some static analyses directed by look-
ing for standard patterns of code sections to be performed
atomically (e.g., testing a shared variable to be non-null and
sub-sequently dereferencing it, etc.).

Unlike many other approaches, AtomRace does not depen-
dend on the kind of synchronization primitives used in the
analysed program. It naturally supports all types of syn-
chronization (including user de�ned synchronization primi-
tives) because it does exploit the semantics of such mech-
anisms, but directly checks the correctness of a program
execution. AtomRace can be used not only for detecting
synchronization problems, but we also extend it to heal the
detected problems either by adding synchronization or in�u-
encing the Java virtual machine scheduler [13]. Additional
advantage of AtomRace is a low overhead introduced to the
monitored application and the fact that it does not generate
false alarms when detecting data races. The number of false
alarms produced by AtomRace during more general atom-
icity violation detection depends on the correctness of the
prede�ned atomic sections.

2. ARCHITECTURE
The proposed architecture is depicted in Figure 2 and con-
sists of three modules. The execution monitoring module
watches the program and triggers prede�ned events occurred
during the execution. Additional information describing the
event are collected and the event is then passed to the anal-
ysis engine. The analysis engine uses AtomRace algorithm
to decide if a problem occurs. Finally, the healing logic can
in�uence the behavior of the program to prevent the prob-
lem manifestation. In the following, we look at the modules
in more detail.

Execution monitoring must provide the analysis engine
with the following information about each event: (1) the
thread which the event belongs to, (2) the shared variable
(if any) that was accessed within the event, (3) type of the
event determined by the executed instruction, and (4) local-
ization of the event in the application code. For each access
of shared variable, two events are needed: beforeAccessEv-
ent which is invoked right before the access instruction and
afterAccessEvent which is invoked right after the access in-
struction.



Figure 1: Architecture diagram

The analysis engine uses AtomRace algorithm to detect
data races and atomicity violations in the stream of events
provided by the monitoring module. In the case of atomic-
ity violation detection, the correct atomicity is determined
in advance and is available to AtomRace from the external
repository. The detection algorithm and the way how to ob-
tain correct atomicity in advance will be described later in
Sections 3 and 4.

The healing logic module controls the in�uencing of the
execution. It can be done by safe but not very e�cient
in�uencing of Java scheduler or by more e�ective but po-
tentially dangerous adding a new synchronization lock. The
healing has to follow the restriction given by correct atom-
icity to reach the goal. Again, the atomicity information
is available in the external repository. The healing will be
described in more detail in Section 5.

We expect the following practical usage of the AtomRace.
At the end of the application development, the program is
analyzed and the set of atomicities that should be followed
is determined and stored to the external repository. The
formal veri�cation like static analysis or model checking is
then used in order to check whether it is safe to enforce par-
ticular atomicities for the bug healing. For instance, one
should check that enforcing the atomicity of a section of
code by introducing an addition lock does not cause a dead-
lock. The atomicity repository is then distributed together
with the application to the customer. In the �eld, the pro-
gram is executed together with AtomRace which watches
the execution and automatically heals detected bugs.

3. THE ATOMRACE ALGORITHM
AtomRace is an algorithm for detecting data races and atom-
icity violations at runtime. Data race detection in Atom-
Race is fully automated and self-contained. For atomicity
violation detection, AtomRace expects the atomic sections
that should be monitored to be given to it as a part of
its input. As we discuss in Section 4, they can be manu-
ally de�ned by the user or obtained by some further static
and/or dynamic analysis. In fact, data race detection is

implemented in AtomRace as a special case of atomicity
violation detection on atomic sections that are speci�cally
de�ned for this purpose.

AtomRace does not track the use of any concrete synchro-
nisation mechanisms�instead, it solely concentrates on the
consequences of their absence or incorrect use. That is why
AtomRace can deal with programs that use any kind of syn-
chronisation, including non-standard synchronisation mech-
anisms de�ned just for the concrete case. AtomRace may
miss data races or atomicity violations, but, on the other
hand, it does not generate any false alarm in the case of
data race detection nor in the case of atomicity violation
detection (wrt. the atomic sections provided to it).

We expect AtomRace to work on Java bytecode1 instru-
mented as follows: for each shared variable v (correspond-
ing to a �eld of a certain class in Java) that is to be mon-
itored, we assume each access to v at a location loc to
be preceded by a code fragment that generates an event
beforeAccessEvent(v, loc) and to be followed by a code
fragment that generates an event afterAccessEvent(v, loc).
We view the code fragments generating these events as an
implementation of special pseudo-instructions denoted as
beforeAccess(v, loc) and afterAccess(v, loc), and we allow
atomic sections to span from/to such instructions. More-
over, we also allow the code to be instrumented to gener-
ate events atomExitEvent(v, loc). As before, we view the
code generating such events as an implementation of a spe-
cial pseudo-instruction referred to as atomExit(v, loc) in the
following. This kind of events is used in special cases of the
control �ow (like exception handling) when it does not make
sense to continue with checking the current atomic section.
1We refer to Java here, but the basic principles of the al-
gorithm can be used in the context of other programming
languages too. The only thing that is Java-specific is the
treatment of the special cases discussed at the end of the
section.



3.1 Data Race Detection
A data race is de�ned as a sequence of two accesses to the
same shared variable from di�erent threads provided that
(1) these accesses are not separated by any synchronisation,
and (2) at least one of them is a write access. In AtomRace,
such a situation is detected by looking for a violation of
primitive atomic sections of the form beforeAccess(v, loc);
read/write(v); afterAccess(v, loc) where read/write(v) is
any instruction reading or writing a shared variable v. It
is clear that if such a primitive atomic section based on
a read instruction is broken by a write instruction, or if
a primitive atomic section based on a write instruction is
broken by a read or write instruction, a data race happens
because there is for sure no synchronisation used neither be-
tween beforeAccess(v, loc) and read/write(v) nor between
read/write(v) and afterAccess(v, loc).2 In order to signif-
icantly increase the probability of detecting data races via
violating the described primitive atomic sections, which are
very short, we use techniques of noise injection discussed in
Section 3.3.

Data race detection based on the above idea can be im-
plemented in a very simple way within handling the events
generated by beforeAccess(v, loc) and afterAccess(v, loc)
as we show in Figure 2. For each shared variable v, we
de�ne a variable Access(v) which is null in the case v is
not being currently accessed by any thread, and which con-
tains a couple (t, loc) otherwise, where t is the thread that
is accessing v at the location loc. In the latter case, to sim-
plify the description, we use Access(v).t and Access(v).loc
to refer to the thread and location stored in Access(v), re-
spectively. Given a location loc ∈ Loc, we use a function
getMode : Loc → {read, write} to obtain the way v is ac-
cessed at loc. We use tcurrent to refer to the currently exe-
cuting thread.

Initialisation:
∀v ∈ SharedV ariables : Access(v) = null;

Computation:
switch (AtomRaceEvent) {
case : beforeAccessEvent(v, loc)

if (Access(v) == null) then
Access(v) = (tcurrent, loc);

else
if ((getMode(Access(v).loc) == write) ||

(getMode(loc) == write)) then
RACE DETECTED

case : afterAccessEvent(v, loc)
if (Access(v).t == tcurrent) then

Access(v) = null;
}

Figure 2: Data race detection in AtomRace

Let us, however, note that the Algorithm in Figure 2 is a lit-
tle simpli�ed. In reality, it has to be re�ned a bit to cope
with some special situations that may arise in Java. First,

2Intuitively, the primitive atomic sections are defined such
that they start after the instruction preceding a given
read/write instruction and stop before the instruction fol-
lowing it.

variables de�ned as volatile [22] are intended for use in
cases where data races are tolerable and so, they should not
be monitored by the algorithm. Next, Java uses a special
<clinit>method to assign implicit values to static variables
when they are used for the �rst time. This initialisation re-
quires a write access which should, however, not be taken
into account when looking for data races. Finally, the algo-
rithm should not track shared variables declared as final

because their values cannot be changed during the execu-
tion.

Another feature of AtomRace that deserves a comment is
its ability to give the user a very valuable diagnostic infor-
mation in case a data race is detected. Namely, the user
can be informed about the particular shared variable (i.e.,
in Java, about the class instance and the �eld name) on
which a data race was detected and about the two program
locations whose concurrent execution lead to the data race.
Such a piece of information is also very useful within the
self-healing process.

3.2 Atomicity Violation Detection
We now extend the above presented algorithm such that it
allows us to deal with more general atomic sections. How-
ever, as above, we still assume an atomic section to be asso-
ciated with a single shared variable only. For a shared vari-
able v, we view an atomic section as a code fragment which
is delimited by a single entry point and possibly several end
points. The intended meaning of an atomic section over
a variable v is that when a thread t starts executing within
the atomic section, no other thread should access v before t
reaches an end point of the atomic section (with the excep-
tion of some kinds of accesses that may be explicitly allowed
for the given atomic section). Quite naturally, we assume
the entry point of an atomic section to correspond to some
beforeAccess(v, loc) instruction and the end points to cor-
respond to some afterAccess(v, loc′) or atomExit(v, loc′)
instructions.

To allow a speci�cation of which accesses from other threads
should not be considered to break an atomic section when it is
being executed by some tracked thread, we associate a (pos-
sibly empty) subset of the set {read, write} with each end
point of each atomic section. This subset indicates which
kind of operations can be performed by other threads on v
while a tracked thread is running between the entry point of
a given atomic section and a given end point of this atomic
section. As discussed in Section 4, we can use this infor-
mation, e.g., to allow not only checking of pure atomicity,
but to allow for handling not purely atomic, but serializable
accesses (in the sense of [16]) as well.

When dealing with several atomic sections associated with
the same variable v, we require that these sections do not
overlap in any other way than possibly on their entry and
end points. More precisely, the only allowed overlap is that
one atomic section has an entry point beforeAccess(v, loc)
while the other has an end point afterAccess(v, loc) for the
same location loc. Due to this requirement, a process can
only be in one atomic section at a time (with the exception of
leaving one section and at the same time entering another).



As shown in Figure 3, detection of atomicity violation can
again be implemented in a simple way within handling the
events beforeAccessEvent(v, loc), afterAccessEvent(v, loc),
and atomExitEvent(v, loc). For the purpose of describing
the algorithm, we expect the set of atomic sections asso-
ciated with a variable v that are supposed to be tracked
and that satisfy the conditions described above to be en-
coded in a ��attened� way as a set Atomic(v) of triples
(locentry, locend, A) where A ⊆ {read, write} and locentry,
locend are locations corresponding to entry and end points
of particular branches of the atomic sections encoded by
Atomic(v). We use the notation Atomic(v).A(loc1, loc2) to
refer to the set A in (loc1, loc2, A) ∈ Atomic(v).

For each shared variable v whose atomic sections we intend
to monitor, we maintain the set Access(v) used already in
Figure 2. Moreover, we also build a set SuspectAccess(v)
which contains types of accesses to v that came from other
threads than the one whose execution in an atomic section
over v we are currently monitoring. The algorithm works in
such a way that if a thread t is entering an atomic section
over a variable v over which no atomic section is currently
being monitored, we start monitoring accesses to v from
other threads, and once t is leaving the atomic section via
some end point, we check that no undesirable access to v
from a thread other than t has happened. Note that we
always monitor atomicity of an atomic section associated
with a certain variable v just for a single thread�the one
that entered a critical section over v while no other thread
was currently executing an atomic section over v.

Initialisation:
∀v ∈ SharedV ariables :

Access(v) = null, SuspectAccess(v) = ∅;

Computation:
switch (AtomRaceEvent) {
case : beforeAccessEvent(v, loc)

if (Access(v) == null) then
if (∃lend, A : (loc, lend, A) ∈ Atomic(v)) then

Access(v) = (tcurrent, loc);
else

if (Access(v).t != tcurrent) then
add (tcurrent, loc) to SuspectAccess(v);

case : afterAccessEvent(v, loc), atomExitEvent(v, loc)
if (Access(v).t == tcurrent &&
∃A : (Access(v).loc, loc, A) ∈ Atomic(v)) then

if (SuspectAccess(v) != ∅) then
A = Atomic(v).A(Access(v).loc, loc);
foreach (ts, ls) ∈ SuspectAccess(v) do

if (getMode(ls) 6∈ A) then
ATOMICITY VIOLATION DETECTED

Access(v) = null;
SuspectAccess(v) = ∅ ;

}

Figure 3: A simplified version of the AtomRace al-
gorithm for detecting atomicity violation

Note that the algorithm shown in Figure 3 is a bit simpli-
�ed wrt. the above described functionality. In particular,
we have left out the treatment of overlapped atomic sec-
tions, which can, however, be added in a straightforward

way into the code handling the beforeAccessEvent(v, loc)
and afterAccessEvent(v, loc) events.

The algorithm can be easily extended to cope with circu-
lar atomic sections, i.e. atomic sections where locentry =
locend = loc, but we do not want the atomic section to ter-
minate just after �ring the statement at the location loc. In
such a case, we tag such a section in a special way, and the
algorithm does not leave the atomic section during the �rst
occurrence of afterAccessEvent at loc.

Finally, the algorithm can also be extended to support re-
cursive atomic sections by counting how many times the
section has been entered and left and by terminating the
atomic section only when these numbers are equal.

3.3 Race and Atomicity Violation Exhibition
The AtomRace algorithm was originally developed for de-
tecting data races and atomicity violations for healing the
problems at runtime. Therefore, the aims of the algorithm
slightly di�er from the previous approaches. The �rst dif-
ference is not to �nd as many potential problems as possible
(with the chance of false alarms) but to report only true
alarms in order to invoke the expensive healing mechanisms
only when some problem really occurs. The next essential
aim of the algorithm is to cause as small overhead as possible
due to the intent to use it in the �eld. This is achieved by
using less shared data structures than in many other race de-
tection algorithms. Despite that, this algorithm can be also
very useful in bug hunting within the application testing if
suitable noise injection is used.

As we have already mentioned, the problem with using Atom-
Race to �nd as many data races and atomicity violations as
possible is that the considered atomic sections may be very
short and the probability of observing a real con�ict on them
may be very low. However, the probability may be signi�-
cantly increased by suitably in�uencing the execution of the
program what is exactly the purpose of noise injection. In
general, noise injection is a technique that forces di�erent
legal interleavings for particular executions of a test in or-
der to increase the concurrent coverage. In fact, it simulates
the behaviour of various possible schedulers. The noise can
be injected at any instrumented point (e.g., during the exe-
cution of beforeAcces(v, loc) or afterAccess(v, loc)) of the
tested software. When such a point is reached, the noise
heuristics decides�randomly or based on a speci�c bug-
�nding technique�if it injects some kind of delay or other
kind of in�uencing the execution (like a context switch)
there or not.

The introduction of noise can help the detection of races
and/or atomicity violations in two ways: �rstly, di�erent
legal thread interleavings are enforced. Secondly, randomly
chosen atomic sections are executed for a longer time period
and therefore the probability that a con�ict will occur on
them is increased. Both of this helps to see con�icts that
would not be seen otherwise. Of course, the probability of
seeing a data race and/or atomicity violation can then be
rapidly increased also if a true multiprocessor computer is
used for testing.



In our prototype implementation of AtomRace, we use the
ConTest infrastructure [4, 20, 27] for instrumentation, han-
dling the generated events, as well as for noise injection.
Based on our experience with ConTest and in�uencing the
Java scheduler for self-healing purposes [13], we have pro-
posed three noise heuristics for increasing the probability
of detecting data races and/or atomicity violations. All of
them are based on injecting calls of Thread.sleep() inside
atomic sections to increase their duration followed by calls
of Thread.yield() to force a thread switch. The proba-
bility of noise injection in the given location is driven by
the parameter that ranges from 0 (=never) to 1000 (=ev-
ery time). The duration of sleep is given by the number of
milisecond that sleep should last. The three heuristics we
have implemented are the following:

• A random heuristics. This is the simplest heuristics
that can be used during a normal testing when there is
no suspicion that something wrong is happening in the
program. It injects noise to randomly chosen atomic
sections.

• A variable-based heuristics. This heuristics can be
used when some concrete variable is suspected to be
accessed with a wrong synchronisation. The noise is
injected to the sections associated with instances of
the suspected variable only.

• A heuristics based on program locations. This approach
allows the user to identify atomic sections which are
suspected to be problematic. The noise is injected to
the given program locations only.

The second and third heuristics can be also used for testing
and debugging. If AtomRace detects a race or an atomicity
violation in one run of the tested software, the developer can
use a noise injection focused on the suspected variable or the
problematic program locations to increase the probability of
a repeated manifestation of the detected problem.

4. OBTAINING ATOMICITY
A correct identi�cation of the atomic sections to be moni-
tored is crucial for our detection and healing mechanisms to
work properly. Such atomic sections can be de�ned either
manually by the user or obtained automatically via static
and/or dynamic analysis.

Below, we propose two concrete static analyses for deriving
the atomic sections to be monitored. The so-called pattern-
based static analysis looks for appearances of typical pro-
gramming constructions that programmers usually expect
to execute atomically. The second static analysis builds on
the access interleaving (AI) invariants with the serializabil-
ity notion from [16]. Moreover, we also discuss a possibility
of using a subsequent dynamic analysis to identify candi-
dates for atomic sections which are likely not to correspond
to real atomic sections and that are thus to be dropped from
the set of monitored atomic sections.

Before going into more detail of the mentioned static and
dynamic analyses, let us note that like in the case of data
races, it does not make sense to consider atomic section over

final variables whose values do not change. Further, it
is not needed to monitor atomic sections laying within the
<clinit> method, which is guaranteed by the JVM to be
executed atomically.

4.1 Pattern-based Static Analysis
Pattern-based static analysis identi�es blocks of code that
are likely to be intended to execute atomically based on look-
ing for some typical programming constructions, for which
such an assumption is usually done. Two examples of such
patterns are the so-called load-and-store and test-and-use
patterns [13].

The load-and-store pattern originates from an assignment
statement that is translated into the bytecode as a sequence
of instructions consisting of one or more load instructions
on a shared variable v followed by one store instruction on
the same variable (as, e.g., in the case of the x++ state-
ment). The atomic section covering this pattern starts at
beforeAccessEvent(v, loc1) of the �rst load instruction on v
and ends at afterAccessEvent(v, loc2) of the store instruc-
tion on v. This tuple of locations can safely be interleaved
with read accesses on v, and hence the A set associated with
loc1 and loc2 is A = {read}. To cover the possibility of an
exception before the control reaches loc2, we also allow the
atomic section to end by an atomExitEvent(v, loc3) event
where loc3 corresponds to the nearest location of the appro-
priate exception handling branch. With this end point of
the atomic section, we associate the set A = {read, write}
meaning that we do not check for atomicity on the exception
handling branch.

The test-and-use pattern is a conditional statement where
the condition is checked at the beginning of the statement
and then the result is used inside the statement without
making sure that the condition still holds (as, for instance, in
the statement if (x != null) { x.next = ... }). Such
a construction is translated into the bytecode as a sequence
of instructions consisting of one load instruction on a shared
variable, a branching instruction, and one or more further
load instructions. The atomic section in this case starts at
beforeAccessEvent of the �rst load instruction and ends
at the afterAccessEvent of the last load instruction in
the branch of the control �ow graph (CFG) that is exe-
cuted if the condition holds. Such an atomic section can be
safely interleaved with read accesses, and so A = {read}.
The other branch of the condition and all the exception
branches have to be covered by using atomExitEvent with
A = {read, write}.

More similar patterns can, of course, be de�ned and used.

4.2 AI Invariant-based Static Analysis
Inspired by the notion of AI invariants [16], we may stat-
ically identify couples of two immediately consequent ac-
cesses to a shared variable v in the interprocedural CFG
as candidates for atomic sections. A dynamic analysis (de-
scribed later) can then be used to remove the candidate
sections which do not correspond (or do not seem to cor-
respond) to code sections that should really be executed
atomically.



Interleaving Description
scenario

readlocal The interleaving write makes
writeremote the two reads have different views

readlocal of the same memory locations.
writelocal The local read does not get

writeremote the local result it expects.
readlocal

writelocal Intermediate result that
readremote assumed to be invisible to other

writelocal threads is read by a remote access.
readlocal The local variable relies on a value

writeremote from the preceding local read that
writelocal is then overwritten by the remote write.

Table 1: Unserializable interleaving scenarios

Note that while building the atomic sections based on iden-
tifying couples of consecutive accesses to the same shared
variable, we often obtain atomic sections with several di�er-
ent end points based on afterAccessEvent due to the possi-
ble branching of the code. For each end point, we de�ne the
appropriate A set using the notion of serializability de�ned
in [16] and listed in Table 1. In fact, Table 1 lists unserializ-
able scenarios, and so we de�ne the A sets as complements
of the situations covered by the table. Hence, for example,
if getMode(loc1) = read and getMode(loc2) = read for an
entry point loc1 and an end point loc2, the set A will be
A = {read}.

Note also that the atomic sections de�ned using the notion
of AI invariants overlap, i.e., an end location of a previous
atomic section is the entry location of the following atomic
section.

4.3 Dynamic Refinement of Atomic Sections
Dynamic analysis can be used to prune the set Atomic(v)
obtained from the user or by static analyses such as the
ones mentioned above. The idea is to remove from the
set the candidate atomic sections (or the branches of such
atomic sections) which are not really intended to be exe-
cuted atomically�similarly as in [16].

Assume that we have a testing oracle which can distinguish
between correct and incorrect executions of the applica-
tion, e.g., based on assertions, checksums, or output analy-
sis. Then we run the application several times and during
each run we check which atomic sections, or, more precisely,
which branches of atomic sections given by the appropri-
ate entry and exit points, were violated and collect them in
a set V iolatedAtomic(v). If a run is classi�ed by the ora-
cle as correct, the set Atomic(v) is changed for each shared
variable v as follows: for each pair of entry and exit loca-
tions from the set V iolatedAtomic(v), the set A is changed
to A = {read, write} which causes the algorithm not to
warn about atomicity violation in the given part of the code
next time. The pruning ends when the set Atomic(v) is not
changed for any shared variable v in any run out of a prede-
�ned number of consecutive correct executions. Finally, all
the entry-exit pairs which were not seen during the pruning
process are removed from the set of monitored atomicities
by setting their set A to {read, write}. For covering more

execution interleavings, noise injection can be used during
the pruning process as well.

After the pruning, the set Atomic(v) often contains atomic
sections which AtomRace can never report as violated be-
cause all their end points have the set A = {read, write}.
For performance reasons, such atomic sections are, of course,
to be completely removed from Atomic(v).

5. SELF-HEALING
Data races and atomicity violations may be corrected man-
ually, but one can also go a step further and try to correct
(�heal�) them automatically at the runtime. For example, in
[13], several techniques for self-healing of data races detected
using a modi�cation of the Eraser algorithm [25] have been
proposed. These techniques are not able to remove a bug
from the code but they are able to prevent its manifestation.

The �rst class of self-healing techniques studied in [13] is
based on a�ecting the scheduler. Before executing a prob-
lematic part of code, the currently running thread invokes
the Thread.yield() method, which causes a context switch.
Next time, the thread gets an entire time window from the
scheduler and so it can pass the problematic code section
without an interruption with a much higher probability.
This technique can also be used in an opposite way. If some
thread t is accessing a shared variable or is executing some
atomic section, all other threads can detect this situation
and call Thread.yield() or Thread.sleep() and allow t to
�nish the problematic piece of code. The scheduler can also
be in�uenced by changing priorities of threads. A thread
increases its priority before a problematic part of code and
decreases the priority to the original value after the prob-
lematic section.

The healing techniques based on in�uencing the scheduling
do not guarantee that a detected problem will really be com-
pletely removed, but they can decrease the probability of its
manifestation. These techniques do not work well if the sec-
tion whose atomicity is to be enforced is longer or if the
application is running in a true concurrent multi-processor
environment. On the other hand, these techniques intro-
duce a reasonable overhead. Moreover, due to the nature of
the approach, the healing is safe from the point of view that
it does not cause new, perhaps even more serious problems
(such as deadlocks).

The second class of self-healing techniques studied in [13] in-
jects additional healing locks to the application. Every time
a critical variable on which a possibility of a data race was
detected is accessed, the accessing thread must �rst lock
a specially introduced lock. Such an approach guarantees
that the detected problem cannot manifest anymore. How-
ever, introducing a new lock can lead to a deadlock, which
can be even more dangerous for the application than the
original problem. Moreover, a frequent locking can cause
a signi�cant performance drop in some cases.

Actually, the AtomRace algorithm was inspired by the self-
healing technique that consists in introducing additional syn-
chronisation to the application. Therefore, self-healing capa-
bilities can be introduced to AtomRace in a straightforward
way: the prede�ned atomic sections can be enclosed by the



use of healing locks, or one can add some code in�uencing
the scheduler at their entry and end points.

5.1 Healing Assurance
As was mentioned before, the use of additional healing locks
can reliably heal a detected data race or atomicity violation,
but it can cause a deadlock. As a part of our further work
on the subject, we are now studying methods how to avoid
such a scenario. Let us mention the basic ideas that we are
developing as they are related to the AtomRace algorithm.
The �rst idea is to use static analysis and the second one is to
use dynamic deadlock detection or prevention mechanisms.

Static analysis can be used for healing assurance as follows.
Firstly, atomic sections to be monitored by AtomRace are
inferred. Then, one can statically check (in an approximate
way) whether there are some synchronisation actions within
them. If an atomic section contains a possibility of any kind
of synchronisation, it is considered as potentially danger-
ous for healing via additional locks as their use could lead
to a nested synchronisation and hence a possible deadlock.
Such atomic sections will therefore preferably not be healed
using additional synchronisation.

We have implemented a �rst (intraprocedural) prototype of
the above static analysis using FindBugs [11, 2]. It takes
a list of atomic sections and checks whether there is no
bytecode instruction that can potentially cause a synchro-
nisation in between of an entry and an end location of an
atomic section. Currently, monitorenter, invokevirtual,
invokestatic, invokespecial, and invokeinterface are
considered as potentially problematic instructions. This is
a conservative overapproximation because many methods
executed by the invocation instructions will be synchroni-
sation safe. Therefore we are currently working on an im-
plementation of an interprocedural analysis which will com-
pute instructions transitively reachable from a given atomic
section via method invocations.

In the case of using dynamic analysis for healing assurance,
one can proceed in a di�erent way, namely combine data
race and atomicity violation healing with a suitable dynamic
deadlock detection or prevention mechanism (such as the
one recently proposed in [26] and implemented on top of
ConTest). In such a case, atomic sections are inferred, and
the application is executed and monitored by AtomRace.
When some data race or atomicity violation is detected, its
healing is started, but at the the same time, a dynamic
deadlock detection or prevention mechanism is activated.
If the deadlock detection or prevention algorithm detects
a deadlock (or a possible deadlock) due to the use of healing
locks, it releases the healing locks (or skips locking them).

6. PROTOTYPE IMPLEMENTATION AND
EXPERIMENTS

We have implemented data race and atomicity violation de-
tection tool based on AtomRace algorithm. The tool is im-
plemented in Java on top of ConTest [4]�a concurrency
testing tool which provides us with a listeners architecture
[20], static bytecode instrumentation, and noise injection
heuristics [27]. Our static analyses are implemented in Find-
Bugs [11, 2]�a Java bytecode static analysis tool. We have

also implemented the architecture covering execution mon-
itoring (done by ConTest) and healing blocks needed for
self-healing as they were depicted in Figure 2.

ConTest tool instruments not only accesses to shared vari-
ables (�elds in Java) and array cells accesses but also syn-
chronization related events, e.g., monitors and threads events,
and code coverage related events, e.g., basic blocks and
methods entry points, while the AtomRace uses only before
and after shared variables and array cells accesses instru-
mentation points. ConTest provides us at each instrumenta-
tion point with most of information needed for analysis but
some of them we have to compute on-the-�y, e.g., whether
the array cell belongs to shared or local array. Other in-
strumentation points can be used for placing of our special
atomExitEvent.

We have also fully implemented all three noise generating
heuristics presented in Section 3.3. The di�erence between
our and ConTest injection heuristics is in the place where
the noise is placed. ConTest injects noise with the intention
to see di�erent access interleavings and/or better synchro-
nization coverage but it cannot take into account the atomic
sections used by AtomRace. Our heuristics put the noise di-
rectly between beforeAccessEvent and afterAccessEvent
and therefore it increases the duration of monitored atomic
sections.

We have only partially implemented static analyses for ob-
taining atomicity as they were presented in the previous
section. Currently, we support only load-and-store atom-
icity pattern for pattern based static analysis and only in-
traprocedural static analysis for static inferring AI invari-
ants. The interprocedural calls are in our case replaced with
atomExitEvents and thus, not checked by the algorithm.

6.1 Data Race Experiments
We have evaluated AtomRace on several examples includ-
ing small toy example of bank account simulating program
with improper synchronization, IBM web crawler algorithm
embedded in an IBM product with 19 classes and 1200 lines
of code, and Java TIDorb project with 1400+ classes. The
Java TIDorb is a CORBA-compliant ORB (Object Request
Broker) product that is part of the MORFEO Community
Middleware Platform. We have used several tests created
by the developers and available in the project repository. In
the following, we present the results achieved only for one of
them�echo concurrent test. It starts the server for handling
incoming requests and then starts a client which constructs
several client threads (10 in our case) each sending requests
(40 in our case) to the server. Results for other tests will be
available in [15].

In bank example, AtomRace worked well and the data races
were correctly detected. AtomRace also identi�ed data race
already known in web crawler in all executions it was seen.

In the case of TIDorbj echo concurrent test, AtomRace de-
tected several exhibitions of data races even during the �rst
execution. After a few executions with a little noise in-
jected by ConTest, AtomRace correctly identi�ed all four
variables which are involved in data races. Inspection of
the pinpointed pieces of code showed that AtomRace really



None CT 50 CT 150 Rand 50/50 Loc 1000/50 Var 500/50 Var 500/150 Var 750/50 Var 1000/50

2 proc. 3,36 / 45,26 / 62,12 / 16,77 / 0,83 / 257,46 / 253,97 / 362,92 / 674,35 /
0,89 2,09 2,36 2,22 0,22 3,42 3,52 3,84 3,34

4 proc. 1,58 / 31,79 / 40,87 / 11,07 / 11,38 261,38 / 271,05 / 387,91 / 667,46 /
0,37 1,9 2,42 2,27 1,71 3,63 3,73 3,82 3,38

8 proc. 2,55 / 35,47 / 55,74 / 10,87 / 10,74 / 270,44 / 268,68 / 401,00 / 666,79 /
0,49 2,31 2,35 2,18 2,07 3,68 3,7 3,88 3,25

Table 2: Noise injection influence on data race detection efficiency

detected true races and did not produce any false alarm.
Because the data races were exhibited relatively rarely, it
was a good opportunity to study e�ects of di�erent comput-
ers3 as well as di�erent noise injection strategies as shown
in Table 2 for data races.

Table columns contain di�erent noise injection strategies
and rows contain di�erent architectures. Values in the ta-
ble consist of two values races/coverage. The races value
represents the average number of data races detected dur-
ing the one execution and the coverage value represents the
average number of distinct variables over which a race has
been detected (out of 4). The column labeled with None
shows how often are races detected without any noise in-
jection heuristics used. In fact, there is already some noise
injected by the presence of our code at the instrumented
points and this noise can increase the probability of race
manifestation rapidly in compare to executions without any
instrumentation.

Then, di�erent kinds of noise injection heuristics with di�er-
ent parameters has been used. The CT x heuristics repre-
sents the shared variable random noise heuristics provided
by ConTest where x represents the per mile of locations
where the noise will be injected (1000 means everywhere,
0 nowhere). As can be seen from the table, introducing
even a small percentage of noise can rapidly increase the
probability of race detection.

The Rand x/y shows the results if our random based heuris-
tics described in Section 3.3 was used. The x value rep-
resents the per mile of places where a noise was injected
and the y value represents the duration of noise injected (in
nanoseconds). It can be seen that our random heuristics is
not as successful as these from ConTest.

The Loc x/y heuristics represents the location based heuris-
tics described in Section 3.3. The meaning of x and y is
the same as in the previous heuristics. We have provided
the heuristics with the list of all locations where a race has
been previously detected. The results are similar to ConTest
heuristics but in this case, only seven distinct location in the
code has been in�uenced, so, the performance degradation
was smaller.

Finally, the variable based heuristic labeled with V ar x/y

3The success of concurrency testing is often highly depen-
dent on the testing environment, therefore, we have run our
tests on three different machines: two processors 2xIntel
Xeon 1,7GHz, four processors 2xDual Core AMD Opteron
2220, and eight processors 2xQuad Core Intel Xeon 5355.

is listed. This heuristics focused noise on a given set of
variables which were those four on which the race has been
already detected. It can be seen that noise duration changes
have minor in�uence on the percentage of detected races. In
this case, the percentage of race detection increased dramat-
ically and therefore this heuristics is very suitable for forcing
race occurrences.

6.2 Atomicity Violations Experiments
We have also evaluated detection capabilities of AtomRace
for atomicity violations. The crucial point for atomicity vi-
olation detection is how to identify relevant atomic sections
in advance. We have implemented two static analyses to
infer correct atomicity, however, our experiments show that
both of them have limitations. AI invariant based approach
needs to have oracle to classify the executions. This was
easy to build it using assertions and checksums for �rst two
examples but Java TIDorb was too complex and we were
not able to surely determine if violated AI invariants should
or should not be removed from the set of AI invariants.

Pattern based approach worked well for bank account exam-
ple in which it correctly detected the problematic atomic sec-
tion corresponding to unprotected line of code. In the case
of web crawler, there was none such pattern and therefore
the analysis did not �nd any atomicity there. For TIDorb,
it found 155 atomic sections but none of them was related
to later discovered problematic variables.

6.3 Self-Healing and Performance
The healing ability of our architecture has been already pre-
sented in [13]. AtomRace in comparison with a lockset based
algorithm we have used before did not produce any false
alarm and therefore the performance degradation caused by
the healing actions is lower. The memory and processor
consumption of AtomRace is also lower because it does not
need to compute and maintain lock set for each shared vari-
able. And �nally, reports produced by AtomRace directly
pinpoint a variable and at least two program locations in
the code and therefore it is easier to check what happened.

Our current implementation does not contain any perfor-
mance optimization. Due to the ConTest implicitly instru-
ments also �nal and volatile �eld accesses, we have to de-
termine them on-the-�y. Similar situation is also with local
array cells. Therefore performance overhead generated by
our implementation is highly dependent on the frequency
of executions of instrumented points. Experiments showed
that in the case of Java TIDorb the execution of fully in-
strumented code with only ConTest activated and without
any further noise injection caused 5x longer execution and



ConTest together with AtomRace even 25x longer execu-
tion. With bank and crawler examples the overhead was a
bit lower.

7. CONCLUSIONS
We have presented a novel algorithm called AtomRace which
detects data races and atomicity violations at runtime. The
algorithm does not produce any false alarms about data
races nor about atomicity violation (in the latter case pro-
vided that the algorithm is not instructed to monitor code
sections which are not really expected to be atomic). Be-
cause AtomRace minimises the amount of work with auxil-
iary data structures shared among the monitored threads, it
is�compared to other existing solutions�faster and more
scalable. We have also described that AtomRace can be
easily incorporated into a self-healing architecture. In fact,
this use of AtomRace, within which all the described fea-
tures of AtomRace are especially welcome (with the fact
that AtomRace may miss data races or atomicity violations
being less stressed), was one of the main motivations for
its proposal. However, the experiments that we have con-
ducted show that AtomRace combined with suitable noise
injection mechanisms, which we have also proposed, can as
well be quite successfully used for testing of concurrent soft-
ware aimed primarily at bug �nding.

The �rst experimental results obtained from a prototype
implementation of AtomRace provide us also with a lot of
inspiration for future work. First, the atomicity inferring
mechanisms need to be improved. Our experiences showed
that the AI invariant-based approach requires some number
of correctness assertions to be present in the code. These
are needed for an e�cient dynamic pruning of the set of
candidate atomic sets obtained from a static analysis. The
pattern-based approach for detecting candidate atomic sec-
tions worked well, but our current implementation supports
only the load-and-store pattern. For the future, we would
like to also implement and test dealing with the test-and-
use pattern and investigate some more patterns too. An-
other weakness of our prototype implementation based on
ConTest is the overhead it introduces. We believe that this
overhead can be signi�cantly reduced. For instance, we in-
strument and then handle events from many locations in the
code whose monitoring is not really needed (like, e.g., deal-
ing with �nal variables, local arrays, locations important
for various ConTest analyses such as code coverage analysis,
etc.). These issues can be tackled by a partial instrumenta-
tion already available in ConTest, but not yet used by us.
To properly use partial instrumentation, one needs to devise
a suitable static analysis to decide which locations must be
instrumented. Finally, there is also a space for proposing
new noise injection heuristics capable of increasing the prob-
ability of race detection without signi�cantly degrading the
performance.
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