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Abstract—We propose a shape analysis suitable for analysis
engines that perform automatic invariant inference using an
SMT solver. The proposed solution includes an abstract template
domain that encodes the shape of the program heap based
on logical formulae over bit-vectors. It is based on computing
a points-to relation between pointers and symbolic addresses
of abstract memory objects. Our abstract heap domain can be
combined with value domains in a straightforward manner, which
particularly allows us to reason about shapes and contents of
heap structures at the same time. The information obtained
from the analysis can be used to prove memory safety and
reachability properties, expressed by user assertions, of programs
manipulating dynamic data structures, mainly linked lists. The
solution has been implemented in the 2LS framework and
compared against state-of-the-art tools that perform the best in
heap-related categories of the well-known Software Verification
Competition (SV-COMP). Results show that 2LS outperforms
these tools on benchmarks requiring combined reasoning about
unbounded data structures and their numerical contents.

I. INTRODUCTION

Reasoning about dynamic data structures is one of the core
problems in software verification. The techniques implemented
in state-of-the-art verification tools for C programs such as
those competing in the Software Verification Competition
(SV-COMP) have shortcomings when it comes to combined
reasoning about shape and content of data structures as our
experiments revealed. We address this problem in this paper
in the context of template-based program verification.

Template-based verification uses a logic-based synthesis ap-
proach to inferring the invariants required for proving program
properties. It delegates semantic reasoning to SMT solvers and
focusses on the design of appropriate template domains and ef-
ficient algorithms for finding the optimal template parameters
(i.e. least fixed points in the abstract interpretation sense [14]).
The use of such templates makes it straightforward to compute
invariants describing both shape and value properties of data
structures, which is more difficult when combining domains
that are based on different principles.

Running example: To better illustrate the concepts and
methods proposed in the paper, we use the program in List-
ing 1 as a running example. It creates a singly-linked list, each
node containing a value between 10 and 20 (Lines 7–15). The
list is afterwards traversed repeatedly and the value of each
node is either incremented by 1 or halved (Lines 16–22). We
add an assertion that, in every iteration, the value of each
node stays between 10 and 20. The goal of the analysis is to
prove that the assertion always holds. This requires an analysis
capable of reasoning about unbounded linked data structures
and numerical content of their nodes at the same time.

Listing 1: A running example
1 typedef struct node {
2 int val;
3 struct node *next;
4 } Node;
5

6 int main() {
7 Node *p, *list = malloc(sizeof(Node));
8 Node *tail = list;
9 *list = {.next = NULL, .val = 10};

10 while (__VERIFIER_nondet_int()) {
11 int x = __VERIFIER_nondet_int();
12 if (x < 10 || x > 20) continue;
13 p = malloc(sizeof(Node));
14 *p = {.next = NULL, .val = x};
15 tail→next = p; tail = p;
16 }
17 while (1) {
18 for (p = list; p!= NULL; p = p→next) {
19 assert(p→val <= 20 && p→val >= 10);
20 if (p→val < 20) p→val++;
21 else p→val /= 2;
22 } } }

To prove this property we have to infer that the value of the
val field of the dynamic objects allocated in Line 7 and 13
is always in the range [10, 20].

With the help of our technique, we will infer an invariant
for the loop on Line 10 that states the following:
• tail may point to the sets of Node objects created in

Line 7 and 13. We denote these sets ao7 and ao13, resp.
• The next field of ao7 may point to ao13 or null. Its
val field has a value in the interval [10,10].

• The next field of ao13 may point to ao13 or null.
However, its val field has a value in the interval [10,20].
This means that ao13 abstracts a set of Node objects
whose val fields have values in the interval [10,20].

For the loop in Line 18, we infer the invariant that the val
fields of ao7 and ao13 must both be in the interval [10,20],
which implies that the property holds.

Contributions: The contributions of this paper, which
form the contents of Sections III–VII, are as follows:

1) We propose a novel abstract template domain for rea-
soning over heap-allocated data structures such as singly
and doubly linked lists using a template-based parameter
synthesis engine.

2) We show how we can build product and power domain
combinations of our heap domain with structural domains
(e.g. trace partitioning) and value domains such as tem-
plate polyhedra that capture the content of data structures.

3) We implement our abstract heap domain in the 2LS ver-
ification tool for C programs. We demonstrate the power



of the proposed domain on benchmarks, which require
combined reasoning about the shape and content of data
structures, showing that other tools, which performed well
in SV-COMP, cannot handle these examples.

II. TEMPLATE-BASED PROGRAM VERIFICATION

This section describes the approach to program verification
using template-based synthesis of inductive invariants which
the 2LS tool [35] is based upon and that underlies our approach
too. The source program is first translated into single static
assignment (SSA) form. Using this program representation,
the verification task can then be expressed as a second-
order logical formula. However, since suitable solvers for such
formulae are not available, the verification problem is reduced
to synthesising loop invariants using parametrised templates
and an SMT solver to find suitable values of the parameters.

A. Program Verification Using Inductive Invariants

A state of a program is a logical interpretation of logical
variables corresponding to each program variable. A set of
states can be described using a formula—states in the set are
defined by models of the formula. Given a vector of variables
~x, the predicate Init(~x) describes the initial states. A transition
relation is described as a formula Trans(~x, ~x′).

From these, it is possible to determine the set of reachable
states as the least fixed-point of the transition relation starting
from the states described by Init(~x). This is, however, difficult
to compute, so instead, we use an inductive invariant. A ver-
ification task requires showing that the set of reachable states
does not intersect with the set of error states Err(~x). Using
the concept of inductive invariants and existential second-order
quantification (∃2), we can formalise it as:

∃2Inv . ∀~x, ~x′. (Init(~x) =⇒ Inv(~x)) ∧
(Inv(~x) ∧ Trans(~x, ~x′) =⇒ Inv(~x′)) ∧
(Inv(~x)⇒ ¬Err(~x))

(1)

B. Invariant Inference via Templates

To directly handle Eq. (1) by a solver, it would require
the capability to deal with second-order logic quantification.
Since a suitably general and efficient second-order solver is
not currently available, the problem is reduced to one that can
be solved by an iterative application of a first-order solver.
This reduction is done by restricting the form of the inductive
invariant Inv to T (~x, ~δ) where T is a fixed expression (a so-
called template) over program variables ~x and template param-
eters ~δ. This restriction corresponds to the choice of an abstract
domain in abstract interpretation—a template only captures the
properties of the program state space that are relevant for the
analysis. This reduces the second-order search for an invariant
to a first-order search for the template parameters:

∃~δ. ∀~x, ~x′. (Init(~x) =⇒ T (~x, ~δ)) ∧
(T (~x, ~δ) ∧ Trans(~x, ~x′) =⇒ T (~x′, ~δ))

(2)

Although the problem is now expressible in first-order logic,
the formula contains quantifier alternation, which poses a prob-
lem for current SMT solvers. This is solved by iteratively

checking the negated formula (to turn ∀ into ∃) for different
choices of constants ~d as candidates for template parameters ~δ.
For a value ~d, the template formula T (~x, ~d) is an invariant if
and only if Eq. (3) is unsatisfiable.

∃~x, ~x′. ¬(Init(~x) =⇒ T (~x, ~d)) ∨
¬(T (~x, ~d) ∧ Trans(~x, ~x′) =⇒ T (~x′, ~d))

(3)

From the abstract interpretation point of view, ~d is an
abstract value, i.e. it represents (concretises to) the set of all
program states ~x that satisfy the formula T (~x, ~d). The abstract
values representing the infimum ⊥ and supremum > of the
abstract domain denote the empty set and the whole state
space, respectively: T (~x,⊥) ≡ false and T (~x,>) ≡ true [8].

Formally, the concretisation function γ is: γ(~d) = {~x |
T (~x, ~d) ≡ true}. In the abstraction function, to get the most
precise abstract value representing the given concrete program
state ~x, we let α(~x) = min(~d) such that T (~x, ~d) ≡ true .
Since the abstract domain forms a complete lattice, existence
of such a minimal value ~d is guaranteed.

The algorithm for the invariant inference takes an initial
value of ~d =⊥ and iteratively solves Eq. (3) using an SMT
solver. If the formula is unsatisfiable, then an invariant has
been found, otherwise a model of satisfiability is returned
by the solver. The model represents a counterexample to
the current instantiation of the template being an invariant.
The value of the template parameter ~d is then updated by
combining with the obtained model of satisfiability ~d′ using
a domain-specific join operator [8]. For example, assume we
have a program with a loop that counts from 0 to 10 in variable
x and we have a template x ≤ d. Let’s assume that the
current value of the parameter d is 3 and we get a new model
d′ = 4. Then we update the parameter to 4 by computing
d t d′ = max(d, d′), because max is the join operator for
a domain that tracks numerical upper bounds.

C. Source Program Encoding

In this paper, we deal with non-recursive programs with all
function calls inlined. As said above, we encode the program
into a formula representing a specific static single assignment
form (SSA). For acyclic programs, the SSA represents exactly
the strongest postcondition of the program—as usual, with a
fresh copy xi of each variable x for each program location i
where the value of x is modified. The effect of loops is over-
approximated as described in [8]. In this encoding, special
variables called guards are used to track the control flow of the
program. In particular, for each program location i, a Boolean
variable gi is introduced, and its value encodes whether the
program location is reachable.

To see how the over-approximation of program loops is
achieved, note that, at the loop head, the program path coming
from before the loop joins with the path coming from the
end of the loop (assuming that all paths within the loop join
before its end; and likewise for the paths coming from before
the loop). To achieve acyclicity of the SSA, we cut the path
coming from the end of the loop. We then represent the value



of each variable x at the loop head using a phi variable
xphi whose value is defined by a non-deterministic choice
between the value coming from before the loop, say x0, and
the value coming from the end of the loop. The latter value
is represented by a newly introduced loop-back variable xlb.
In particular, we let xphi = gls ? xlb : x0 where gls is a so-
called loop-select Boolean guard that is unconstrained in order
to model the non-deterministic choice. Moreover, to over-
approximate the effect of the loop, the value of the loop-back
variable xlb is initially unconstrained too and later constrained
by the derived candidate loop invariants.

Example. In Listing 1, the loop head at Line 10 joins
two different values of variable tail coming from program
locations 8 and 15. The value of tail coming from the end of
the loop (denoted tail15 in the SSA) is replaced by the loop-
back variable taillb16. The corresponding phi variable listphi10

then non-deterministically joins taillb16 with the value of tail
from before the loop via the loop-select variable gls16:

listphi10 = gls16 ? listlb16 : list8 (4)

III. ABSTRACT MEMORY OPERATIONS IN THE SSA FORM

We now propose a representation of heap memory and
operations over it, designed to be used within the approach laid
out in Section II. The proposal respects the fact that the con-
sidered SSA form is an acyclic program representation, over-
approximating reachable values of variables used in loops.

A. Abstract Memory Representation

Under our assumption of fully inlined, non-recursive pro-
grams, static memory objects correspond simply to a finite set
Var of program variables: we do not need to consider the
stack. We let PVar ,SVar ⊆ Var , PVar ∩ SVar = ∅, be the
sets of variables of pointer and structure type, respectively. A
linked data structure in C is typically defined using a struct
type, which groups together named fields for the payload data
and the link pointers (see Lines 1–4 in Listing 1). We use Fld
to denote the finite set of fields used in the given program.
Let PFld ⊆ Fld be the set of all pointer-typed fields.

1) Abstract Dynamic Objects: We use abstract dynamic
objects to represent dynamic memory objects, i.e. those that are
allocated using malloc (or some of its variants) on the heap.
An abstract dynamic object represents a set of concrete dy-
namic objects allocated at the same allocation site i, e.g. by the
same malloc call located at Line i in Listing 1. However, a
single abstract dynamic object is not sufficient to represent all
concrete dynamic objects allocated by a given malloc. The
reason for this is that the program may use several independent
objects created at an allocation site at the same time. Typically,
this issue is solved by the analysis algorithm materialising
dynamic objects on-demand. We take a different approach
and statically over-approximate the maximum number ni of
concrete objects required (see next section below). Hence, we
use a set AOi = {aoki | 1 ≤ k ≤ ni} of abstract dynamic
objects for that purpose. We let AO = ∪iAOi and require
Var ∩AO = ∅ and AOi ∩AOj = ∅ for i 6= j. The set of all
objects of our program abstraction is then Obj = AO ∪Var .

Pairs consisting of an abstract dynamic object and a field,
i.e. elements of the set AO ×Fld , represent an abstraction of
the appropriate fields of all the represented concrete objects.
We use the “dot” notation to represent such pairs: e.g. aoi.next
denotes the abstraction of the next field of all the concrete
dynamic objects represented by aoi.

We define Ptr = PVar ∪ ((SVar ∪AO)×PFld) to be the
set of all pointers of the given program abstraction. Pointers
can be assigned addresses of objects. Since we currently do not
support pointer arithmetic, the only addresses that we consider
are symbolic addresses of static and dynamic objects together
with the special address null. The symbolic address of an
abstract dynamic object aoi is an abstraction of the symbolic
addresses of the concrete dynamic objects represented by aoi.
To get the address of both static and dynamic objects, we
use the &-operator. Hence, the set Addr of addresses that we
consider is defined as Addr = {&o | o ∈ Obj} ∪ {null}.1

2) Pre-Materialisation: As mentioned above, instead of
materialising dynamic objects on-demand, we pre-materialise
a sufficient number ni of them for each allocation site i and
encode them into our SSA representation. In order for this
abstraction to be sound, it is sufficient that the number ni
equals the maximal number of distinct concrete objects allo-
cated at i that are simultaneously pointed to by some pointer
at any location of the analysed program.

For each allocation site i, we compute the number ni as
follows. First, using a standard static may-alias analysis, we
over-approximate, for each program location j, the set P ij
of all pointer expressions of the source program that may
point to some object allocated at i. These might be pointer
variables from PVar , pointer-typed fields of static objects
from SVar×PFld , or pointer-typed fields of dynamic objects
accessed through dereferences of pointers—i.e. elements of
PVar × PFld . For simplicity, we assume that all chained
dereferences of the form p → f1 → f2 with f1, f2 ∈ PFld
are broken into two expressions using an intermediate variable.
Overall, P ij ⊆ PVar ∪ ((SVar ∪ PVar) × PFld). Next, we
compute the must-alias relation ∼j . For each pair of pointers
p and q and for each program location j, p ∼j q iff p and q
must point to the same concrete dynamic object at j. Finally,
we partition the set P ij into equivalence classes by ∼j , and ni
is given by the maximal number of such classes at any j.

B. Operations over the Abstract Memory Representation

1) Dynamic Memory Allocation: We represent a call to
malloc at program location i by a non-deterministic choice
among the addresses of objects from the set AOi. Hence,
a statement p = malloc(. . .) at i is translated to the formula
pi = gosi,1 ? &ao1

i : (gosi,2 ? &ao2
i : (. . . (gosi,ni−1 ? &aoni−1

i :
&aoni

i ))) where gosi,j , 1 ≤ j < ni are free Boolean variables,
so-called object-select guards.

1We currently assume that addresses of newly allocated objects are fresh.
Hence, we can miss behaviours where some memory space is recycled while
some pointers are still pointing to it, which is undefined according to the C
standard, but sometimes used in practice. If that was a problem, we could,
e.g., extend our preliminary static analysis to detect objects that can possibly
be in that form and add them among possible returns from the allocation.



Example. In Listing 1, two calls of malloc occur on
Lines 7 and 13. For Line 7, a single abstract dynamic object
ao7 is created as there is just one concrete object allocated.2

The malloc on Line 13 must be represented by two objects
ao1

13 and ao2
13 as, e.g. on Line 14, variables tail and p may

point to different concrete objects allocated by this malloc
call. Specifically, the statement on Line 13 will be translated
into the equality p13 = gos13 ? &ao1

13 : &ao2
13. Abstract dynamic

objects ao1
13 and ao2

13 then collectively represent all concrete
dynamic objects allocated in the loop.

2) Reading through Dereferenced Pointers: We handle ex-
pressions of the form p→ f for p ∈ PVar , f ∈ Fld appearing
on the right-hand side of assignments or in conditions as
follows. We first perform a may-points-to analysis, which over-
approximates for each pointer p ∈ Ptr and each program
location i the set of objects from Obj that p may point to at i.
Using the result of the analysis, we can replace the pointer
dereference p→ f by a choice among the values of the field f
of the objects possibly pointed to by p.

To facilitate the replacement, we introduce purely logical
dereference variables. Assume that at program location i there
appears an R-expression p → f and that the pointer p may
point to a set of objects O ⊆ Obj at i. We replace the use
of p → f by using a fresh variable drf(p).fi whose value
is defined by the formula (

∧
o∈O pj = &o =⇒ drf(p).fi =

o.fk)∧((
∧
o∈O pj 6= &o) =⇒ drf(p).fi = o⊥) where pj , o.fk

are the relevant versions of the concerned variables at program
location i and o⊥ denotes a special “unknown object” (a result
of a dereference of an unknown or invalid (null) address).3

Example. We give the translation of the assignment p =
p → next from Line 18 in Listing 1. Since the assignment
is executed at the end of each loop iteration, we define its
program location to be Line 22. At this program location, p
may point to the set of objects {ao7, ao

1
13, ao

2
13}. Hence, the

assignment will be represented by the following formula.

p22=drf(p).next22 ∧(
pphi18 =&ao7 ⇒ drf(p).next22=ao7.next

phi
18

)
∧∧

l=1,2

(
pphi18 =&aol13 ⇒ drf(p).next22=aol13.next

phi
18

)
∧((

pphi18 6=&ao7 ∧
∧
l=1,2

pphi18 6=&aol13

)
⇒ drf(p).next22=o⊥

)
The first conjunct represents the transformed assignment, and
the following conjuncts define the value of the dereference
variable. The value of p entering program location 22 is the
value from the loop head pphi18 . If it equals the address of
ao7, ao1

13, or ao2
13, the value of drf(p).next22 is ao7.next

phi
18 ,

ao1
13.next

phi
18 , or ao2

13.next
phi
18 , otherwise, it equals o⊥.

As an optimisation, if the dereference variable is once
created and the value of the concerned expression does not

2In fact, we should write ao17, but we omit the superscript when a single
abstract object suffices. Likewise for the object-select guards below.

3A dereference of the form ∗p for a non-structured object can be handled
analogously, just without the field f in the above formula.

change, we reuse the existing dereference variable. Second,
when dealing with a statement like v = p → f , the use of
the dereference variable may seem unnecessary as one can
plug vi instead of drf(p).fi into the formula defining the value
of drf(p).fi. This can be done, but, as explained below, the
use of dereference variables can give us more precision when
dealing with sequences of reading and writing operations.

3) Writing through a Dereference: When writing into an
abstract dynamic object aoi, we need to respect the fact that
only one concrete object abstracted by aoi is actually written
to, and the others keep the original value. Hence, we need
to make a join of the original and new value. We again use
dereference variables to facilitate the transformation.

Assume that at program location i, we have an assignment
p → f = v, p ∈ PVar , f ∈ Fld , v ∈ Var , and that p
may point to a set of objects O ⊆ Obj at the entry to i.4

We replace the L-expression p → f by a fresh variable
drf(p).fi whose value is defined by the value of v, i.e. we
assert that drf(p).fi = vl where vl is the version of v valid
at program location i. We then use drf(p).fi to update the
value of the field f of the referenced object, using the formula∧
o∈O o.fi = (pj = &o ∧ gosi ) ? drf(p).fi : o.fk where

pj , o.fk are the relevant versions of the variables p and o.f
at program location i.5 The formula expresses the fact that
o.fi gets updated if p equals the address of o, otherwise
its value remains unchanged; k is the last program location
before i where the value of o.f was changed. The object-
select guard gosi , which is a freshly introduced unconstrained
Boolean variable, enforces that the value of field f is changed
in only one of the concrete objects abstracted by o while it
remains unchanged in the other objects abstracted by o. If o
is not allocated in a loop (and hence representing a single
instance), gosi may be omitted.

Example. For illustration, the assignment tail->next=p
from Line 15 of Listing 1 will be translated into the formula:

(drf(list).next15 = p13) ∧(
ao7.next15 = (listphi10 =&ao7) ?

drf(list).next15 : ao7.next
phi
10

)
∧∧

l=1,2

(aol13.next15 = (listphi10 =&aol13 ∧ gos15) ?

drf(list).next15 : aol13.next
phi
10 )

As mentioned above, the use of dereference variables may
increase the precision of our analysis. This happens in par-
ticular when we write into an abstract object through some
pointer and later read the written value back through the same
pointer (or a pointer aliased with it) without any change of
the pointers and the concerned value in between. Then, we get
back exactly the value that we wrote, which would otherwise
not happen due to the joins involved.

4) Memory Free: Since the free operation has no effect
on the heap reachability itself, we defer its discussion to
Section V devoted to checking memory safety.

4More complex assignments can be transformed into this form.
5A write to a dereference of the form ∗p to a non-structured object can be

handled analogously, omitting field f from the formula.



IV. AN ABSTRACT DOMAIN FOR HEAP ANALYSIS

We will now work towards our template-based abstract
domain suitable for reasoning about properties of heap-
manipulating programs, starting from a base shape domain and
refining it. We will show that, due to the fact that all domains
in the considered approach are based on templates, the new
domain can be easily combined with other domains, e.g. for
inferring properties about numerical data of data structures.

A. Base Abstract Shape Domain

In the considered approach, an abstract domain needs to
have the form of a template—a fixed, parametrised, quantifier-
free first-order logic formula describing the desired property
of a program. As described in Section II, templates are used to
efficiently compute loop invariants of the analysed program.
These are used to constrain values of the loop-back variables
that are used in the SSA-based program encoding to over-
approximate values returning from the end of the loop to the
loop head. Hence, a loop invariant describes a property that
holds for some program variables at the end of the loop body
after any iteration of the loop. Hence, we limit our shape
domain to the set Ptr lb of all loop-back pointers. Let L be the
set of all loops in the program. Since there is one loop-back
pointer variable for each pointer variable and each loop, we
define Ptr lb = Ptr × L. We denote elements (p, l) ∈ Ptr lb

by plbi where i is the program location of the end of the loop
l. Intuitively, the value of plbi is an abstraction of the value of
the pointer p coming from the end of the body of the loop
l. The property that our base shape domain describes is the
may-point-to relation between the set Ptr lb and the set Addr .6

The template of our base shape domain has the form of
the formula T S ≡

∧
plbi ∈Ptr lb T Splbi (dplbi ). It is a conjunction

of so-called template rows T S
plbi

, each row corresponding to

one loop-back pointer from the set Ptr lb. A template row
T S
plbi

(dplbi ) describes the may-point-to relation for the loop-back
pointer plbi . The parameter dplbi ⊆ Addr of the row (a so-called
abstract value of the row) specifies the set of all addresses
from the set Addr that p may point to at the location i.
The template row can thus be expressed as the quantifier-free
formula T S

plbi
(dplbi ) ≡ (

∨
a∈d

plb
i

plbi = a).

Abstract values of template rows corresponding to pointer
fields of abstract dynamic objects allow the domain to describe
unbounded linked paths in the heap, such as list segments.

Example. In Listing 1, a list segment is created by the
first loop. Objects in the segment are linked through the
pointer field next, and they are represented by the abstract
dynamic objects ao1

13 and ao2
13. In our base shape domain,

the shape of this segment will be described by an invariant
for the first loop, specifically by the two template rows
for ao1

13.next
lb
16 and ao2

13.next
lb
16. They will give us the

formula ∧l=1,2T Saol13.nextlb16({&ao1
13,&ao

2
13, null}) where the

rows T S
aol13.next

lb
16

are the formulae aol13.next
lb
16 = &ao1

13 ∨

6Note that unlike the previously mentioned point-to relations, this relation
is computed not just syntactically but using the considered abstract semantics.

aol13.next
lb
16 = &ao2

13 ∨ aol13.next
lb
16 = null. These formulae

say that the next fields of both ao1
13 and ao2

13 may either
point to one of the objects themselves or to null. This describes
an unbounded linked path in the heap composed of objects
abstracted by ao1

13 or ao2
13 and terminated by null.

B. Guarded Shape Templates

In order to use the base shape domain in our approach, we
have to augment it with information about the guard variables
that encode the program’s control flow in the SSA. The
guards express when an appropriate loop-back control edge
is executed and the loop-back pointer has a defined value7.
A row of a guarded shape template is defined as a formula
T G
plbi

(dplbi ) ≡ Gplbi ⇒ T
S
plbi

(dplbi ) where Gplbi is a conjunction
of SSA guards associated with the definition of the variable
plbi and T S

plbi
is as in the base shape domain. If Gplbi is true

for a program run, the definition of plbi was reached in the
run. A shape template T G with guards is then a conjunction
T G ≡

∧
plbi ∈Ptr lb T Gplbi (dplbi ).

Let plbi be a loop-back pointer abstracting the value of
a pointer p ∈ Ptr coming from the end of a loop l ∈ L.
The row guard Gplbi is a conjunction of the following guards:
• The guard glhj linked with the head of the loop l located at

program location j, encoding that the loop l is reachable.
• The guard glsi linked with the use of plbi . The value of glsi

is true if plbi is chosen as the value of the corresponding
phi variable at the head of l (see Section II-C).

• If plbi describes a pointer field of some abstract dynamic
object (i.e. it has the form aokj .f

lb
i for some aokj ∈

AO , f ∈ Fld ), we also use the guard gao
k
j linked with

the allocation of aokj at program location j. This guard
conjoins the guard expressing reachability of program
location j with the object-select guards gosj,l and their
negations denoting allocation of the k-th materialisation
aokj of the object allocated at j.

Example. In Section IV-A, we presented a shape invariant
describing the linked segment created by the first loop from
Listing 1. The corresponding guards for the two template rows
of that invariant are Gao113.nextlb16 = g10∧gls16∧ (g13∧gos13) and
Gao213.nextlb16 = g10 ∧ gls16 ∧ (g13 ∧ ¬gos13). Here, the loop head
guard is g10, the loop-select guard is gls16, and the allocation
guard is given by the guard of the reachability of the allocation
site g13 and by the appropriate object-select guards (gos13 for
ao1

13 and ¬gos13 for ao2
13, respectively).

C. Shape Domain with Symbolic Loop Paths

Unfortunately, guarded shape templates are not precise
enough for many heap-manipulating programs. One often
needs to allow the invariant of a loop to be able to distinguish
which loops were or were not executed while reaching the
given loop. This can, e.g. distinguish which objects were
allocated and can hence be processed in the given loop.

7Using the base domain without the guard variables would be sound.
However, it would produce very imprecise results since the abstract value
would need to cover even states in which the loop-back edge was not taken.



To deal with the above problem, we introduce the concept
of symbolic loop paths and compute different invariants for
different paths. Since we use loop-select guards to express the
control flow through the loops (see Section II-C), a symbolic
loop path is simply a conjunction of loop-select guards.8

Let Gls be the set of all loop-select guards of all loops in
a program. A symbolic loop path π is then formally defined as
π =

∧
g∈Gls lg where lg is a literal of the variable g, i.e. either

g or ¬g. We use Π to denote the set of all symbolic loop paths
of a given program. A shape template extended with symbolic
loop paths is then given by a formula T L ≡

∧
π∈Π π =⇒ T Gπ

where the T Gπ formulae are guarded shape templates as defined
in Section IV-B. Here, π⊥ a special path containing negative
literals only. On that path no loop invariants are computed.

Example. We now show invariants for the pointer p for
the second loop of the program in Listing 1. Using our
(trace-insensitive) guarded shape domain, the corresponding
template row would be T G

plb22
({&ao1

13,&ao
2
13, null}). In other

words, p would be understood as possibly pointing to ao1
13 or

ao2
13 even on paths where they were not allocated. However,

symbolic loop paths allow us to obtain two different invariants
depending on the execution of the first loop (for simplicity,
we only provide the appropriate template row): namely, gls16 ∧
gls22 ⇒ T Gplb22({&ao1

13,&ao
2
13, null}) for the case when the body

of the first loop is executed and ¬gls16 ∧ gls22 ⇒ T Gplb22({null})
for the case when the body of the first loop is not executed.

D. Combinations of Domains

The true power of the template-based verification approach
lies in the simplicity of domain combinations. Since templates
are general logical formulae, they can be easily composed,
forming abstract domains capable of describing more complex
properties of programs while relying on the solver to do the
heavy-lifting on the combination of the domain operations and
the mutual reduction of their abstract values.

1) Power Templates: The definition of shape templates
with symbolic loop paths shows one way how a complex
template can be formed from a simpler one. In this case,
the template parameter, i.e. the abstract value, maps particular
symbolic loop paths to sets of parameters of the original
shape template. In fact, the shape domain could be replaced
by any other abstract domain. The symbolic paths template
can hence be viewed as a power template—in the sense of
power domains [15]—which assigns to each element of the
base domain an element of the exponent domain.

2) Product Templates: From the perspective of program
analysis, a very interesting possibility is the combination of the
shape domain with an abstract domain capable of describing
values of variables of non-pointer types, e.g. numerical vari-
ables (such as the well-known interval or octagon domains).
The simplest way to achieve such a combination is to use
a Cartesian product template that combines templates of
different kinds to be used independently side-by-side. The

8The notion of symbolic loop paths can be easily generalised to program
path sensitivity by including branches of conditional statements too.

proposed shape template with loop-back guards T G from
Section IV-C can be combined with a template for analysis
of numerical values T V by simply taking their conjunction,
i.e. T G∧T V . This not only allows us to analyse programs that
use pointer and numerical variables simultaneously, but also
to reason about the contents of data structures on the heap. We
achieve this by analysing numerical fields of abstract dynamic
objects using the value part of the template.

In addition, we use this product template as the inner
template of the template with symbolic loop paths, forming an
even stronger abstract domain: T LV ≡

∧
π∈Π π =⇒ T Gπ ∧T Vπ .

Using this domain for the running example allows us to
analyse the shape and the contents of the linked list at the
same time, obtaining the invariants described in Section I that
enable us to prove the given property of interest.

V. MEMORY SAFETY ANALYSIS

Apart from checking user-defined assertions, we can also
verify memory safety. This includes a number of properties:
(1) pointer dereferencing safety, (2) free safety, and (3) ab-
sence of memory leaks.

A. Dereferencing a null Pointer

Since our invariants are over-approximating the reachable
program states, we can soundly verify may (or better called
must-not) properties. To check dereferences of null, for each
expression ∗p occurring in a program location i, we verify the
assertion pj 6= null where pj is the version of p valid at i.

B. Free Safety

Free safety includes the absence of dereferencing a freed
pointer and freeing an already freed pointer (a so-called “dou-
ble free”). To prove absence from these errors, we introduce
a new special variable fr initialised to null, which is then non-
deterministically set to the address of the object to be freed
in a free call. We replace each call of the form free(p)
at program location i by a formula fr i = gfri ?pj : frk, where
pj and frk are the versions of p and fr , respectively, valid in
i, and gfri is a free Boolean variable (a so-called free guard).
Treating fr as a standard pointer-typed variable allows us to
over-approximate the set of all freed addresses with the help
of our shape domain. Then, in each program location i where
either ∗p or free(p) occurs, we can check for the assertion
pj 6= frk to prove free safety (here, pj and frk are again
versions of p and fr , respectively, valid at i).

Even though this approach is sound, it is often too im-
precise. Freeing one of the concrete objects does not mean
that all objects were freed and that it is not safe any more to
dereference/free the abstract object. To improve precision, we
modify the representation of malloc calls. At each allocation
site i, we add one more object aocoi to the set {aoki }. The
object can be chosen as the result of the allocation non-
deterministically like any other aoki , but it is guaranteed to
be allocated only once (by an additional condition checking
that, upon its allocation, no loop-back pointer can point to
it). Hence, aocoi represents a concrete object. Then, for each



allocation site i, we only allow &aocoi to be assigned to fr . The
checks for free safety described above are done on concrete
objects only, avoiding possible imprecision stemming from
dealing with multiple objects represented by a single abstract
object which would join the possibly different values of these
objects. Also, as aocoi represents an arbitrary concrete object
allocated at i, if safety can be proven for it, it can be assumed
to hold for any other object allocated at i.

C. Absence of Memory Leaks

Using fr , we then check whether some aocoi object may be
not freed at the end of the program (if there is a leak, it must be
possible to show it on some concrete object). Unfortunately, as
we do not track the sequencing of abstract objects representing
a set of objects allocated at an allocation site (even when
they form a list segment), our analysis typically sees that aocoi
may be skipped in the deallocation loops, and hence remains
inconclusive on the memory leaks.

VI. IMPLEMENTATION

We implemented9 the proposed shape domain within the
2LS framework [35] that uses the template-based verification
method described in Section II. We extended the SSA form
generated by the framework to handle dynamic memory allo-
cation. 2LS is based on the CPROVER framework [13], which
includes an SMT solver based on reduction to propositional
logic. We used Glucose 4.0 as the back-end solver in our
experiments. We let 2LS inline all functions before running our
analysis. For combination with numerical domains described
in Section IV-D, we use the template polyhedra domain that
is already a part of 2LS. Our approach handles any sequential
C program, however, invariants are not inferred for array
contents and memory manipulation using pointer arithmetic.

VII. EXPERIMENTS

We performed the experiments to show how our ap-
proach improves the performance of 2LS and also how
it compares to other state-of-the-art software verifica-
tion tools.10 We used BenchExec [4] to run the experi-
ments with time limit set to 900 s and memory limit to
15 GB. The first comparison was done on the subcate-
gories of the SV-COMP benchmarks [36] related to memory
safety, particularly ReachSafety-ControlFlow, ReachSafety-
Heap, MemSafety-Heap, MemSafety-LinkedLists, MemSafety-
Others. Tasks in ReachSafety are checked for reachability
of an error condition, tasks in MemSafety for absence of
invalid pointer dereference, invalid free, and memory leaks.
We compared our implementation to the version of 2LS from
SV-COMP’17 without the proposed shape analysis.

The results are shown in Table I. The proposed method
significantly improves the performance of the tool. Due to
missing heap analysis support, the old version of 2LS often
reported wrong results and therefore it had a negative score in

9Available at https://github.com/diffblue/2ls/releases/tag/2ls-0.7.
10All tools, benchmarks, and results are available here: https://pschrammel.

bitbucket.io/schrammel-it/research/2ls/fmcad18 exp.tar.xz.

three subcategories. 2LS with our analysis obtained a positive
score in all subcategories and it is also faster in some of them.

Although the results show an improvement, we are still
unable to compete with the best tools of SV-COMP’18 in the
heap categories. This is mainly because our analysis does not
yet support pointer arithmetic and is not yet expressive enough
to handle various kinds of trees or nested lists.

However, the main purpose of our work was to extend
possibilities of analysing combined shape and value proper-
ties of programs. To evaluate, we performed an experiment
comparing our tool with the leaders of SV-COMP’18 in the
heap-related categories, on tasks combining manipulation of
unbounded data structures with a need to reason about the
data stored in these structures. All these tasks11 are correct
programs created by our team, since no such programs are part
of the SV-COMP benchmarks yet. For each task, we verify that
no error state is reachable. The results of the evaluation are
shown in Table II. Numbers in the table represent CPU time
in seconds needed for the analysis of the example. The value
unknown means that the tool was not able to analyse the task.

On these benchmarks, 2LS outperforms the other tools
significantly. Even tools specialised in shape analysis,
Forester [17] and Predator [16], often report unknown, time-
out or even find a false error. This is probably caused by
their inability to reason about the data stored in the lists.
More general tools such as Symbiotic [9] or Ultimate Au-
tomizer [18] often time out since they probably lack an
efficient abstraction for combination of shape and value prop-
erties. CPAChecker [3] (in the CPA-Seq configuration from
SV-COMP’18) solved four tasks but times out on the rest.

VIII. RELATED WORK

There is a vast body of work on shape analysis. We can
only give an overview of the main lines of research in this
section. For a more complete survey, we refer to [25].

Many of the existing approaches to shape analysis are based
on abstract interpretation [14], some of them dating back to
1980s [23]. In particular, the TVLA engine [34] came with
a flexible approach based on abstract interpretation over a set
of user-supplied predicates. In comparison, our approach can
be viewed as using a set of parametrised predicates.

Several further approaches based on abstract interpretation
and various underlying formalisms (logics, automata, graphs)
are mentioned below. In general, our approach differs in that it
uses inductive invariant synthesis based on gradually refining
parameters of templates via SMT solving on the SSA form
(with no iterative execution), instead of iteratively executing
the program using abstract transformers and widening until
a fixed point is reached. Hence, our approach does not use
widening over gradually growing instances of dynamic data
structures to capture unbounded sets of instances of such
structures. Also, it does not use on-demand materialisation
of a concrete memory node from an abstract representation of
a set of such nodes followed by again abstracting the resulting

11See https://github.com/diffblue/2ls/tree/2ls-0.7/regression/heap-data.

https://github.com/diffblue/2ls/releases/tag/2ls-0.7
https://pschrammel.bitbucket.io/schrammel-it/research/2ls/fmcad18_exp.tar.xz
https://pschrammel.bitbucket.io/schrammel-it/research/2ls/fmcad18_exp.tar.xz
https://github.com/diffblue/2ls/tree/2ls-0.7/regression/heap-data


TABLE I: Comparison of 2LS using the proposed method with the previous version of the tool over the SV-COMP benchmark.

RS-ControlFlow RS-Heap MS-Heap MS-LinkedLists MS-Other
cpu (s) score cpu (s) score cpu (s) score cpu (s) score cpu (s) score

2LS 252 64 41 106 17.5 59 107 7 29 46
2LS-old 1400 45 53 -161 190 -194 96 -182 23 46

TABLE II: Comparison of 2LS with other tools on examples combining unbounded data structures and their stored data.

2LS CPA-Seq PredatorHP Forester Symbiotic UAutomizer
Calendar 2.88 timeout false unknown timeout timeout
Cart 23.70 timeout false unknown timeout timeout
Hash Function 3.65 8.51 unknown unknown unknown timeout
MinMax 5.14 timeout false unknown timeout timeout
Packet Filter 431.00 timeout timeout unknown unknown timeout
Process Queue 6.62 7.68 timeout unknown timeout timeout
Quick Sort 18.20 3.50 timeout unknown unknown 5.75
Running Example 1.24 timeout timeout unknown timeout unknown
SM1 0.53 timeout 0.31 false timeout timeout
SM2 0.55 5.41 false false timeout 14.50

memory configuration. These aspects are handled by our
encoding into guarded templates and representing malloc
calls by choosing abstract objects from a predefined pool.

Various extensions of Hoare logic have been developed to
cope with heap-manipulating programs. E.g., [22] proposed
a way to reason about lists using the Mona tool, which was
then extended to more complex data structures [29] and their
contents [27]. Another program logic is separation logic [32],
which enables reasoning about local memory modifications,
rather than looking at the memory as a whole. It has been
used for deductive program verification based on user-provided
annotations [11]. Fully automated approaches based on separa-
tion logic and abstract interpretation have also been proposed
and used, e.g., in the Space Invader [37] and SLAyer [2] tools.

More recently, automation of separation logic using SMT
solvers by reduction to effectively propositional logic has been
proposed by [31], [20], [21]. A different approach [30] uses
the Houdini algorithm to find inductive invariants over heap
predicates generated from grammars. These works share the
common approach with our method to use SMT solvers to
reason about heap properties; however, each of them uses
different techniques for synthesising the invariant predicates.
For an overview on template-based analysis techniques for
numerical properties, we refer to [8].

Other fully automated approaches based on abstract inter-
pretation build on shape graphs [26], such as the Predator
tool [16], or tree automata and regular tree model checking,
such as [6] or the Forester tool [17]. These approaches
primarily aim at handling unbounded heap structures. Their
combination with reasoning about value properties is not easy
as shown in the works [1], [19] that extended Forester with rea-
soning about finite data and a specialised support for handling
ordered list segments. As our experiments showed, Forester
and Predator could handle almost none of our examples.

Several further abstract domains have been proposed for
combining shape and data domains (e.g. [10], [5]). Our ap-
proach has the advantage that such domain combinations need
not be designed from scratch.

Beyond the mentioned tools, several participants in SV-
COMP, such as CPAChecker [3], Symbiotic [9], Ultimate
Automizer [18], or CBMC [13], provide support for dealing
with dynamic data structures and their content. However, they
cannot handle data structures of unbounded size.

All the above methods are store-based, i.e., they describe
the heap explicitly by a graph encoded in different ways. Other
approaches are inspired by storeless semantics [24] using
pointer access paths [12], [33], [28], [7] to describe reach-
ability properties on the heap. This idea proved most suitable
for our purposes. A pointer access path does not concretely
express the heap state, it only describes which dynamic objects
are reachable from a pointer. Using a set of access paths for
each pointer, one can efficiently describe the shape of the heap.
Compared with our method, the above approaches, however,
use abstract interpretation over CFGs, and their support of
dealing with the data content is limited [28].

IX. CONCLUSIONS AND FUTURE WORK

We present a verification approach for heap-manipulating
programs based on template-based invariant synthesis. We
propose an abstract template domain capable of expressing
reachability in dynamic data structures. We show that the
domain can easily be combined with other domains to form
power and product domains that are able to express complex
properties about the shape and the contents of data structures.
We experimentally evaluate our approach by within the 2LS
framework. We plan to extend the technique to support pointer
arithmetic and to develop templates that can express more
complex data structure shapes, such as trees, skip-lists, or
nested lists. Moreover, we work on using our method to infer
function summaries to enable a modular verification approach.
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