Boosted Decision Trees for Behaviour Mining of
Concurrent Programs

Renata Avro%, Vendula Hrub4, Bohuslav Kiend, Zdenék Letkd, Hana
Pluhackova, Tomas Vojnat, Zeev Volkoviclt, and Shmuel Ur

1 IT4Innovations Centre of Excellence, FIT, Brno UniversifyTechnology, Brno, CZ
{i hruba, krena, iletko, ipluhackova, vojnar}@it.vutbr.cz,
shnuel . ur @nai | . com
2 Ort Braude College of Engineering, Software Engineeringddenent, Karmiel, IL

{r_avros, vlvol kov}@raude. ac.il

Abstract. Testing of concurrent programs is difficult since the scliaguon-
determinism requires one to test a huge number of diffeteetd interleavings.
Moreover, a simple repetition of test executions will tyglg examine similar
interleavings only. One popular way how to deal with thiskipem is to use the
noise injection approach, which is, however, parametdnizith many parame-
ters whose suitable values are difficult to find. In this paper propose a novel
application of classification-based data mining for thisppse. Our approach
can identify which test and noise parameters are the moseimtfhl for a given
program and a given testing goal and which values (or ranyeslees) of these
parameters are suitable for meeting this goal. We presgmetriments that show
that our approach can indeed fully automatically improvesexbased testing of
particular programs with a particular testing goal. At theng time, we use it to
obtain new general insights into noise-based testing ds wel

1 Introduction

Testing of concurrent programs is known to be difficult dué¢hte many different in-
terleavings of actions executed in different threads toelseetl. A single execution of
available tests used in traditional unit and integraticting usually exercises a limited
subset of all possible interleavings. Moreover, repeakxegduions of the same tests in
the same environment usually exercise similar interlegsif2, 3]. Therefore, means
for increasing the number of tested interleavings withipeged runs, such aeter-
ministic testing[2], which controls threads scheduling and systematicatlymerates
different interleavings, andoise injection[3], which injects small delays or context
switches into the running threads in order to see differeheduling scenarios, have
been proposed and applied in practice.

In order to measure how well a system under test (SUT) has é&eentised and
hence to estimate how good a given test suite is, testens ofiéect and analyse cov-
erage metrics. However, one can gain a lot more informatiom fthe test executions.
One can, e.g., get information on similarities of the bebawviwitnessed through dif-
ferent tests, on the behaviour witnessed only within tdss failed, and so on. Such
information can be used to optimize the test suite, to heludging the program, etc.
In order to get such informatiodata miningtechniques appear to be a promising tool.

In this paper, we propose a novel application of data minilogving one to exploit
information present in data obtained from a sample of test af a concurrent program
to optimize the process of noise-based testing of the givegrpm. To be more precise,
our method employs a data mining method basedassificatiorby means otlecision
treesand theAdaBoostalgorithm. The approach is, in particular, intended to findl o
which parameters of the available tests and which paramefethe noise injection
system are the most influential and which of their values #oges of values) are the
most promising for a particular testing goal for the giveagram.

The information obtained by our approach can certainly higequseful since the
efficiency of noise-based testing heavily depends on aldaitetting of the test and
noise parameters, and finding such values is not easy [81.i9 dny, repeated testing
based on randomly chosen noise parameters is often usediticer. Alternatively, one
can try to use search techniques (such as genetic algojitorfiad suitable test and
noise settings [8, 7].

The classifiers obtained by our data mining approach can ity esed to fully
automatically optimize the most commonly used noise-bassting with a random
selection of parameter values. This can be achieved by gififi@ring out randomly
generated noise settings that are not considered as pngrhigthe classifier. Moreover,
it can also be used to guide and consequently speed up theafmamnsearch-based
process of finding suitable values of test and noise paramétethe latter case, the
search techniques would look for a suitable refinement oktimvledge obtained by
data mining). Finally, if some of the noise parameters oregiertest parameters (such
as the number of threads) appear as important across reuki cases and test goals,
they can be considered as important in general, providirepaimsight into the process
of noise-based testing.

In order to show that the proposed approach can indeed belusefapply it for
optimizing the process of noise-based testing for two paldr testing goals on a set
of several benchmark programs. Namely, we consider thiegegbals ofreproducing
known errorsandcovering rare interleavingsvhich are likely to hide so far unknown
bugs. Our experimental results confirm that the proposetbapp can discover useful
knowledge about the influence and suitable values of teshaisé parameters, which
we show in two ways: (1) We manually analyse information kitéh the classifiers,
compare it with our long-term experience from the field, ard knowledge found as
important across multiple case studies to derive some nesvitmendations for noise-
based testing (which are, of course, to be validated in thedwon more case studies).
(2) We show that the obtained classifiers can be used—in yadutiomated way—to
significantly improve efficiency of noise-based testinghgsa random selection of test
and noise parameters.

Plan of the papefThe rest of the paper is structured as follows. Section Zljpiiigro-
duces the techniques that our paper builds on, namely,-baised testing of concurrent
programs, data mining based on decision trees, and the AdsaBlgorithm. Section 3
presents our proposal of using data mining in noise-basshgeof concurrent pro-
grams. Section 4 provides results of our experiments argkpte the newly obtained
insights of noise-based testing. Section 5 summarizeseiaged work. Finally, Sec-
tion 6 provides conclusions and a discussion of possibladéutork.

2 Preliminaries

In our previous works, e.g., [8, 10], we have used noise figado increase the number
of interleavings witnessed within the executions of conentr program and thus to
increase the chance of spotting concurrency errors. Naojsetion is a quite simple
technique which disturbs thread scheduling (e.qg., by tijgeremoving, or modifying
delays, forcing context switches, or halting selectedatisg with the aim of driving the
execution of a program into less probable scenarios.

The efficiency of noise injection highly depends on the typ#he generated noise,
on the strength of the noise (which are both determined usomgenoise seeding
heuristicg, as well as on the program locations and program executidaswhich
some noise is injected (which is determined using sowise placement heuristics
Multiple noise seeding and noise placement heuristics baea proposed and exper-
imentally evaluated [10]. Searching for an optimal confadion of noise seeding and
noise placement heuristics in combination with a seleabibavailable test cases and
their parameters has been formalized agé¢seand noise configuration search problem
(TNCS)in [7,8].

To assess how well tests examine the behaviour of an SUT,reawifestation ratio
and coverage metrics can be used. Coverage metrics sudbesskd for testing of
sequential programs (like statement coverage) are notigutifor testing of concurrent
programs as they do not reflect concurrent aspects of epasutConcurrency coverage
metrics [1] are usually tailored to distinguish particutéasses of interleavings and/or
to capture synchronization events that occur within theetien. Some of the metrics
target concurrency issues from a general point of view wsol@e other metrics, e.g.,
those inspired by particular dynamic detectors of concuyerrors [9], concentrate on
selected concurrency aspects only (e.g., on behaviouesiaty leading to a deadlock
or to a data race). In this work, we, in particular, use@uddiLockSC coverage metric
which measures how many internal states of the GoldiLock date detector with the
fast short circuit checks [5] have been reached [9].

The data mining approach proposed in this paper is bas&ihany classification
Binary classification problems consist in dividing itemsaodiven collection into two
groups using a suitable classification rule. Methods fanlieg such classifiers include
decision trees, Bayesian networks, support vector mashoreneural networks [12].
The use of decision trees is the most popular of those betlaegare known for quite
some time and can be easily understoodietision treecan be viewed as a hierarchi-
cally structured decision diagram whose nodes are labbld8loolean conditions on
the items to be classified and whose leaves represent aassifi results. The decision
process starts in the root node by evaluating the condisea@ated with it on the item
to be classified. According to the evaluation of the condit@ corresponding branch
is followed into a child node. This descent, driven by thel@ation of the conditions
assigned to the encountered nodes, continues until a |ek, @nd hence a decision,
is reached. Decision trees are usually employed as a piredimbdel constructed via
a decision tree learning procedure which uses a trainingfsgassified items.

Inthe paper, we—in particular—employ the advanced classifin technique called
Adaptive Boostingshortly, AdaBoost) [6] which reduces the natural tendesfayeci-
sion trees to be unstable (meaning that a minor data ogwillean lead to a large differ-

ence in the classification). This technique makes it possitorrect the functionality
of many learning algorithms (so-called weak learners) bighteng and mixing their
outcomes in order to get the output of the boosted classifier.method works in iter-
ations (phases). In each iteration, the method aims at phogla new weak classifier
in order to improve the consistency of the previously usegsom our case, AdaBoost
uses decision trees as the weak learners with the classifiaasult being-1 or +1.

In each phase, the algorithm adds new weighted decisios tfet@ined by concentrat-
ing on items difficult to classify by the so far learnt claggifand updates weights of
the previously added decision trees to keep the sum of thghteeequal to one. The
resulting advanced classifier then consists of a set of weigtiecision trees that are
all applied on the item to be classified, their classificatiesults are weighted by the
appropriate weights, summarized, and the sign of the rpsaNides the final decision.

3 Classification-based Data Mining in Noise-based Testing

In this section, we first propose our application of AdaBdashoise-based testing.
Subsequently, we discuss how the information hidden in ld&sidier may be analysed
to draw some conclusions about which test and noise paresreteimportant for par-
ticular test cases and test goals or even in general. Fivedlydescribe two concrete
classification properties that are used in our experiments.

3.1 An Application of AdaBoost in Noise-based Testing

First, in order to apply the proposed approach, one has toalsime testing goal
expressible as a binary property that can be evaluated eserdsults such that both
positive and negative answers are obtained. The requireofidraving both positive
and negative results can be a problem in some cases, notathlg case of discover-
ing rare errors. In such a case, one has to use a propertypbaixmates the target
property of interest (e.g., by replacing the discovery oérrrors by discovering rare
behaviours in general). Subsequently, once testing bassdttings chosen in this way
manages to find some behaviours which were originally natable (e.g., behaviours
leading to a rare error), the process can be repeated onwig aeailable test results
to concentrate on a repeated discovery of such behaviagrsfg debugging purposes
or for the purpose of finding further similar errors).

Once the property of interest is defined, a number of test isites be performed
using a random setting of test and noise parameters in each~ou each such run,
the property of interest is to be evaluated and a co(plg) is to be formed where
T is a vector recording the test and noise settings usedyaadhe result of evalu-
ating the property of interest. This process has to be repeat obtain a se =
{(Z1,41), .., (Tn,yn)} Of such couples to be used as the input for learning the appro-
priate classifier.

Now, the AdaBoost algorithm can be applied. For that, thernom practice is to
split the setX to two sets—the training set and the testing set, use thairitaset to
get a classifier, and then use the testing set for evaludimgriecision of the obtained
classifier. To evaluate the precision, one can use the reotitaccuracyandsensitivity

Accuracy gives the probability of a successful classifaratand can be computed as
the fraction of the number of correctly classified items gmeltbtal number of items.
Sensitivity (also called as the negative predictive valuBlBV) expresses the fraction
of correctly classified negative results and can be compagete number of the items
correctly classified negatively divided by the sum of cotlgeand incorrectly negatively
classified items (see e.g. [12]). Moreover, in order to inseeconfidence in the obtained
results, this process of choosing the training and validasiet and of learning and
validating the classifier can be repeated several timesyiay one to judge the average
values and standard deviation of accuracy and sensitl¥itie obtained classifier is
not validated successfully, one can repeat the AdaBoostittign with more boosting
phases and/or a bigger s€tof data.

A successfully validated classifier can subsequently blys@eto get some insight
which test and noise parameters are influential for testieggiven program and which
of their values are promising for meeting the defined tegjmaj. Such a knowledge can
then in turn be used by testers when thinking of how to opntie testing process.
We discuss a way how such an analysis can be done in Sectian8.@e apply it
in Section 4.3. Moreover, the obtained classifier can alsditeetly used to improve
performance of noise-based testing based on random seledtparameters by simply
filtering out the settings that get classified as not meetiegcbnsidered testing goal.
The fact that such an approach does indeed significantlyonehe testing process is
experimentally confirmed in Section 4.4.

3.2 Analysing Information Hidden in Classifiers

In order to be able to easy analyse the information hiddemarclassifiers generated by
AdaBoost, we have decided to restrict the height of the liBsitsion trees used as weak
classifiers to one. Moreover, our preliminary experimehts\ged us that increasing the
height of the weak classifiers does not lead to significargtye classification results.

A decision tree of height one consists of a root labelled bgradition concerning
the value of a single test or noise parameter and two leavesspmnding to positive
and negative classification. AdaBoost provides us with aetich trees, each with
an assigned weight. We convert this set of trees into a seded such that we get a sin-
gle rule for each parameter that appears in at least onaatetise. The rules consist of
a condition and a weight, and they are obtained as followst,Eiecision trees with neg-
ative weights are omitted because they correspond to waakifiers with the weighted
error greater than.5. Next, the remaining decision trees are grouped accordititgto
parameter about whose value they speak. For each group tket® a separate rule
is produced such that the conjunction of the decision cantitof the trees from the
group is used as the condition of the rule. The weight of the isuicomputed by sum-
marising the weights of the trees from the concerned grodmanmalising the result
by dividing it by the sum of the weights of all trees from albgps.

The obtained set of rules can be easily used to gain soméhirisig how the test
and noise injection parameters should be set in order teaserefficiency of the testing

% Note that the AdaBoost methodology suggests that the emglaeak classifiers should not
be of this kind, but they can appear in practical application

process—either for a given program and testing goal or evgeineral. In particular,
one can look for parameters that appear in rules with thedsiglveights (which speak
about parameters whose correct setting is the most imgaotanhieve the given testing
goal), for parameters that are important in all or many teses (and hence can be
considered to be important in general), as well as for pat@mm¢hat do not appear in
any rules (and hence appear to be irrelevant).

3.3 Two Concrete Classification Properties

In the experiments described in the next section, we consideconcrete properties
according to which we classify test runs. First, we consttlercase of finding TNCS
solutions suitable for repeatedly finding known errorshis tase, the property of inter-
est is simply theerror manifestation propertthat indicates whether an error manifested
during the test execution or not.

Subsequently, we consider the case of finding TNCS solusaitable for testing
rare behaviours in which so far unknown bugs might residerdier to achieve this goal,
we use classification according taae events propertyhat indicates whether a test
execution covers at least one rare coverage task of a suitalbrage metric—in our
experiments, th&oldiLockSC is used for this purpose. To distinguish rare coverage
tasks, we collect the tasks that were covered in at least btie performed test runs
(i.e., both from the training and validation sets), and facte such coverage task, we
count the frequency of its occurrence in all of the considetms. We define the rare
tasks as those that occurred in less than 1 % of the test éxesut

4 Experimental Evaluation

In this section, we first describe the test data which we usedr experimental eval-
uation of our approach. Then, we describe the precisioneotlidissifiers inferred from
this data. Subsequently, we analyse the knowledge hidd#reiclassifiers, compare
it with our previously obtained experience, and derive some insights about impor-
tance of the different test and noise parameters. Finallydemonstrate that a use of
the proposed data mining approach does indeed improve (ityatitomated way) the
process of noise-based testing with random setting of thempeters.

4.1 Experimental Data

The results presented below are based on 5 multi-threadezhbvark programs that
contain a known concurrency error. We use data collectedglour previous work [7].
Namely, our case studies are tglines (0.3 kLOC),Animator (1.5 kLOC),Crawler
(1.2 KLOC),Elevator(0.5 kLOC), andRover(5.4 KLOC). For each program, we col-
lected data from 10,000 executions with a random test argkrinjection setting. We
collected various data about the test executions, such eshethan error occurred dur-
ing the execution (used as oerror manifestation properjyand various concurrency
coverage information, including th@oldiLockSC coverage used for evaluating the
rare events property

In our experiments, we consider vectors of test and noisanpeters having 2
entries, i.e.T = (x1,x2,...,x12). Here,x; € {0,...,1000} represents the noise
frequency which controls how often the noise is injected eartjes from O (never)
to 1000 (always). Thes € {0,...,100} parameter controls the amount of injected
noise and ranges from 0 (no noise) to 100 (considerable ndikez; € {0,...,5}
parameter selects one of six available basic noise injedteuristics (based on in-
jecting calls ofyi el d(), sl eep(), wai t (), using busy waiting, a combination
of additional synchronization and el d() , and a mixture of these techniques). The
x4, 5,27, T8, Tg € {0,1} parameters enable or disable the advanced injection heuris
ticshaltOneThreagtimeoutTamperingsharedVarNoisgnonVariableNoisgadvShared-
VarNoise]l andadvSharedVarNoisge2espectively. The:s € {0, 1,2} parameter con-
trols the way how theharedVarNois@advanced heuristic behaves (namely, whether it
is disabled (0), injects the noise at accesses to one ragdahelcted shared variable (1)
or at accesses to all such variables (2)). A more detailedrigeion of the particular
noise injection heuristics can be found in [3, 7, 8, 10].

Furthermoreg1o € {1,...,10} andzq1, 212 € {1,...,100} encode parameters
of some of the test cases themselves. In particdlaimator and Crawler are not
parametrised, ando, x11, 12 are not used with them. In th&irlines and Elevator
test cases, the,, parameter controls the number of used threads, and iRtkertest
case, thex;y € {0,...,6} parameter selects one of the available test scenarios. The
Airlines test case is the only one that uses ihe and x> parameters, which are in
particular used to control how many cycles the test does.

4.2 Precision of the Classifiers

In our experiments, we used the implementation of AdaBowailable in the GML
AdaBoost Matlab Toolbdk We have set it to use decision trees of height restricted to
one and to use 10 boosting phases. The algorithm was apfli®tines on randomly
chosen divisions of the test data into the training and wadilich groups.

Table 1 summarises the average accuracy and sensitivityeoleirnt AdaBoost
classifiers. One can clearly see that both the average aycamd sensitivity are quite
high, ranging from0.61 to 0.99. Moreover, the standard deviation is very low in all
cases. This indicates that we always obtained results thaide meaningful informa-
tion about our test runs.

4.3 Analysis of the Knowledge Hidden in the Obtained Classiirs

We now employ the approach described in Section 3.2 to irgetipe knowledge hidden
in the obtained classifiers. Tables 2 and 3 show the inferrked and their weights for
the error manifestation property and the rare behaviousapty, respectively. For each
test case, the tables contain a row whose upper part corterondition of the rule

(in the form of interval constraints) and the lower part @ms$ the appropriate weight
from the interval(0, 1).

4 http:/graphics.cs.msu.ru/en/science/research/malgrning/AdaBoosttoolbox

Table 1. Average accuracy and sensitivity of the learnt AdaBoostsifeers.

Error manifestation Rare behaviours

Accurancy Sensitivity Accurancy Sensitivity
CaseStudies Mean Std Mean Std Mean Std Mean Std

Airlines 0.7695 0.0086 0.6229 0.0321 0.9755 0.0056 0.99&071
Animator 0.937 0.0054 0.9866 0.0052 0.7815 0.0054 0.900210.
Crawler 0.9975 0.00076 0.999 0.00077 0.7642 0.0402 0.97@166
Elevator 0.8335 0.0038 0.9982 0.0016 0.6566 0.0051 0.6130270
Rover 0.9714 0.0031 0.9912 0.0012 0.8737 0.1092 0.9687 70.13

Table 2.Inferred weighted rules for the error manifestation clésation property.

Airlines
Rules ||z1 < 275|z3 < 0.50r3.5 < 23 xre < 1.5 2.5 < x10 73.5 < x12
Weights| 0.16 0.50 0.04 0.18 0.12
Animator
Rules ||705 < x1 25 <x3<3.5 xe < 0.5
Weights| 0.19 0.55 0.26
Crawler
Rules ||z1 < 215 15 < 2 1.5 <23 <3505 < x4 |5 <0.5|26 < 1.5
or4.5 < xs3
Weights| 0.32 0.1 0.38 0.05 0.08 0.07
Elevator
Rules || =1 <5 r3 < 0.50r3.5 < x3 < 4.5 r7 < 0.5|8.5 < x10
Weights| 0.93 0.04 0.01 0.02
Rover
Rules [|515 < z1| 2.5 <x3<3.5 0.5 < x4 xe < 0.5
Weights| 0.21 0.48 0.08 0.23

In order to interpret the obtained rules, we first focus omsulith the highest
weights (corresponding to parameters with the biggestentte). Then we look at the
parameters which are present in rules across the test castsiénce seem to be im-
portant in general) and parameters that are specific foicpéat test cases only. Next,
we pinpoint parameters that do not appear in any of the ruldsferefore seem to be
of a low relevance in general.

As for the error manifestation property (i.e., Table 2), thest influential parame-
ters arers in four of the test cases and in the Crawler test case. This indicates that
the selection of a suitable noise typg) or noise frequency(;) is the most important
decision to be done when testing these programs with the faiepooducing the errors
present in them. Another important parameterdscontrolling the use of thehared-
VarNoiseheuristic. Moreover, the parameters, x5, andxzg are considered important
in all of the rules, which suggests that, for reproducingdbesidered kind of errors,
they are of a general importance.

In two cases (namelgrawler, andRove), the advancetaltOneThreadheuristic
(z4) turns out to be important. In theérawler andRovertest cases, this heuristic should
be enabled in order to detect an error. This behaviour fitsant previous results [10]

Table 3.Inferred weighted rules for the rare behaviours classifiogiroperty.

Airlines
Rules [|x1 < 295 0r 745 < x1 < 925|z2 < 35(0.5 < x5|61.5 < 112 < 91.5
Weights 0.52 0.06 0.1 0.32
Animator
Rules 0.5 <x3<350r45< w3 0.5 <z <15
Weights 0.8 0.2
Crawler
Rules || 0.5 < 23 < 3.50r4.5 < x3 0.5 < 24]0.5 < 25| 0.5 < a6 < 1.5
Weightg 0.46 0.08 0.2 0.26
Elevator
Rules [|0.5 < 23 < 3.5| 0.5 < x4 (0.5 <515 < x| 1.5 < w10 < 4.5
or4.5 < x3 or7.5 < xio
Weights 0.22 0.05 0.2 0.06 0.47
Rover
Rules || 2.5 < 23 < 3.50r4.5 < z3 |r4 < 0.5|2z¢ < 0.5 0.5 < x7
Weights 0.46 0.26 0.16 0.12

in which we show that, in some cases, this unique heuridte ¢nly heuristic which
allows one to exercise thread interleavings which are ntlynfiar away from each
other) considerably contributes to the detection of anrefmally, the presence of
thexyy andxo parameters in the rules derived for tAglines test case indicates that
the number of threadsc(y) and the number of cycles executed during the test)(
pays an important role in the noise-based testing of thisquéer test case. Thei
parameter (i.e., the number of threads) turns out to be itapbfor the Elevator test
case too, indicating that the number of threads is of a manemg¢importance.

Finally, we can see that thg, x9 andz;; parameters are not present in any of the
derived rules. This indicates that thdvSharedVarNoiseoise heuristics are of a low
importance in general, and the, parameter specific fakirlinesis not really important
for finding errors in this test case.

For the case of classifying according to the rare behavioopgrty, the obtained
rules are shown in Table 3. We can again find the highest weightules based on
thexs parameterAnimator, Crawler, Rove) and on ther; parameterAirlines). How-
ever, in the case oflevator the most contributing parameter is now the number of
threads used by the test;(). The rule suggests to use certain numbers of threads in
order to spot rare behaviours (i.e., it is important to coasnot only a high number
of threads). The generated sets of rules often containihmmrameter controlling the
type of noise (all test cases exceptfirlines) and therg parameter which controls the
sharedVarNoiséeuristic. These parameters thus appear to be of a gengraitance
in this case.

Next, the parameter;» does again turn out to be important in thielinestest case,
and thex;o parameter is important in thElevatortest case. This indicates that even
for testing rare behaviours, it is important to adjust thenber of threads or test cycles
to suitable values. Finally, thes, 9, andx,; parameters do not show up in any of the
rules, and hence seem to be of a low importance in generahftinfj rare behaviours
(which is the same as for reproduction of known errors).

Table 4. A comparison of the random approach and the newly proposadéaist approach.

Error manifestation Rare behaviours

CaseStudies Rand. AdaBoost Pos. Impr. Rand. AdaBoost Pos. Impr.

Airlines 56.26 75.43 1,612 1.34 1.94 1.64 2,444 0.85
Animator 14.81 54.05 901 3.65 39.53 57.95 3,258 1.47
Crawler 0.18 0.25 2,806 1.39 22.41 31.26 1,513 1.39
Elevator 16.75 27.66 1,410 1.65 52.77 59.51 1,398 1.13
Rover 6.65 36.25 822 5.45 10.76 23.21 1,620 2.16

Overall, the obtained results confirmed some of the factsis@udered during our
previous experimentation such as that different goals afifereint test cases may re-
quire a different setting of noise heuristics [10, 7, 8] analt thehaltOneThreadhoise
injection heuristics£4) provides in some cases a dramatic increase in the probabil-
ity of spotting an error [10]. More importantly, the analysevealed (in an automated
way) some new knowledge as well. Mainly, the type of noisg &nd the setting of the
sharedVarNoiséeuristic () as well as the frequency of noise, || are often the most
important parameters (although the importanceoéeems to be a bit lower). Further,
it appears to be important to suitably adjust the numberreftis ¢,,) whenever that
is possible.

4.4 Improvement of Noise-based Testing with Random Paramets

Finally, we show that the obtained classifiers can be usadl{odutomatically improve
the process of noise-based testing with randomly choseesaif parameters. For that,
we reuse the 7,500 test runs out of 10,000 test runs recordedamdom parameter
values for each of the case studies. In particular, we rahdohoose 2,500 test runs
as training set for our AdaBoost approach to produce classifThen, from the rest
of the test runs, we randomly choose 5,000 test runs to cantparapproach with the
random approach.

From these 5,000 test runs, we first select runs that werenpeetl using settings
considered as suitable for the respective testing goalbdylassifiers that we have
obtained. Then, we compute what fractions of all the runsvelmat fractions of all the
selected runs satisfy the testing goals for the consideasd studies, which shows us
the efficiency of the different testing approaches.

In Table 4, the columnBos.contain the numbers of test runs (out of the considered
5,000 runs) classified positively by the obtained classiffer the two considered test
goals. The columnRand.give the percentage of runs out of the 5,000 runs performed
under purely randomly chosen values of parameters that meetdnsidered testing
goals (i.e., found an error or a rare behaviour, respegjivéhe columnsAdaBoost
give this percentage for the selected runs (i.e., those evhamber is in the columns
Pos). Finally, the columnsmpr. present how many times the efficiency of testing with
the selected values of parameters is better than that dfparelom noise-based testing
(i.e., it contains the ratio of the values in thdaBoostndRand.columns).

The improvement columns clearly show that our AdaBoostrieple often brings
an improvement (with one exception described bellow), Whhanges from 1.13 times
in the case of the rare behaviours property andBlevatortest case to 5.45 times in
the case of the error manifestation property andRbeertest case. In the case of the
Airlines test case and the rare behaviours property, otinigoe provided worse results
(impr. 0.85). This is mostly caused by the simplicity of ttase study and hence lack of
rare behaviours in the test runs. Therefore, our approathatihave enough samples
to construct a successful classifier. Nevertheless, weaariwde that our classification
approach can really improve the efficiency of testing in majmf studied cases.

5 Related Work

Most of the existing works on obtaining new knowledge fromitiple test runs of con-
current programs focus on gathering debugging informatiat helps to find the root
cause of a failure [4, 11]. In [11], a machine learning altfon is used to infer points
in the execution such that the error manifestation probiglislincreased when noise is
injected into them. It is then shown that such places aradfielved in the erroneous
behaviour of the program. Another approach [4] uses a daténgilike technique,
more precisely, the feature selection algorithm, to infexduced call graph representa-
tion of the SUT, which is then used to discover anomalies éntibhaviour of the SUT
within erroneous executions.

There is also rich literature and tool support for data ngntiest results without
a particular emphasis on concurrent programs. The existorgs study different as-
pects of testing, including identification of test suite Weasses [1] and optimisation
of the test suite [13]. In [1], a substring hole analysis isdito identify sets of untested
behaviours using coverage data obtained from testing @é larograms. Contrary to the
analysis of what is missing in coverage data and what shautblered by improving
the test suite, other works focus on what is redundant. It EL8lustering data mining
technique is used to identify tests which exercise simiknaviours of the program.
The obtained results are then used to prioritise the aveitabts.

6 Conclusions and Future Work

In the paper, we have proposed a novel application of claasidin-based data mining
in the area of noise-based testing of concurrent programgaiticular, we proposed
an approach intended to identify which of the many noise mpatars and possibly
also parameters of the tests themselves are important fartecydar testing goal as
well as which values of these parameters are suitable fotimgethis goal. As we
have demonstrated on a number of case studies, the proposexheh can be used to
fully automatically improve the noise-based testing apploof a particular program
with a particular testing goal. Moreover, we have also usgdapproach to derive new
insights into the noise-based testing approach itself.

Apart from validating our findings on more case studies,dhgmlenty of space
for further research in the area of applications of data mginin testing of concurrent

programs. One can ask many interesting questions and deatbk answers using dif-
ferent techniques, such as outliers detection, clusteasgpciation rules mining, etc.
For example, many of the concurrency coverage metrics baselynamic detectors
contain a lot of information on the behaviour of the testealgpams, and when mined,
this information could be used for debugging purposes. @uédalso think of adjust-

ing the above cited works on detecting untested behavioenaliminating tests of

similar behaviour for the case of concurrent programs.

AcknowledgementThe work was supported by the bi-national Czech-Israelgotoj
(Kontakt 1l LH13265by the Czech Ministry of Education ar@t10371by Ministry
of Science and Technology of Israel), the EU/Czech IT4lmations Centre of Excel-
lence projectCZ.1.05/1.1.00/02.007@nd the internal BUT project8IT-S-12-1and
FIT-S-14-2486Z. Letko was funded through the EU/Czech Interdisciplnéxcel-
lence Research Teams Establishment prajeci.07/2.3.00/30.0005

References

1. Yoram Adler, Noam Behar, Orna Raz, Onn Shehory, Nadandti Shmuel Ur, and Aviad
Zlotnick. Code Coverage Analysis in Practice for Large 8yst. InProc. of ICSE’11pages
736-745. ACM, 2011.

2. Thomas Ball, Sebastian Burckhardt, Katherine E. Cooredavilal Musuvathi, and Shaz
Qadeer. Preemption Sealing for Efficient Concurrency iigstin Proc. of TACAS'10vol-
ume 6015 of LNCS, pages 420-434. Springer-Velrlag, 2010.

3. Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden N&il Ratsaby, and Shmuel Ur.
Framework for Testing Multi-threaded Java Progra@amncurrency and Computation: Prac-
tice and Experiencel5(3-5):485-499. Wiley, 2003.

4. Frank Eichinger, Victor Pankratius, Philipp W. L. Groded Klemens Bohm. Localizing
Defects in Multithreaded Programs by Mining Dynamic Calla@ns. InProc. of TAIC
PART’1Q volume 6303 of LNCS, pages 56—71. Springer-Velrlag, 2010.

5. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. GoldilécRace and Transaction-aware
Java Runtime. IfProc. of PLDI'07, pages 245-255. ACM, 2007.

6. Yoav Freund and Robert E. Schapire. A Short Introduct@mBadosting. Inin Proc. of
IJCAI'99, pages 1401-1406. Morgan Kaufmann, 1999.

7. Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Hana&tkova, and Tomas Vojnar. Multi-
objective Genetic Optimization for Noise-based Testin@ohcurrent Software. IRroc. of
SSBSE'14volume 8636 of LNCS, pages 107-122. Springer-Verlag, 2014

8. Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Shmueldd Tomas Vojnar. Testing of
Concurrent Programs Using Genetic Algorithms. Piroc. of SSBSE’12volume 7515 of
LNCS, pages 152-167. Springer-Velrlag, 2012.

9. Bohuslav Kfena, Zdenék Letko, and Tomas Vojnar. Caye Metrics for Saturation-based
and Search-based Testing of Concurrent Softwarerdn. of RV’11volume 7186 of LNCS,
pages 177-192. Springer-Velrlag, 2012.

10. Zdenék Letko, Tomas Vojnar, and Bohuslav Kfena.ubrite of Noise Injection Heuristics
on Concurrency Coverage. Rroc. of MEMICS’1]volume 7119 of LNCS, pages 123-131,
Springer-Velrlag, 2012.

11. Rachel Tzoref, Shmuel Ur, and Elad Yom-Tov. Instrunren®Where It Hurts: An Automatic
Concurrent Debugging Technique. Pnoc. of ISSTA'07pages 27-38. ACM, 2007. ACM.

12. lan H. Witten, Eibe Frank, and Mark A. HalData Mining: Practical Machine Learning
Tools and Techniqued/organ Kaufmann, 3rd edition, 2011.

13. Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susist@ring Test Cases to Achieve
Effective and Scalable Prioritisation Incorporating Estpgénowledge. InProc. of ISSTA'09
pages 201-212. ACM, 2009.

