
Boosted Decision Trees for Behaviour Mining of
Concurrent Programs

Renata Avros2, Vendula Hrubá1, Bohuslav Křena1, Zdeněk Letko1, Hana
Pluháčková1, Tomáš Vojnar1, Zeev Volkovich2, and Shmuel Ur1

1 IT4Innovations Centre of Excellence, FIT, Brno Universityof Technology, Brno, CZ
{ihruba, krena, iletko, ipluhackova, vojnar}@fit.vutbr.cz,

shmuel.ur@gmail.com
2 Ort Braude College of Engineering, Software Engineering Department, Karmiel, IL

{r avros, vlvolkov}@braude.ac.il

Abstract. Testing of concurrent programs is difficult since the scheduling non-
determinism requires one to test a huge number of different thread interleavings.
Moreover, a simple repetition of test executions will typically examine similar
interleavings only. One popular way how to deal with this problem is to use the
noise injection approach, which is, however, parameterized with many parame-
ters whose suitable values are difficult to find. In this paper, we propose a novel
application of classification-based data mining for this purpose. Our approach
can identify which test and noise parameters are the most influential for a given
program and a given testing goal and which values (or ranges of values) of these
parameters are suitable for meeting this goal. We present experiments that show
that our approach can indeed fully automatically improve noise-based testing of
particular programs with a particular testing goal. At the same time, we use it to
obtain new general insights into noise-based testing as well.

1 Introduction

Testing of concurrent programs is known to be difficult due tothe many different in-
terleavings of actions executed in different threads to be tested. A single execution of
available tests used in traditional unit and integration testing usually exercises a limited
subset of all possible interleavings. Moreover, repeated executions of the same tests in
the same environment usually exercise similar interleavings [2, 3]. Therefore, means
for increasing the number of tested interleavings within repeated runs, such asdeter-
ministic testing[2], which controls threads scheduling and systematicallyenumerates
different interleavings, andnoise injection[3], which injects small delays or context
switches into the running threads in order to see different scheduling scenarios, have
been proposed and applied in practice.

In order to measure how well a system under test (SUT) has beenexercised and
hence to estimate how good a given test suite is, testers often collect and analyse cov-
erage metrics. However, one can gain a lot more information from the test executions.
One can, e.g., get information on similarities of the behaviour witnessed through dif-
ferent tests, on the behaviour witnessed only within tests that failed, and so on. Such
information can be used to optimize the test suite, to help debugging the program, etc.
In order to get such information,data miningtechniques appear to be a promising tool.



In this paper, we propose a novel application of data mining allowing one to exploit
information present in data obtained from a sample of test runs of a concurrent program
to optimize the process of noise-based testing of the given program. To be more precise,
our method employs a data mining method based onclassificationby means ofdecision
treesand theAdaBoostalgorithm. The approach is, in particular, intended to find out
which parameters of the available tests and which parameters of the noise injection
system are the most influential and which of their values (or ranges of values) are the
most promising for a particular testing goal for the given program.

The information obtained by our approach can certainly be quite useful since the
efficiency of noise-based testing heavily depends on a suitable setting of the test and
noise parameters, and finding such values is not easy [8]. That is why, repeated testing
based on randomly chosen noise parameters is often used in practice. Alternatively, one
can try to use search techniques (such as genetic algorithms) to find suitable test and
noise settings [8, 7].

The classifiers obtained by our data mining approach can be easily used to fully
automatically optimize the most commonly used noise-basedtesting with a random
selection of parameter values. This can be achieved by simply filtering out randomly
generated noise settings that are not considered as promising by the classifier. Moreover,
it can also be used to guide and consequently speed up the manual or search-based
process of finding suitable values of test and noise parameters (in the latter case, the
search techniques would look for a suitable refinement of theknowledge obtained by
data mining). Finally, if some of the noise parameters or generic test parameters (such
as the number of threads) appear as important across multiple test cases and test goals,
they can be considered as important in general, providing a new insight into the process
of noise-based testing.

In order to show that the proposed approach can indeed be useful, we apply it for
optimizing the process of noise-based testing for two particular testing goals on a set
of several benchmark programs. Namely, we consider the testing goals ofreproducing
known errorsandcovering rare interleavingswhich are likely to hide so far unknown
bugs. Our experimental results confirm that the proposed approach can discover useful
knowledge about the influence and suitable values of test andnoise parameters, which
we show in two ways: (1) We manually analyse information hidden in the classifiers,
compare it with our long-term experience from the field, and use knowledge found as
important across multiple case studies to derive some new recommendations for noise-
based testing (which are, of course, to be validated in the future on more case studies).
(2) We show that the obtained classifiers can be used—in a fully automated way—to
significantly improve efficiency of noise-based testing using a random selection of test
and noise parameters.

Plan of the paper.The rest of the paper is structured as follows. Section 2 briefly intro-
duces the techniques that our paper builds on, namely, noise-based testing of concurrent
programs, data mining based on decision trees, and the AdaBoost algorithm. Section 3
presents our proposal of using data mining in noise-based testing of concurrent pro-
grams. Section 4 provides results of our experiments and presents the newly obtained
insights of noise-based testing. Section 5 summarizes the related work. Finally, Sec-
tion 6 provides conclusions and a discussion of possible future work.



2 Preliminaries

In our previous works, e.g., [8, 10], we have used noise injection to increase the number
of interleavings witnessed within the executions of concurrent program and thus to
increase the chance of spotting concurrency errors. Noise injection is a quite simple
technique which disturbs thread scheduling (e.g., by injecting, removing, or modifying
delays, forcing context switches, or halting selected threads) with the aim of driving the
execution of a program into less probable scenarios.

The efficiency of noise injection highly depends on the type of the generated noise,
on the strength of the noise (which are both determined usingsomenoise seeding
heuristics), as well as on the program locations and program executionsinto which
some noise is injected (which is determined using somenoise placement heuristics).
Multiple noise seeding and noise placement heuristics havebeen proposed and exper-
imentally evaluated [10]. Searching for an optimal configuration of noise seeding and
noise placement heuristics in combination with a selectionof available test cases and
their parameters has been formalized as thetest and noise configuration search problem
(TNCS) in [7, 8].

To assess how well tests examine the behaviour of an SUT, error manifestation ratio
and coverage metrics can be used. Coverage metrics successfully used for testing of
sequential programs (like statement coverage) are not sufficient for testing of concurrent
programs as they do not reflect concurrent aspects of executions. Concurrency coverage
metrics [1] are usually tailored to distinguish particularclasses of interleavings and/or
to capture synchronization events that occur within the execution. Some of the metrics
target concurrency issues from a general point of view whilesome other metrics, e.g.,
those inspired by particular dynamic detectors of concurrency errors [9], concentrate on
selected concurrency aspects only (e.g., on behaviours potentially leading to a deadlock
or to a data race). In this work, we, in particular, use theGoldiLockSC∗ coverage metric
which measures how many internal states of the GoldiLock data race detector with the
fast short circuit checks [5] have been reached [9].

The data mining approach proposed in this paper is based onbinary classification.
Binary classification problems consist in dividing items ofa given collection into two
groups using a suitable classification rule. Methods for learning such classifiers include
decision trees, Bayesian networks, support vector machines, or neural networks [12].
The use of decision trees is the most popular of those becausethey are known for quite
some time and can be easily understood. Adecision treecan be viewed as a hierarchi-
cally structured decision diagram whose nodes are labelledby Boolean conditions on
the items to be classified and whose leaves represent classification results. The decision
process starts in the root node by evaluating the condition associated with it on the item
to be classified. According to the evaluation of the condition, a corresponding branch
is followed into a child node. This descent, driven by the evaluation of the conditions
assigned to the encountered nodes, continues until a leaf node, and hence a decision,
is reached. Decision trees are usually employed as a predictive model constructed via
a decision tree learning procedure which uses a training setof classified items.

In the paper, we—in particular—employ the advanced classification technique called
Adaptive Boosting(shortly, AdaBoost) [6] which reduces the natural tendencyof deci-
sion trees to be unstable (meaning that a minor data oscillation can lead to a large differ-



ence in the classification). This technique makes it possible to correct the functionality
of many learning algorithms (so-called weak learners) by weighting and mixing their
outcomes in order to get the output of the boosted classifier.The method works in iter-
ations (phases). In each iteration, the method aims at producing a new weak classifier
in order to improve the consistency of the previously used ones. In our case, AdaBoost
uses decision trees as the weak learners with the classification result being−1 or +1.
In each phase, the algorithm adds new weighted decision trees obtained by concentrat-
ing on items difficult to classify by the so far learnt classifier and updates weights of
the previously added decision trees to keep the sum of the weights equal to one. The
resulting advanced classifier then consists of a set of weighted decision trees that are
all applied on the item to be classified, their classificationresults are weighted by the
appropriate weights, summarized, and the sign of the resultprovides the final decision.

3 Classification-based Data Mining in Noise-based Testing

In this section, we first propose our application of AdaBoostin noise-based testing.
Subsequently, we discuss how the information hidden in the classifier may be analysed
to draw some conclusions about which test and noise parameters are important for par-
ticular test cases and test goals or even in general. Finally, we describe two concrete
classification properties that are used in our experiments.

3.1 An Application of AdaBoost in Noise-based Testing

First, in order to apply the proposed approach, one has to define some testing goal
expressible as a binary property that can be evaluated over test results such that both
positive and negative answers are obtained. The requirement of having both positive
and negative results can be a problem in some cases, notably in the case of discover-
ing rare errors. In such a case, one has to use a property that approximates the target
property of interest (e.g., by replacing the discovery of rare errors by discovering rare
behaviours in general). Subsequently, once testing based on settings chosen in this way
manages to find some behaviours which were originally not available (e.g., behaviours
leading to a rare error), the process can be repeated on the newly available test results
to concentrate on a repeated discovery of such behaviours (e.g., for debugging purposes
or for the purpose of finding further similar errors).

Once the property of interest is defined, a number of test runsis to be performed
using a random setting of test and noise parameters in each run. For each such run,
the property of interest is to be evaluated and a couple(x, y) is to be formed where
x is a vector recording the test and noise settings used andy is the result of evalu-
ating the property of interest. This process has to be repeated to obtain a setX =
{(x1, y1), . . . , (xn, yn)} of such couples to be used as the input for learning the appro-
priate classifier.

Now, the AdaBoost algorithm can be applied. For that, the common practice is to
split the setX to two sets—the training set and the testing set, use the training set to
get a classifier, and then use the testing set for evaluating the precision of the obtained
classifier. To evaluate the precision, one can use the notions ofaccuracyandsensitivity.



Accuracy gives the probability of a successful classification and can be computed as
the fraction of the number of correctly classified items and the total number of items.
Sensitivity (also called as the negative predictive value or NPV) expresses the fraction
of correctly classified negative results and can be computedas the number of the items
correctly classified negatively divided by the sum of correctly and incorrectly negatively
classified items (see e.g. [12]). Moreover, in order to increase confidence in the obtained
results, this process of choosing the training and validation set and of learning and
validating the classifier can be repeated several times, allowing one to judge the average
values and standard deviation of accuracy and sensitivity.If the obtained classifier is
not validated successfully, one can repeat the AdaBoost algorithm with more boosting
phases and/or a bigger setX of data.

A successfully validated classifier can subsequently be analysed to get some insight
which test and noise parameters are influential for testing the given program and which
of their values are promising for meeting the defined testinggoal. Such a knowledge can
then in turn be used by testers when thinking of how to optimize the testing process.
We discuss a way how such an analysis can be done in Section 3.2and we apply it
in Section 4.3. Moreover, the obtained classifier can also bedirectly used to improve
performance of noise-based testing based on random selection of parameters by simply
filtering out the settings that get classified as not meeting the considered testing goal.
The fact that such an approach does indeed significantly improve the testing process is
experimentally confirmed in Section 4.4.

3.2 Analysing Information Hidden in Classifiers

In order to be able to easy analyse the information hidden in the classifiers generated by
AdaBoost, we have decided to restrict the height of the basicdecision trees used as weak
classifiers to one. Moreover, our preliminary experiments showed us that increasing the
height of the weak classifiers does not lead to significantly better classification results.

A decision tree of height one consists of a root labelled by a condition concerning
the value of a single test or noise parameter and two leaves corresponding to positive
and negative classification. AdaBoost provides us with a setof such trees, each with
an assigned weight. We convert this set of trees into a set of rules such that we get a sin-
gle rule for each parameter that appears in at least one decision tree. The rules consist of
a condition and a weight, and they are obtained as follows. First, decision trees with neg-
ative weights are omitted because they correspond to weak classifiers with the weighted
error greater than0.5.3 Next, the remaining decision trees are grouped according tothe
parameter about whose value they speak. For each group of thetrees, a separate rule
is produced such that the conjunction of the decision conditions of the trees from the
group is used as the condition of the rule. The weight of the rule is computed by sum-
marising the weights of the trees from the concerned group and normalising the result
by dividing it by the sum of the weights of all trees from all groups.

The obtained set of rules can be easily used to gain some insight into how the test
and noise injection parameters should be set in order to increase efficiency of the testing

3 Note that the AdaBoost methodology suggests that the employed weak classifiers should not
be of this kind, but they can appear in practical applications.



process—either for a given program and testing goal or even in general. In particular,
one can look for parameters that appear in rules with the highest weights (which speak
about parameters whose correct setting is the most important to achieve the given testing
goal), for parameters that are important in all or many test cases (and hence can be
considered to be important in general), as well as for parameters that do not appear in
any rules (and hence appear to be irrelevant).

3.3 Two Concrete Classification Properties

In the experiments described in the next section, we consider two concrete properties
according to which we classify test runs. First, we considerthe case of finding TNCS
solutions suitable for repeatedly finding known errors. In this case, the property of inter-
est is simply theerror manifestation propertythat indicates whether an error manifested
during the test execution or not.

Subsequently, we consider the case of finding TNCS solutionssuitable for testing
rare behaviours in which so far unknown bugs might reside. Inorder to achieve this goal,
we use classification according to arare events propertythat indicates whether a test
execution covers at least one rare coverage task of a suitable coverage metric—in our
experiments, theGoldiLockSC∗ is used for this purpose. To distinguish rare coverage
tasks, we collect the tasks that were covered in at least one of the performed test runs
(i.e., both from the training and validation sets), and for each such coverage task, we
count the frequency of its occurrence in all of the considered runs. We define the rare
tasks as those that occurred in less than 1 % of the test executions.

4 Experimental Evaluation

In this section, we first describe the test data which we used for an experimental eval-
uation of our approach. Then, we describe the precision of the classifiers inferred from
this data. Subsequently, we analyse the knowledge hidden inthe classifiers, compare
it with our previously obtained experience, and derive somenew insights about impor-
tance of the different test and noise parameters. Finally, we demonstrate that a use of
the proposed data mining approach does indeed improve (in a fully automated way) the
process of noise-based testing with random setting of the parameters.

4.1 Experimental Data

The results presented below are based on 5 multi-threaded benchmark programs that
contain a known concurrency error. We use data collected during our previous work [7].
Namely, our case studies are theAirlines (0.3 kLOC),Animator(1.5 kLOC),Crawler
(1.2 kLOC),Elevator(0.5 kLOC), andRover(5.4 kLOC). For each program, we col-
lected data from 10,000 executions with a random test and noise injection setting. We
collected various data about the test executions, such as whether an error occurred dur-
ing the execution (used as ourerror manifestation property) and various concurrency
coverage information, including theGoldiLockSC∗ coverage used for evaluating the
rare events property.



In our experiments, we consider vectors of test and noise parameters having12
entries, i.e.,x = (x1, x2, . . . , x12). Here,x1 ∈ {0, . . . , 1000} represents the noise
frequency which controls how often the noise is injected andranges from 0 (never)
to 1000 (always). Thex2 ∈ {0, . . . , 100} parameter controls the amount of injected
noise and ranges from 0 (no noise) to 100 (considerable noise). Thex3 ∈ {0, . . . , 5}
parameter selects one of six available basic noise injection heuristics (based on in-
jecting calls ofyield(), sleep(), wait(), using busy waiting, a combination
of additional synchronization andyield(), and a mixture of these techniques). The
x4, x5, x7, x8, x9 ∈ {0, 1} parameters enable or disable the advanced injection heuris-
ticshaltOneThread, timeoutTampering,sharedVarNoise, nonVariableNoise,advShared-
VarNoise1, andadvSharedVarNoise2, respectively. Thex6 ∈ {0, 1, 2} parameter con-
trols the way how thesharedVarNoiseadvanced heuristic behaves (namely, whether it
is disabled (0), injects the noise at accesses to one randomly selected shared variable (1)
or at accesses to all such variables (2)). A more detailed description of the particular
noise injection heuristics can be found in [3, 7, 8, 10].

Furthermore,x10 ∈ {1, . . . , 10} andx11, x12 ∈ {1, . . . , 100} encode parameters
of some of the test cases themselves. In particular,Animator and Crawler are not
parametrised, andx10, x11, x12 are not used with them. In theAirlines andElevator
test cases, thex10 parameter controls the number of used threads, and in theRovertest
case, thex10 ∈ {0, . . . , 6} parameter selects one of the available test scenarios. The
Airlines test case is the only one that uses thex11 andx12 parameters, which are in
particular used to control how many cycles the test does.

4.2 Precision of the Classifiers

In our experiments, we used the implementation of AdaBoost available in the GML
AdaBoost Matlab Toolbox4. We have set it to use decision trees of height restricted to
one and to use 10 boosting phases. The algorithm was applied 100 times on randomly
chosen divisions of the test data into the training and validation groups.

Table 1 summarises the average accuracy and sensitivity of the learnt AdaBoost
classifiers. One can clearly see that both the average accuracy and sensitivity are quite
high, ranging from0.61 to 0.99. Moreover, the standard deviation is very low in all
cases. This indicates that we always obtained results that provide meaningful informa-
tion about our test runs.

4.3 Analysis of the Knowledge Hidden in the Obtained Classifiers

We now employ the approach described in Section 3.2 to interpret the knowledge hidden
in the obtained classifiers. Tables 2 and 3 show the inferred rules and their weights for
the error manifestation property and the rare behaviours property, respectively. For each
test case, the tables contain a row whose upper part containsthe condition of the rule
(in the form of interval constraints) and the lower part contains the appropriate weight
from the interval(0, 1).

4 http://graphics.cs.msu.ru/en/science/research/machinelearning/AdaBoosttoolbox



Table 1.Average accuracy and sensitivity of the learnt AdaBoost classifiers.

Error manifestation Rare behaviours

Accurancy Sensitivity Accurancy Sensitivity

CaseStudies Mean Std Mean Std Mean Std Mean Std

Airlines 0.7695 0.0086 0.6229 0.0321 0.9755 0.0056 0.9964 0.0021
Animator 0.937 0.0054 0.9866 0.0052 0.7815 0.0054 0.9071 0.0217
Crawler 0.9975 0.00076 0.999 0.00077 0.7642 0.0402 0.9741 0.0765
Elevator 0.8335 0.0038 0.9982 0.0016 0.6566 0.0051 0.6131 0.027
Rover 0.9714 0.0031 0.9912 0.0012 0.8737 0.1092 0.9687 0.137

Table 2. Inferred weighted rules for the error manifestation classification property.

Airlines
Rules x1 < 275 x3 < 0.5 or 3.5 < x3 x6 < 1.5 2.5 < x10 73.5 < x12

Weights 0.16 0.50 0.04 0.18 0.12
Animator

Rules 705 < x1 2.5 < x3 < 3.5 x6 < 0.5

Weights 0.19 0.55 0.26
Crawler

Rules x1 < 215 15 < x2 1.5 < x3 < 3.5 0.5 < x4 x5 < 0.5 x6 < 1.5

or 4.5 < x3

Weights 0.32 0.1 0.38 0.05 0.08 0.07
Elevator

Rules x1 < 5 x3 < 0.5 or 3.5 < x3 < 4.5 x7 < 0.5 8.5 < x10

Weights 0.93 0.04 0.01 0.02
Rover

Rules 515 < x1 2.5 < x3 < 3.5 0.5 < x4 x6 < 0.5

Weights 0.21 0.48 0.08 0.23

In order to interpret the obtained rules, we first focus on rules with the highest
weights (corresponding to parameters with the biggest influence). Then we look at the
parameters which are present in rules across the test cases (and hence seem to be im-
portant in general) and parameters that are specific for particular test cases only. Next,
we pinpoint parameters that do not appear in any of the rules and therefore seem to be
of a low relevance in general.

As for the error manifestation property (i.e., Table 2), themost influential parame-
ters arex3 in four of the test cases andx1 in theCrawler test case. This indicates that
the selection of a suitable noise type (x3) or noise frequency (x1) is the most important
decision to be done when testing these programs with the aim of reproducing the errors
present in them. Another important parameter isx6 controlling the use of theshared-
VarNoiseheuristic. Moreover, the parametersx1, x3, andx6 are considered important
in all of the rules, which suggests that, for reproducing theconsidered kind of errors,
they are of a general importance.

In two cases (namely,Crawler, andRover), the advancedhaltOneThreadheuristic
(x4) turns out to be important. In theCrawlerandRovertest cases, this heuristic should
be enabled in order to detect an error. This behaviour fits into our previous results [10]



Table 3. Inferred weighted rules for the rare behaviours classification property.

Airlines
Rules x1 < 295 or 745 < x1 < 925 x2 < 35 0.5 < x5 61.5 < x12 < 91.5

Weights 0.52 0.06 0.1 0.32
Animator

Rules 0.5 < x3 < 3.5 or 4.5 < x3 0.5 < x6 < 1.5

Weights 0.8 0.2
Crawler

Rules 0.5 < x3 < 3.5 or 4.5 < x3 0.5 < x4 0.5 < x5 0.5 < x6 < 1.5

Weights 0.46 0.08 0.2 0.26
Elevator

Rules 0.5 < x3 < 3.5 0.5 < x4 0.5 < x5 1.5 < x6 1.5 < x10 < 4.5

or 4.5 < x3 or 7.5 < x10

Weights 0.22 0.05 0.2 0.06 0.47
Rover

Rules 2.5 < x3 < 3.5 or 4.5 < x3 x4 < 0.5 x6 < 0.5 0.5 < x7

Weights 0.46 0.26 0.16 0.12

in which we show that, in some cases, this unique heuristic (the only heuristic which
allows one to exercise thread interleavings which are normally far away from each
other) considerably contributes to the detection of an error. Finally, the presence of
thex10 andx12 parameters in the rules derived for theAirlines test case indicates that
the number of threads (x10) and the number of cycles executed during the test (x12)
pays an important role in the noise-based testing of this particular test case. Thex10

parameter (i.e., the number of threads) turns out to be important for the Elevator test
case too, indicating that the number of threads is of a more general importance.

Finally, we can see that thex8, x9 andx11 parameters are not present in any of the
derived rules. This indicates that theadvSharedVarNoisenoise heuristics are of a low
importance in general, and thex11 parameter specific forAirlines is not really important
for finding errors in this test case.

For the case of classifying according to the rare behaviour property, the obtained
rules are shown in Table 3. We can again find the highest weights in rules based on
thex3 parameter (Animator, Crawler, Rover) and on thex1 parameter (Airlines). How-
ever, in the case ofElevator, the most contributing parameter is now the number of
threads used by the test (x10). The rule suggests to use certain numbers of threads in
order to spot rare behaviours (i.e., it is important to consider not only a high number
of threads). The generated sets of rules often contain thex3 parameter controlling the
type of noise (all test cases except forAirlines) and thex6 parameter which controls the
sharedVarNoiseheuristic. These parameters thus appear to be of a general importance
in this case.

Next, the parameterx12 does again turn out to be important in theAirlines test case,
and thex10 parameter is important in theElevator test case. This indicates that even
for testing rare behaviours, it is important to adjust the number of threads or test cycles
to suitable values. Finally, thex8, x9, andx11 parameters do not show up in any of the
rules, and hence seem to be of a low importance in general for finding rare behaviours
(which is the same as for reproduction of known errors).



Table 4.A comparison of the random approach and the newly proposed AdaBoost approach.

Error manifestation Rare behaviours

CaseStudies Rand. AdaBoost Pos. Impr. Rand. AdaBoost Pos. Impr.

Airlines 56.26 75.43 1,612 1.34 1.94 1.64 2,444 0.85
Animator 14.81 54.05 901 3.65 39.53 57.95 3,258 1.47
Crawler 0.18 0.25 2,806 1.39 22.41 31.26 1,513 1.39
Elevator 16.75 27.66 1,410 1.65 52.77 59.51 1,398 1.13
Rover 6.65 36.25 822 5.45 10.76 23.21 1,620 2.16

Overall, the obtained results confirmed some of the facts we discovered during our
previous experimentation such as that different goals and different test cases may re-
quire a different setting of noise heuristics [10, 7, 8] and that thehaltOneThreadnoise
injection heuristics (x4) provides in some cases a dramatic increase in the probabil-
ity of spotting an error [10]. More importantly, the analysis revealed (in an automated
way) some new knowledge as well. Mainly, the type of noise (x3) and the setting of the
sharedVarNoiseheuristic (x6) as well as the frequency of noise (x1) are often the most
important parameters (although the importance ofx1 seems to be a bit lower). Further,
it appears to be important to suitably adjust the number of threads (x10) whenever that
is possible.

4.4 Improvement of Noise-based Testing with Random Parameters

Finally, we show that the obtained classifiers can be used to fully automatically improve
the process of noise-based testing with randomly chosen values of parameters. For that,
we reuse the 7,500 test runs out of 10,000 test runs recorded with random parameter
values for each of the case studies. In particular, we randomly choose 2,500 test runs
as training set for our AdaBoost approach to produce classifiers. Then, from the rest
of the test runs, we randomly choose 5,000 test runs to compare our approach with the
random approach.

From these 5,000 test runs, we first select runs that were performed using settings
considered as suitable for the respective testing goals by the classifiers that we have
obtained. Then, we compute what fractions of all the runs andwhat fractions of all the
selected runs satisfy the testing goals for the considered case studies, which shows us
the efficiency of the different testing approaches.

In Table 4, the columnsPos.contain the numbers of test runs (out of the considered
5,000 runs) classified positively by the obtained classifiers for the two considered test
goals. The columnsRand.give the percentage of runs out of the 5,000 runs performed
under purely randomly chosen values of parameters that met the considered testing
goals (i.e., found an error or a rare behaviour, respectively). The columnsAdaBoost
give this percentage for the selected runs (i.e., those whose number is in the columns
Pos.). Finally, the columnsImpr. present how many times the efficiency of testing with
the selected values of parameters is better than that of purely random noise-based testing
(i.e., it contains the ratio of the values in theAdaBoostandRand.columns).



The improvement columns clearly show that our AdaBoost technique often brings
an improvement (with one exception described bellow), which ranges from 1.13 times
in the case of the rare behaviours property and theElevator test case to 5.45 times in
the case of the error manifestation property and theRovertest case. In the case of the
Airlines test case and the rare behaviours property, our technique provided worse results
(impr. 0.85). This is mostly caused by the simplicity of the case study and hence lack of
rare behaviours in the test runs. Therefore, our approach did not have enough samples
to construct a successful classifier. Nevertheless, we can conclude that our classification
approach can really improve the efficiency of testing in majority of studied cases.

5 Related Work

Most of the existing works on obtaining new knowledge from multiple test runs of con-
current programs focus on gathering debugging informationthat helps to find the root
cause of a failure [4, 11]. In [11], a machine learning algorithm is used to infer points
in the execution such that the error manifestation probability is increased when noise is
injected into them. It is then shown that such places are often involved in the erroneous
behaviour of the program. Another approach [4] uses a data mining-like technique,
more precisely, the feature selection algorithm, to infer areduced call graph representa-
tion of the SUT, which is then used to discover anomalies in the behaviour of the SUT
within erroneous executions.

There is also rich literature and tool support for data mining test results without
a particular emphasis on concurrent programs. The existingworks study different as-
pects of testing, including identification of test suite weaknesses [1] and optimisation
of the test suite [13]. In [1], a substring hole analysis is used to identify sets of untested
behaviours using coverage data obtained from testing of large programs. Contrary to the
analysis of what is missing in coverage data and what should be covered by improving
the test suite, other works focus on what is redundant. In [13], a clustering data mining
technique is used to identify tests which exercise similar behaviours of the program.
The obtained results are then used to prioritise the available tests.

6 Conclusions and Future Work

In the paper, we have proposed a novel application of classification-based data mining
in the area of noise-based testing of concurrent programs. In particular, we proposed
an approach intended to identify which of the many noise parameters and possibly
also parameters of the tests themselves are important for a particular testing goal as
well as which values of these parameters are suitable for meeting this goal. As we
have demonstrated on a number of case studies, the proposed approach can be used to
fully automatically improve the noise-based testing approach of a particular program
with a particular testing goal. Moreover, we have also used our approach to derive new
insights into the noise-based testing approach itself.

Apart from validating our findings on more case studies, there is plenty of space
for further research in the area of applications of data mining in testing of concurrent



programs. One can ask many interesting questions and searchfor the answers using dif-
ferent techniques, such as outliers detection, clustering, association rules mining, etc.
For example, many of the concurrency coverage metrics basedon dynamic detectors
contain a lot of information on the behaviour of the tested programs, and when mined,
this information could be used for debugging purposes. One could also think of adjust-
ing the above cited works on detecting untested behaviour oron eliminating tests of
similar behaviour for the case of concurrent programs.

Acknowledgement.The work was supported by the bi-national Czech-Israel project
(Kontakt II LH13265by the Czech Ministry of Education and3-10371by Ministry
of Science and Technology of Israel), the EU/Czech IT4Innovations Centre of Excel-
lence projectCZ.1.05/1.1.00/02.0070, and the internal BUT projectsFIT-S-12-1and
FIT-S-14-2486. Z. Letko was funded through the EU/Czech Interdisciplinary Excel-
lence Research Teams Establishment projectCZ.1.07/2.3.00/30.0005.

References

1. Yoram Adler, Noam Behar, Orna Raz, Onn Shehory, Nadav Steindler, Shmuel Ur, and Aviad
Zlotnick. Code Coverage Analysis in Practice for Large Systems. InProc. of ICSE’11, pages
736–745. ACM, 2011.

2. Thomas Ball, Sebastian Burckhardt, Katherine E. Coons, Madanlal Musuvathi, and Shaz
Qadeer. Preemption Sealing for Efficient Concurrency Testing. InProc. of TACAS’10, vol-
ume 6015 of LNCS, pages 420–434. Springer-Velrlag, 2010.

3. Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir,Gil Ratsaby, and Shmuel Ur.
Framework for Testing Multi-threaded Java Programs.Concurrency and Computation: Prac-
tice and Experience, 15(3-5):485–499. Wiley, 2003.

4. Frank Eichinger, Victor Pankratius, Philipp W. L. Große,and Klemens Böhm. Localizing
Defects in Multithreaded Programs by Mining Dynamic Call Graphs. InProc. of TAIC
PART’10, volume 6303 of LNCS, pages 56–71. Springer-Velrlag, 2010.

5. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: A Race and Transaction-aware
Java Runtime. InProc. of PLDI’07, pages 245–255. ACM, 2007.

6. Yoav Freund and Robert E. Schapire. A Short Introduction to Boosting. InIn Proc. of
IJCAI’99, pages 1401–1406. Morgan Kaufmann, 1999.

7. Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar. Multi-
objective Genetic Optimization for Noise-based Testing ofConcurrent Software. InProc. of
SSBSE’14, volume 8636 of LNCS, pages 107–122. Springer-Verlag, 2014.

8. Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Shmuel Ur, and Tomáš Vojnar. Testing of
Concurrent Programs Using Genetic Algorithms. InProc. of SSBSE’12, volume 7515 of
LNCS, pages 152–167. Springer-Velrlag, 2012.

9. Bohuslav Křena, Zdeněk Letko, and Tomáš Vojnar. Coverage Metrics for Saturation-based
and Search-based Testing of Concurrent Software. InProc. of RV’11, volume 7186 of LNCS,
pages 177–192. Springer-Velrlag, 2012.

10. Zdeněk Letko, Tomáš Vojnar, and Bohuslav Křena. Influence of Noise Injection Heuristics
on Concurrency Coverage. InProc. of MEMICS’11, volume 7119 of LNCS, pages 123–131,
Springer-Velrlag, 2012.

11. Rachel Tzoref, Shmuel Ur, and Elad Yom-Tov. Instrumenting Where It Hurts: An Automatic
Concurrent Debugging Technique. InProc. of ISSTA’07, pages 27–38. ACM, 2007. ACM.

12. Ian H. Witten, Eibe Frank, and Mark A. Hall.Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.



13. Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. Clustering Test Cases to Achieve
Effective and Scalable Prioritisation Incorporating Expert Knowledge. InProc. of ISSTA’09,
pages 201–212. ACM, 2009.


