Automatic Formal Correspondence Checking of
ISA and RTL Microprocessor Description

Lukas Charvit, Ale§ Smrcka, and Tom4s Vojnar
Brno University of Technology, FIT, IT4Innovations Centre of Excellence, BoZetéchova 2, CZ-61266 Brno, Czech republic
{icharvat, smrcka,vojnar}@fit.vutbr.cz

Abstract—The paper proposes an automated approach with
a formal basis designed for checking correspondence between
an RTL implementation of a microprocessor and a description of
its instruction set architecture (ISA). The goals of the approach
are to find bugs not discovered by functional verification, to
minimize user intervention in the verification process, and to
provide a developer with practical results within a short period
of time. The main idea is to use bounded model checking to check
that the output produced by automatically derived RTL and ISA
models of a given processor are the same for each instruction and
each possible input. Although the approach does not provide full
formal verification, experiments with the approach confirm that
due to a different way it explores the state space of the design
under test, it can find bugs not found by functional verification,
and is thus a useful complement to functional verification.

I. INTRODUCTION

As the complexity of hardware is growing over the last
decades, automation of its development is crucial. To facilitate
the automation, high-level models are used increasingly during
the design process. Specifically, in the case of microprocessor
design, various tool chains, such as LISA [1] or Codasip [2],
[3], [4], take advantage of the availability of high- and low-
level descriptions and provide automatic generation of HDL
designs, simulators, assemblers, disassemblers, and compilers.

In the current microprocessor design tool chains, verification
of the designs is typically performed by simulation and/or
functional verification (testing). Simulation is commonly used
to obtain some initial understanding about the design (e.g., to
see whether ISA contains sufficient instructions) or to check
the performance of the design. Functional verification requires
a golden specification, which must be provided manually by
the developers. Moreover, even extensive functional verifica-
tion can miss many deeper bugs. Therefore, a use of formal
verification is desirable even if it is applied in a bounded way.
Unfortunately, formal verification is not a common part of
the current microprocessor design tool chains.

In this paper, we propose an automated approach built on
a formal basis and intended to be used within an automated
microprocessor design tool chain for checking correspondence
between an RTL implementation of a microprocessor and
a description of its instruction set architecture (ISA). Our
approach is original in its very high level of automation:
the only user inputs are an RTL implementation, an ISA
description (possibly complemented by a specification of
assumed restrictions on the possible values of instruction
operands), and a time limit for the verification.

The main idea behind our approach is to use bounded
model checking (BMC) to compare the outputs produced
by automatically derived RTL and ISA models of a given
processor for all possible instructions and their inputs. In order
to guarantee that some useful result is obtained in a given
time limit, each instruction is checked in parallel for several
bit-widths of its input, and the maximum bit-width for which
a result is obtained in the given time limit is used.

Since our approach uses BMC, it does not consider any
mutual influence among the instructions, and it can limit
the bit-width of input data, it does not provide full formal
verification. However, our experience shows that the approach
is complementary to functional verification, and due to a dif-
ferent way of exploring the state space of the verified design,
it can find bugs not found by functional verification.

The approach has been implemented within the Codasip
Studio IDE [2] and successfully tested on several case stud-
ies. The experiments included a non-trivial real-life single-
pipelined processor in which, during its development, our
approach revealed three previously unknown bugs confirmed
by the developers. The experiments have shown that almost
every instruction of a simple pipeline processor (of a form
commonly used in light-weight embedded devices) is verified
within seconds. Shortened input data were used only in a few
cases, typically for instructions such as multiplication (and
even in such cases, one can argue that most typical bugs would
anyway manifest even for shortened input).

Plan of the Paper: Section II provides an overview of
related work. Section III provides a background on the Codasip
design flow for which our approach is optimized. The main
idea of the proposed method is described in Section IV.
Section V provides more details on the way we model pro-
cessors and on the actual verification process. Experiments are
discussed in Section VI. Section VII concludes the work.

II. RELATED WORK

A lot of research effort has been invested into develop-
ment of formal methods for hardware verification in the past
decades. When concentrating on microprocessors, theorem
proving (cf., e.g., [5], [6], [7]) and automatic generation of
properties satisfied by a given design (e.g., [8], [9], [10], [11])
belong among well-known and often used approaches (both of
them, however, require a significant level of expertise and/or
user intervention). More automation is offered by the approach
of model checking based on a systematic exploration of

the state space of the verified system. Recently, the approach
of bounded model checking (BMC) [12], exploring the state
space of a verified system up to some depth only, and related
approaches such as IPC [13] have become very popular in
practice, leveraging the recent advances in automatic decision
procedures, especially, SAT solvers [14], [15], [16].

Most work on automated formal verification of pipelined
microprocessors based on BMC and SAT solvers can be sepa-
rated in two main branches: verification of the microprocessor
wrt. general properties and correspondence checking between
the ISA and RTL implementation.

In [17], the author proposes general properties of the cor-
rect behavior of a typical single-pipelined implementation of
a microprocessor. These properties together with an ADL
description of a processor are then converted to a BMC
problem to find possible counterexamples [18]. The main ad-
vantage of the approach is the overall verification time, which
is about a second for a middle-sized microprocessor [17].
A disadvantage of the approach is that it produces false
negatives on optimized data-paths that do not correspond to
the definition of a typical pipelined processor.

Automated correspondence checking of an RTL design
against a specific, formally encoded ISA description is con-
sidered, e.g., in [19]. They propose a verification approach
that consists of: (1) choosing an arbitrary legal starting RTL
state, (2) symbolically computing the corresponding ISA state
by finishing partially executed instructions in the pipeline,
(3) symbolically running one instruction in both the ISA and
RTL models, and (4) comparing the programmer-visible parts
of the designs. The approach exploits the logic of equality with
uninterpreted functions and memories (EUFM) which allows
for an abstraction of functional units and memories while
completely modeling the control of a processor. In [20], EUFM
is extended by positive equality of uninterpreted functions
(PEUF) which greatly reduces the time needed for verification.
The works [21], [22] further extend the approach by using
positive equality of uninterpreted functions for modeling func-
tional units, superscalar processors with multicycle execution
units, exceptions, and branch prediction. Since the approach
uses uninterpreted functions for operators unsupported by
EUFM and/or PEUF, the verification may fail (or take too
much time) on RTL designs with optimized operations.

Another, yet similar approach to correspondence checking
of the control of a microprocessor is described in [23].
The work proposes a method of automatic formal verification
of a pipelined implementation against its ISA specification by
using IPC to prove that all assertions of all instructions are
satisfied and to prove validity of assumptions and consequents
of instructions in every possible chain of instructions. For
this purpose, a mapping of high-level ISA to RTL has to be
provided which, however, requires a manual user intervention.

Compared to the above approaches, our approach aims at no
user intervention and thus minimal expertise of the user even
when applying the approach on an optimized design. Although
the approach does not provide full formal verification, it can
find bugs not found by functional verification.

1 element reg represents regs {

2 assembler { "r" idx=unsigned };

3 binary { idx=0b[4] };

4 return { idx; };

5 }

6 element instr__add {

7 use reg as { dst, sA, sB };

8 assembler { "ADD" dst "," sA "," sB };
9 binary { 0b0101 dst sA sB };
10 semantics {
11 regs[dst] = regs[sA] + regs[sB];
12 cf = fn_add_carry(regs([sA], regs[sB]);
13 bi
14 }

Fig. 1: A description of the add instruction in CodAL

III. BACKGROUND: CODASIP DESIGN FLOW

Our work was originally motivated by a request to provide
some support for verification on a formal basis for the Codasip
Studio IDE [2], but the proposed method can be used within
other microprocessor development tool chains too if they are
able to provide all needed information about the processor
(as discussed below). Codasip aims at rapid processor de-
velopment and supports a simultaneous creation of an ISA
description and an RTL implementation. The ISA description
(developed in the Codasip-specific CodAL language illustrated
in Fig. 1) serves as an instruction-accurate model (IA), which
is used to automatically generate a simulator, assembler, dis-
assembler, and extractor of instruction semantics for the target
compiler [24], [25]. The RTL design (e.g., VHDL), cycle-
accurate simulator, and profiler are automatically generated
from a cycle-accurate description (CA) that is developed in
the CodAL language too.

Our method uses both the IA and CA descriptions to
automatically perform conformance checking between them.
From the instruction-accurate model, we use: (i) the set of
all instructions, (ii) the binary representation of each in-
struction and its format (i.e., information about which bits
represent the operator, operands, and immediate data), and
(iii) the semantics of the instructions. From the low-level,
cycle-accurate model, we use: (iv) the types of memories
and register files together with the number of read and write
ports and (v) the identification of the write-back pipeline
stage. Furthermore, in case of processors with multicycle
instructions, we need to know the maximum number of cycles
each instruction needs to complete its execution.

As stated above, for our approach, it is crucial to know
the set of instructions to be checked as well as their semantics.
However, there is no notion of instructions in the CodAL
language as can be seen in Fig. 1. Nevertheless, the assembly
syntax description can be used instead. This syntax is based on
a context-free grammar generating a finite language (ensured
by the CodAL compiler). Hence, if all words of the language
are systematically generated, a list of instructions is obtained.
This extraction is supported by Codasip as a part of its
automatic generator of a C compiler, which needs to know
every instruction included in the instruction set of the modeled

processor. Codasip also extracts a C-language description of
the behavior of each instruction and converts it to an SSA-
based format with a few simple optimizations.

IV. THE MAIN IDEA OF THE PROPOSED RTL-ISA
CORRESPONDENCE CHECKING

We concentrate on checking correspondence between
the behavior of an RTL design of a microprocessor and its
ISA description on the level of an independent execution
of each instruction. By the independent execution, we mean
the execution of an instruction surrounded by no-operation
instructions (nop). Hence, our approach does not aim at
finding errors related to the use of pipelines, multiple ALUs,
caches, etc. We, however, believe that such an approach is
still useful, which is supported by our experiments described
further on that allowed us to find several errors in a real-life
microprocessor (not found by functional testing). Moreover, as
briefly discussed in the conclusions, in the future, we plan to
complement our current approach by another verification phase
building on the correctness of execution of each instruction
in isolation, aiming at errors related to the use of pipelines
and other advanced microprocessor features (hence splitting
the verification into several simpler phases).

The proposed method uses bounded model checking as
an automated reasoning engine. A typical approach to use
(bounded) model checking is to encode the specification (ISA
in our case) as a temporal formula using the specification
language of the chosen model checker. Unfortunately, for com-
plex instructions, this is a rather complicated task. Therefore,
we use a more straightforward translation of the ISA spec-
ification into a behavioral model described in the modeling
(not specification) language of the model checker. We thus
generate two behavioral models: namely, an RTL and ISA
model of the given processor. These models are then equipped
with an environment model, including architectural registers,
memories, the program counter, and input/output ports. All
these models are composed together, and BMC is used to
check that if both of the processor models start with the same
state of their environment (including the same instruction to be
executed), their environments equal after the execution too. For
this purpose, we have implemented an automated generator
of models from ISA descriptions and translator of VHDL to
RTL models, created abstract models of memories and register
files, and a top-level model controlling the ISA, RTL, and
environment models as well as comparing their execution.

Our approach uses similar principles as [19], but since we
are interested in verification of a single instruction only, we
can consider the reset state of the RTL model as a starting
point. This also eliminates the need to make the symbolic
execution reach in a potentially costly way the corresponding
starting ISA state. The top-level control of verifying a single
instruction can be summarized as follows: (1) Initialize the en-
vironment of the given RTL and ISA model. (2) Symbolically
execute one cycle of the ISA model (covering all possible
cases that may arise). (3) Stall the ISA model and reset
the RTL model to ensure that it is in a stable state. (4) Symbol-

ically execute the RTL model for the needed number of cycles
(depending on the write-back pipeline stage or on the number
of cycles of a multicycle instruction). (5) Stall the RTL model
to ensure that no more changes on architectural resources
are made. (6) Finally, check whether the environments of
the RTL and ISA model are equal. In the first step of
the initialization of the environment, the program memory
is filled with an instruction to be verified, other architectural
resources are left random to simulate all possible inputs for
the instruction. If the environments of the RTL and ISA models
are found different in Step 6, an error in the implementation of
the instruction initially set in the program memory was found.
In the next section, all these steps are described in more details.

V. A MORE DETAILED DESCRIPTION OF THE APPROACH
A. Generation of the ISA Model

To derive the ISA model of a processor, we use the out-
put of the Codasip semantics extractor, which consists of
the instruction syntax and the semantics generated for each
possible combination of operands of the instruction. The way
these combinations are encoded within an instruction word
is called instruction format. The description of the syntax
includes the name of the instruction and its unique assem-
bler and binary representation. The binary representation di-
vides the instruction word into constant and operand parts.
The constant parts are usually used to express the opcode and
addressing mode, while the operand parts mark the position of
the code of operands within an instruction word. The semantics
description uses an SSA-based representation.

In Fig. 2, the information extracted for the add instruction
is shown. This instruction works with three 16-bit register
operands: it adds the last two (regl, reg2) and stores
the result into the first one (reg0). Based on the result of
the addition, the carry flag (cf) is set. The regop (rf,
idx) operation used on lines 4, 5, 7 represents reading/writing
of a value stored at the index idx within the register file
rf. The reg(r, 0) operation used on line 9 means read-
ing/writing from/to the register r (not in a register file).
The iN operator where N stands for a positive integer is a bit-
width specifier. The operation add represents the addition
itself, while carry_add computes the value of the carry
after the addition. Auxiliary variables introduced due to using
the SSA-form can be recognized by their % prefix.

When generating the ISA model, we translate the output
described above into the Cadence SMV language [26]. This
formal modeling language is used mainly because of its wide
support in various model checking tools.

The ISA model is obtained by translating the semantics
of each format of each instruction separately. The obtained
translations are used as different branches of the ISA model.
The branch to be executed is chosen according to the contents
of the so-called fetch vector that is added to the ISA model
since a description of the fetch stage is not included in
the output of the semantics extractor. The value of this vector
is initialized according to the instruction format (line 12 in
Fig. 2) by the top-level model discussed below.

1 /+ Name =/
2 instr instr__add__reg__reg__reg_ ,
3 /* Semantics */

4 $tmp0 = il6 regop (regs, regl);

5 $tmpl = il6 regop(regs, reg2);

6 $tmp2 = add (%tmp0, S$tmpl);

7 regop (regs, reg0) = %tmp2;

8 $tmp3 = carry_add(%tmp0, S%$tmpl);

9 reg(cf, 0) = $tmp3;,
10 /* Syntax =/
11 "ADD" regO "," regl "," regz,
12 0b0101 reg0[3,0] regl[3,0] reg2[3,0]

Fig. 2: The output from the Codasip semantics extractor for
the add instruction

The translation of the particular instruction formats relies on
the interface of the chosen model of architectural resources.
We, in particular, represent single registers as binary vectors
with signals we, d, and ¢ in their interface. These signals
have the same meaning as those used in a D-latch. Simi-
larly, memories and register files with m read and n write
ports are mapped to binary matrices having an interface with
signals weq, ..., Wy, WAQ, ...y Wiy, Aoy ey iy TEQ,y evy TR,
TAQy ooy TQpy Oy ooy Gn-

The actual translation of the semantics of the particular
instruction formats is then based on rewriting each operation
in the semantics description into its SMV implementation.
For that, we built a library of SMV implementations of all
the operations that may appear in the output of the Codasip
semantics extractor. Some of them are natively supported by
SMV (i.e., they map to some SMV operation), some are
replaced by multiple SMV operations. For an illustration of
the translation, see Fig. 3 which shows the result of translating
the add instruction. Note, e.g., the extraction of operands
from the fetch vector (lines 12-14) and the translation of
the carry_add operation (line 8 in Fig. 2) using the op-
erations plus and bit extraction (lines 25, 26 in Fig. 3).

B. Modeling Large Architectural Resources

While single architectural registers or small memories can
be modeled directly as binary vectors or matrices, modeling
large memories or register files in such a way could lead
to a state space explosion during the verification. Therefore,
we use an abstraction technique similar to the one of [27].
The technique exploits the fact that the number of values
stored in memory cells that must be remembered is limited
wrt. the depth of the analyzed BMC problem. The interface
of the abstracted memory is left the same, but internally,
an access table is used. Every access, i.e., a write/read to/from
the memory, is recorded in the form of an address-value pair'.
If the memory is accessed again, its access table is searched
first. If there exists a record with the given address, a value that
corresponds to the address is returned/modified. Otherwise,
a new record is created. Note, however, that sometimes this
abstraction could use more bits than the actual implementation.
Hence, a decision whether or not to use the abstraction is done

!'A similar approach is applied when the processor uses I/O ports and buses.

1 —— Variant instr__add__reg__reg_ _reg___
2 —-- Definitions

3 reg0 array 3..0 of boolean;
4 regl array 3..0 of boolean;

5 reg2 array 3..0 of boolean;
6 _tmpO array 15..0 of boolean;
7 _tmpl array 15..0 of boolean;
8 _tmp2 array 15..0 of boolean;
9 _tmp3 boolean;

10 _tr_tmp0 array 16..0 of boolean;
11 —- Transitions

12 reg0[3..0] := fetch[1l1l..8];

13 regl[3..0] := fetch[7..4];

14 reg2[3..0] := fetch[3..0];

15 regs_re0 := 1;

16 regs_ral := regl;

17 _tmpO0 := regs_qg0;

18 regs_rel := 1;

19 regs_ral := reg2;

20 _tmpl := regs_qgl;

21 _tmp2 := (_tmp0 + _tmpl);

22 regs_wel := 1;

23 regs_wal := reg0;

24 regs_d0 := _tmp2;

25 _tr_tmpO0 := (_tmpO0 + _tmpl);

26 _tmp3 := _tr_ tmpO0[l6];

27 cf_we := 1;

28 cf_d := _tmp3;

Fig. 3: Instruction semantics translated to SMV

based on the knowledge of the number of state variables that
are to be used in each of the cases.

Another technique that we use is data-domain reduction.
The technique sacrifices soundness in favor of speed in which
a potential flaw is discovered. It under-approximates the bit-
width of the architectural resources by setting selected bits
permanently to zero. We get back to the particular way we
use data-domain reduction in Section V-D.

C. The Top-Level Model

The top-level model controls initialization, symbolic exe-
cution, and stalling of the ISA and RTL models and their
environment. For that, three special variables are used: a clock
counter and two halt signals. The clock counter increments its
value with every cycle of the symbolic execution of ISA and
RTL models. It is used for detecting the end of the verification
process. The ISA and RTL halt signals are connected to
every resource of the ISA and RTL models, respectively, and
are used to signal them to keep their values, hence to stall
the whole ISA and RTL models.

In the first step of the verification of some instruction
format (to verify all formats, the verification is run for each
format separately), the program memory of the RTL model is
initialized such that upon the first read access, the same fetch
vector that was assigned to the ISA model and that describes
the instruction format chosen to be verified is read from the
program memory. Further read accesses, even from the same
address, will produce the fetch vector representing the nop in-
struction. This behavior ensures that the processor will execute
the verified instruction only. The fetch vector is defined bit per
bit according to the binary coding of the instruction (cf. line

12 in Fig. 2) in the following way: each bit corresponding
to a constant (operation code or addressing mode) is set to
the value of that constant, other bits are left random to simulate
all possible inputs. Other architectural resources such as data
memories and register files are initialized to random values
which, in the initial state only, are shared by the ISA and
RTL models to ensure that both models have the same inputs.

In the next step, the ISA model is symbolically executed for
a single clock cycle. Since the ISA model of an instruction
semantics is encoded as a function of instruction inputs, which
are known after the initialization step, a single clock cycle is
needed for architectural resources of the ISA model to store
new values. The ISA model and its architectural resources are
then stalled using the ISA halt signal, and the RTL model is
reset to its initial stable state.

Next, the RTL model is symbolically executed for t,; +
1 cycles where t,;, represents the write-back stage of
the pipeline (or the number of cycles of a multi-cycle in-
struction to get to the write-back stage), and the additional
clock cycle is used for architectural resources to store new
values. The RTL model with its architectural resources are
then stalled using the RTL halt signal to ensure that no more
changes happen on the RTL level.

Finally, the results of the symbolic executions of the ISA
and RTL models are checked for correspondence. Since the be-
havior of some instructions is defined only for a specific
range of values of the operands, the correspondence is not just
identity. In particular, the developers must explicitly specify
which restrictions of the possible operand values they assume
in a form of assertions (e.g., by some pragma in the IA model).
The property expressing the required correspondence is then
an invariant of the following form:

(clk =tuw+2) = (/\ a=)\ (r15a =rr7L))
acA reR

where clk is the clock counter, A denotes the set of restric-
tions on operands, R is a set of architectural resources, and
rrsa (rrrp) represents a value of architectural resource r of
the ISA model (the RTL model), respectively. The time t,,;+2
represents the overall time for symbolic executions of ISA and
RTL models.

D. The Use of BMC and its Parallelization

For the actual verification of the correspondence property,
we use the ability of the SMV model checker to convert
a given verification problem to a BMC problem of a specified
depth. In particular, in our case, the depth of the problem is
twp+2 which is sufficient because no further changes are made
to the architectural resources after that time. The problem is
represented in CNF using the DIMACS format and exported
to be solved using a SAT solver. It is possible to map the CNF
terms back to variables of the ISA and RTL models, thus in
case of a flawed RTL design, the encountered problem can be
presented to the developers in terms of the original variables.

In fact, we do not generate a single BMC problem for each
format of each instruction, but four of them to be solved

in parallel. These four problems differ in the data-domain
reduction used, in particular: no reduction, a 1/2 reduction
(when 50 % of the bits of bit-vectors of memory units of
data memory and register files are used only), a 1/4 reduction,
and 1/8 reduction. A time limit is then applied for solving
each of these problems, and the result of the lowest reduction
for which the appropriate problem is solved in time is used.
The time limit is derived from the overall time limit for
the verification of the whole processor (given by the user)
divided by the number of all formats of all instructions. This
limitation ensures that the whole verification process will
terminate within the specified time.

VI. EXPERIMENTS

We have implemented the above described method in a pro-
totype tool and tested it on three processors: TinyCPU is
a small 8-bit test processor with 4 general-purpose registers
and 3 instructions that we mainly used to prove our concept.
SPP is an 8-bit ipcore with 16 general-purpose registers and
a RISC instruction set consisting of 9 instructions. Codea? is
a 16-bit processor partially based on MSP430 microcontroller
developed by Texas Instruments [28]. It is equipped with 16
general-purpose registers, 15 special registers, a flag register
and an instruction set including 41 instructions where each
may use up to 4 available addressing modes.

Our experiments were run on a PC with Intel Core i7-
3770K @3.50GHz and 32 GB RAM using Cadence SMV
(build from 05-25-11) and GlueMinisat (version 2.2.5) [29]
as an external SAT solver. The results can be seen in Ta-
ble I. The columns represent the processor being verified,
the number of instructions in its instruction set, the number
of formats of all instructions (IFs), which gives the number
of the (parallelized) BMC problems to be solved. The next
columns represent the results obtained from the verification:
the number of IFs which have been successfully verified
with no data-reduction, the number of IFs which have been
successfully verified at least for some data-reduction, and
columns representing numbers of IFs successfully verified
for a given data-reduction. Avg. time is the average time
per instruction format for the verification process of a given
instruction format.

The time limit was set to 3s for TinyCPU and to 15s
for SPP. For SPP, the limit is close to the time that is
needed for generation of the BMC problems to be solved
(i.e., the time needed for the semantics extraction together
with the translation to SMV and the subsequent derivation
of the BMC problems in DIMACS), which took on average
1.38 s per instruction format. The average time needed for SAT
solving was 0.11 s per instruction format. Pushing the limit
below this bound would lead to unusable results.

To illustrate the use of the verification time limit in our
approach, we provide experiments with Codea2 for two dif-
ferent time limits: 1200 s and 3600 s. The former is close
to the bound described above (most of the time is taken by
the semantics extraction, and the SMV and DIMACS trans-
lations: 3.37 s per instruction format on average). The latter

TABLE I: Verification results

Processor / No. of No. of instr. Proved Partially Part. proved Part. proved Part. proved Avg.

time limit instructions formats no reduction proved 1/2 reduction 1/4 reduction 1/8 reduction time
TinyCPU / 3 s 3 3 3 - - - - 0.18 s
SPP/ 15 s 9 9 9 - - - - 149 s
Codea2 / 1200 s 41 319 53 266 58 176 32 3.66 s
Codea2 / 3600 s 41 319 273 46 46 - - 6.01 s

limit leaves more time for SAT solving (2.64 s in contrast
of 0.29 s per instruction format on average). As can be seen,
every instruction format was proved at least for the reduction
factor of 8 (for a 16 bit processor, this means that 2 bits
per register have only been used). Moreover, multiplication
instructions (46 instruction formats) were the only ones that
were too complex to be proved fully in the extended time
limit.

By verifying the development version of Codea2, we found
three flaws. Each of them was related to setting the carry flag
during arithmetic instructions. All the flaws were confirmed
as real flaws by the processor development team.

VII. CONCLUSION

We have proposed a method of checking correspondence
between the ISA and RTL description of a microprocessor
through BMC. Despite its formal roots, the approach does not
provide full formal verification since it checks each instruction
in isolation and also possibly limits the bit-width of the data
being manipulated. However, as confirmed by our experimen-
tal results, the approach can be still quite useful in that it can
find real errors not found by functional verification (due to
the different ways these approaches exercise the state space
of the verified systems). Moreover, the approach is almost
fully automated, hence not requiring any additional efforts
from the developers (apart from possibly describing their
assumptions about limited values of instruction arguments).
Furthermore, the approach allows for an easy control of
the verification time, exploiting parallelization in order to
increase usefulness of the results that can be obtained in
the given time.

For the future, we plan to complement the approach pro-
posed in the paper by another verification phase that will
build on that the instructions work correctly in isolation and
will concentrate on their possibly undesirable interference in
the pipeline only. This approach is motivated by trying to split
the problem of processor verification into several simpler tasks.

Acknowledgement: This work was supported by the Czech Science
Foundation (project P103/10/0306), the Czech Ministry of Edu-
cation (projects COST OC10009, MSM 0021630528), the Czech
Ministry of Industry and Trade (project FR-TI1/038), the EU/Czech
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070, and
the BUT projects FIT-S-11-1 and FIT-S-12-1.

REFERENCES

[1] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and
H. Meyr, “A Universal Technique for Fast and Flexible Instruction-set
Architecture Simulation”, IEEE Transaction on CAD, 23(12, 2004.

(2]
(3]

Codasip Studio for Rapid Processor Development, www.codasip.com.
Z. Prikryl, K. Masaftik, T. Hruska, and A. Husdr, “Fast Cycle-Accurate
Interpreted Simulation”, Proc. of MTV, 2009.

Z. Prikryl, K. Masaiik, T. Hruska, and A. Husdr, “Generated Cycle-

Accurate Profiler for C Language”, Proc. of DSD, 2010.

R. Hosabettu, G. Gopalakrishman, and M. Srivas, “Verifying Advanced

Microarchitectures that Support Speculation and Exceptions”, Proc. of

CAV, 2000.

J. Harrison, “Floating-point Verification using Theorem Proving”, Formal

Methods for Hardware Verification, LNCS 3936, 2006.

S. Beyer, C. Jacobi, D. Kroning, D. Leinenbach, and W. J. Paul, “Putting

it All Together—Formal Verification of the VAMP”, STTT, 8(4-5), 2006.

F. Rogin, T. Klotz, G. Fey, R. Drechsler, S. Riilke, “Automatic Generation

of Complex Properties for Hardware Designs”, Proc. of DATE, 2008.

P. Mishra and N. Dutt, “Specification-Driven Directed Test Generation

for Validation of Pipelined Processors”, ACM Transactions on Design

Automation of Electronic Systems, 13(3), 2008.

[10] T.N. Dang, A. Roychoudhury, T. Mitra, and P. Mishra, “Generating Test
Programs to Cover Pipeline Interactions”, Proc. of DAC, 2009.

[11] M. Chen and P. Mishra, “Property Learning Techniques for Efficient
Generation of Directed Tests”, IEEE Trans. on Computers, Vol. 60, 2011.

[12] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded
Model Checking”, Advances in Computers, 2003.

[13] M. Ngyuen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and
W. Kunz, “Unbounded Protocol Compliance Verification usign Interval
Property Checking with Invariants”, IEEE Trans. on CAD, 27(11), 2008.

[14] M. N. Velev, “Using Automatic Case Splits and Efficient CNF Trans-
lation to Guide a SAT-Solver when Formally Verifying Out-of-Order
Processors”, AI&KMATH, 2004.

[15] M. N. Velev, “Efficient Translation of Boolean Formulas to CNF in
Formal Verification of Microprocessors”, Proc. of ASP-DAC, 2004.

[16] M. N. Velev, “Exploiting Signal Unobservability for Efficient Translation
to CNF in Formal Verification of Microprocessors”, Proc. of DATE, 2004.

[17] P. Mishra and N. Dutt, “Functional Verification of Programmable
Embedded Architectures: A Top-Down Approach”, Springer, 2005.

[18] H. Koo and P. Mishra, “Functional Test Generation Using Design and
Property Decomposition Techniques”, ACM Transactions on Embedded
Computing Systems, 8(4), 2009.

[19] J. R. Burch and D. L. Dill, “Automatic Verification of Pipelined
Microprocessor Control”, Proc. of CAV, 1994.

[20] R.E. Bryant, S. German, and M. N. Velev, “Exploiting Positive Equality
in a Logic of Equality with Uninterpreted Functions”, Proc. of CAV, 1999.

[21] M. N. Velev, P. Gao, “Automated Debugging of Counterexamples in
Formal Verification of Pipelined Microprocessors”, ASP-DAC, 2010.

[22] M. N. Velev and P. Gao, “Automatic Formal Verification of Multi-
threaded Pipelined Microprocessors”, Proc. of ICCAD, 2011.

[23] U. Kiihne, S. Beyer, J. Bormann, and J. Barstow, “Automated Formal
Verification of Processors Based on Architectural Models”, Proc. of
FMCAD, 2010.

[24] A. Husar, M. Trmac, J. Hrana¢, T. Hruska, K. Masafik, D. Kolar,
and Z. Pfikryl, “Automatic C Compiler Generation from Architecture
Description Language ISAC”, Proc. of MEMICS, 2010.

[25] M. Trmac, A. Husar, J. Hrana¢, T. Hruska, and K. Masafik, “Instructor
Selector Generation from Architecture Description”, MEMICS, 2010.

[26] K. L. McMillan, Cadence SMV, www.kenmcmil.com/smv.html.

[27] M. K. Ganai, A. Gupta, P. Ashar, “Verification of Embedded Memory
Systems using Efficient Memory Modeling”, Proc. of DATE, 2005.

[28] Codea2 Core IP in Codasip Studio, www.codasip.com/products/codea2/.

[29] H. Naneshima, K. Iwanuma and K. Inoue, GlueMinisat, appeared in SAT

Competition 2011, sites.google.com/a/nabelab.org/glueminisat/, 2011.

(4]
(5]

(6]
(71
(8]
91

