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IT4Innovations Centre of Excellence, FIT, Brno University of Technology, Czech Republic

Abstract—Implementation of a pipeline-based execution of
instructions in purpose-specific microprocessors is an error prone
task, which implies a need of proper verification of the resulting
design. Various techniques were proposed for this purpose, but
they usually require a significant manual intervention of the
developers. In this work, we propose a novel, highly automated
approach for discovering RAW hazards in in-order pipelined
instruction execution. Our approach combines static analysis of
data paths to detect anomalies and possible hazards, followed
by a transformation of detected problematic paths to a parame-
terised system (PS), and a subsequent formal verification to check
the possibility of unhandled hazards using techniques for formal
verification of PSs. We have implemented our approach and
successfully applied it on multiple non-trivial microprocessors.

I. INTRODUCTION

For many current, highly demanding embedded applica-
tions, rather complex purpose-specific microprocessors are
developed, including those with pipelined execution. Devel-
opment of such processors requires the designer to reason
about mutual interference of sequences of instructions in the
pipeline where tricky errors can easily arise. Automated or
semi-automated support of the development process, including
suitable verification techniques, is hence highly needed. Vari-
ous techniques have been proposed for this purpose, but they
are still rather limited in terms of their generality, scalability,
and/or degree of automation.

Our long-term goal is to develop a set of verification
techniques with formal roots, each of them specialised in
checking absence of a certain kind of errors in purpose-specific
microprocessors. The main idea is that, this way, a high degree
of automation and scalability can be achieved since only parts
of a design related to a specific error are to be investigated.

In our previous work [1], we proposed, with the above goal
in mind, a fully automated approach for checking correctness
of the implementation of individual instructions. In this paper,
we aim at read-after-write (RAW) hazards in microprocessors
with a single pipeline. An RAW hazard arises when an
instruction writes to a storage that some later instruction reads,
but it is possible for the later instruction to read an old value
being rewritten by the earlier instruction.

Our approach for verifying that a single-pipeline micro-
processor is free of RAW hazards starts by using a simple
static analysis to find all data paths which could transfer
data in a way causing an RAW hazard. Subsequently, we
use SMT solving to check whether some of these paths could
be enabled under some conditions. If so, we use parametric
formal verification over a specially derived model of the
data path to check whether there exists some sequence of

instructions that could generate such conditions. If there is no
such case, RAW hazards are handled properly by the processor.

Our approach concentrates mostly on the control parts of
a design, for which current formal methods usually scale well,
and minimizes the need of reasoning over data. We have
implemented our approach in a prototype tool, and we present
experimental evidence showing that our approach does indeed
provide promising results in practice.

Plan of the Paper: Section II presents an overview of the
related work addressing validation of single-pipeline micro-
processors. Section III defines the needed notions. Section IV
presents our verification approach, followed by experiments
presented in Section V. Finally, Section VI concludes the
paper. Due to space restrictions, a more detailed description
of our approach is given in [2].

II. RELATED WORK

Showing absence of RAW hazards is a native part of
checking conformance between an RTL design and a formally
encoded ISA description. The perhaps most cited approach
to such checking is the so-called flushing technique [3],
which has been extended, e.g., in [4], [5], [6], to handle
rather complicated designs with multi-cycle execution units,
exceptions, and branch prediction. The main challenge of these
works is to overcome the semantic gap between the different
levels of a processor description. Dealing with this issue
typically requires a significant user intervention consisting in
providing various additional assertions about the design or in
transforming it to a purpose-specific description language.

In [7], the so-called self-consistency check that compares
possible executions of each instruction in two scenarios is
introduced. The comparison is made wrt. a property given by
the user, e.g., a property concerning RAW hazards which deals
with (i) executions of an instruction enclosed by any (random)
instructions within the pipeline and (ii) executions of the same
instruction surrounded by NOP instructions only. If the self-
consistency check succeeds, conformance of the RTL and ISA
descriptions of a processor can be established by separately
showing conformance of the RTL/ISA descriptions of each
individual instruction. The main drawback of the approach is
that it requires the enclosing instructions from the first run not
to violate a so-called consistent state of the microprocessor,
which has to be manually defined by the user.

In [8], a formal model based on a notion of stages, parcels
(instructions), and hazards has been introduced. Once the
user defines predicates needed for describing the pipeline, the
design can be automatically formally proven correct under



a correctness criterion given in the work. Another, a bit similar
approach has been proposed in [9]. The approach introduces
an abstract formal model whose components are to be linked
by the user with the concrete cycle-accurate implementation
through a number of mappings. Afterwards, IPC [10] is
used to check several properties implying correctness of the
pipeline behaviour. Again, both of the above methods require
a significant manual user intervention.

Compared with the above approaches, we do not aim at
full conformance checking between RTL and ISA implemen-
tations. Instead, we address one specific property—namely,
absence of problems caused by RAW hazards. On the other
hand, our approach is almost fully automated—the only step
required from the user is to identify the architectural registers.

III. PRELIMINARIES

A processor structure graph (PSG) is a tuple G =
(V,E, s, t). V is a finite set of vertices that is the union
V = Vs ∪ Vf of a set Vs of storages and a set Vf of
Boolean circuits, Vs ∩ Vf = ∅. Vs includes five types of
storages, meaning that Vs = Va ∪ Vp ∪ Vµ ∪ Vrp ∪ Vwp
where Va, Vp, and Vµ are sets of architectural, pipeline, and
micro-architectural registers, respectively, while Vrp and Vwp
denote sets of read and write ports of memories (with all
the sets being pairwise disjoint). We assume that architectural
registers and memory ports are in the set of programmer
visible storages Vpv = Va ∪Vrp ∪Vwp. We also expect micro-
architectural registers to only hold the state of processor’s
control logic and to be not used to carry data interchanged
between programmer visible registers. Moreover, we expect all
storages to have a unit write and zero read delay. Longer access
times (e.g., for memory ports) can be modelled by introducing
sequentially connected registers emulating the required delay.
The set of Boolean circuits is the union of two types of circuits
Vf = Vmx ∪ Vg where Vmx is a set of circuits implementing
multiplexers and Vg is a set of the remaining (generic) circuits,
Vmx ∩ Vg = ∅.

Next, E denotes a finite set of transfer edges. Let T =
{d, q, st, cl, addr, en, sel, m} ∪ {ai, casei | i ∈ N} be the
set of connection types whose meaning will become clear
below. Finally, s : E → V × T assigns to each edge its
source vertex and its connection type, and t : E → V × T
assigns to each edge its target vertex and its type of connection.
The d, st, cl, addr, en types represent commonly used data,
stall, clear, address, and enable connections of registers and
memory ports with the usual semantics. The q type represents
a data output of the given v ∈ V . The m type is a special
type of connection that is used to interconnect write ports of
the memories with their reading counterparts. The ai types are
argument connections of functional vertices vg ∈ Vg . Finally,
sel and casei types are connections related to multiplexers
only. The value transferred through sel connection selects
which of casei inputs is propagated to the q output of the
multiplexer. A detailed semantics can be found in [2].

Because each vertex v ∈ V can have at most one inbound
edge for a single connection type, one can use a simpler
notation to uniquely describe the edges. In particular, an edge

e ∈ E that satisfies t(e) = (v, c), v ∈ V , can be encoded
using the expression v.c.

Given k > 1 and vertices v1, vk ∈ V of a PSG, a walk
from v1 to vk is an alternating sequence of vertices and edges
〈v1, e1, v2, ..., vk〉 where v2, ..., vk−1 ∈ V , e1, ..., ek−1 ∈
E, and every two subsequent vertices are incident with an
edge present between them, i.e., s(ei) = (vi, ci), t(ei) =
(vi+1, ci+1) for each 1 ≤ i < k and c1, ..., ck ∈ T. A path
from v1 to vk is a walk where no vertex appears twice, i.e.,
i 6= j ⇒ vi 6= vj for all 1 ≤ i, j ≤ k.

Since our approach builds on analysing conditions that hold
in certain stages of execution of a given instruction, we now
introduce a notion of edge conditions. An edge condition is
a pair (e, b), denoted e b, meaning that the value transferred
over the edge e ∈ E is equal to some constant or variable b
of bit-vector logic. By E, we denote the set of all such edge
conditions.

Our approach further uses the common notion of a param-
eterised system (PS) operating on a linear topology where
processes (i.e., executed instructions) may perform local
transitions or universally/existentially guarded global transi-
tions [11], [12]. For our purposes, it is enough to consider
global transitions only. A PS is a pair P = (Q,∆) where Q
is a finite set of states of a process and ∆ is a set of transition
rules over Q. A transition rule is of the form Qj < i : G |=
q → q′ where Q ∈ {∀,∃}, G ⊆ Q and q, q′ ∈ Q. A PS
induces a transition system whose configurations are finite
words over Q. A configuration q1...qi...qn, 1 ≤ i ≤ n, changes
to q1...q

′
i...qn when the ith process goes from its state qi to

q′i using some of the transition rules. The rule can be applied
only if its guard is satisfied. For example, the meaning of the
guard ∀j < i : G is “for every process j to the left from i (in
the linear topology), the jth process should be in a state that
belongs to the set G”.

We will work with the reachability problem given by a PS
P , a regular set I ⊆ Q+ of initial configurations, and a regular
set Bad ⊆ Q+ of bad configurations. In particular, we assume
Bad to be given as the upward closure of a finite set B ⊆ Q+

of minimal bad configurations, this is, Bad = {c ∈ Q+ |
∃b ∈ B : b v c} where v is the usual sub-word relation (i.e.,
u v s1...sn ⇔ u = si1 ...sik for some 1 ≤ i1 ≤ ... ≤ ik ≤ n,
0 ≤ k ≤ n). Now, let R ⊆ Q∗ denote the set of all reachable
configurations. We say that the system P is safe wrt. I and
Bad iff no bad configuration is reachable, i.e., R∩Bad = ∅.

IV. THE PROPOSED VERIFICATION APPROACH

This section describes our approach for verifying that the
logic of data-flow control prevents RAW hazards, making it
impossible for a later instruction to read incorrect (not yet
updated) data, use them for a computation, and write them into
some programmer visible storage. We expect the processor
under verification to be described by a PSG, which can be
easily obtained from a description of the processor on the
register transfer level (RTL) written in common languages,
such as VHDL or Verilog. For our experiments, we have, in
particular, implemented a translation from RTL generated from
the CodAL hardware description language [13] to PSGs.
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Fig. 1: A processor structure graph of a part of a RISC CPU.

Our approach consists of the following steps: (i) a data-
flow analysis intended to distinguish particular stages of the
pipeline, (ii) a consistency check of a correct implementa-
tion of the particular pipeline stages, (iii) a static analysis
identifying constraints over data-paths of instructions that can
potentially cause an RAW hazard, (iv) generation of a PS
modelling mutual interaction between potentially conflicting
instructions, and (v) an analysis of the constructed PS.

Example 1. Throughout the section, we will be illustrating
the different steps of our approach on a running example
depicted in Fig. 1. The figure shows a PSG describing a part
of a simple RISC CPU. The depicted part of the CPU is used
during execution of arithmetic and load/store instructions. To
remain lucid, the PSG does not include any logic responsible
for execution of branch instructions, and it shows only selected
parts of an instruction decoder (circuits dec1 and dec2). Also,
the write enable signal for the register pc as well as the read
enable signals for the ports rf1, rf2 (read ports of register file
rf ), and pm1 (which is a port to the program memory) are
omitted because of their constant setting to “1”.

The node flow represents the flow logic of the con-
troller which is responsible for dealing with RAW hazards
on the register file. The flow logic implements the function
flow(sa1, sa2, den, da) = den ∧ (sa1 = da ∨ sa2 = da)
which checks the value of the enable den and the address da
also connected to the write port rf3 of an earlier instruction
with the addresses sa1, sa2 of the read ports rf1, rf2 of a later
instruction. In case the later instruction wants to read from the
same address as the writing one, the flow logic uses stall and
clear signals, transferred by edges such as ir.st or wen.cl,
to insert a pipeline bubble between the instructions. /

A. Data-Flow Analysis

The input of our approach (apart from the PSG) is the
identification of architectural registers including the program
counter. We use a simple data flow analysis to get the number
of pipeline stages and the mapping of storages and logic
functions into the pipeline stages. We define a pipeline stage
as a sub-graph of a PSG responsible for executing a single-
cycle step of an instruction. The pipeline stage that a vertex
(representing some storage or function) of a PSG belongs to is

given by the minimum number of cycles needed to propagate
data from the input of the program counter (assumed to be
read from a fictive stage 0) to the output of the given vertex.
Hence, as a particular case, the program counter itself belongs
to stage 1.

The simple data-flow analysis that we use starts from the
program counter and its stage 1 and propagates the so-far
computed stages forward through the PSG, always taking
the minimum of values incoming to a vertex and adding
one whenever a storage other than a read port (which has
a zero delay) is passed. This analysis gives us the mapping
ϕ : Vs → S, S = {0, ..., n}, n ∈ N, of storages to pipeline
stages. Subsequently, by looking at all the storages from which
there is a path to a given storage not passing through any
further storage, we can easily get the write stage mapping
ϕwr : Vs → 2S describing which stages directly influence the
value of the given storage. In case of the program counter,
we always add the fictive stage 0. Likewise, by looking at all
target storages that can be reached from a given storage by
a path not passing through any further storage, one can derive
the read stage mapping ϕrd : Vs → 2S describing which stages
outputs (directly connected to targeted storages) are influenced
by the given storage. Pipeline stages of the storages from the
PSG of Fig. 1 and the corresponding read and write stages,
computed as described above, are shown in Table I.

B. Consistency Checking

The second step of our method is consistency checking
which checks whether the flow logic assures a correct in-order
execution of all instructions through all the identified pipeline
stages. This means that all instructions which are fetched from
the program memory should flow from the first stage to the last
stage while maintaining their execution order with no loss or
duplication of an instruction. We check whether the flow logic
obeys a set of rules which express how the control connections
(en, st, cl) of storages in adjacent pipeline stages should be
set. In particular, we use a strengthened variant of the rules
proposed in [14]. The rules are expressed as formulae in bit-
vector logic and checked using an SMT solver. An example
of a rule we check is the following: If some pipeline register
of a stage s is stalled or not written, then all pipeline and



architectural registers and write ports of the stage s have to
be stalled or not written. Due to a lack of space, a complete
list of the rules, including their formal statement, is deferred
to the technical report [2].

C. Static Detection of Potential RAW Hazards

In the next step, a static hazard analysis examines the PSG
and the pipeline stage mappings ϕ, ϕwr , ϕrd determined
by the data-flow analysis and identifies a finite set of so-
called hazard cases. Each hazard case describes one possible
source of an RAW hazard. In the construction of hazard
cases, the most interesting step is the derivation of the so
called minimal influence path. We define an influence path as
a path 〈v1, e1, ..., vk〉 where the value read from a programmer
visible storage v1 ∈ Vpv can influence a value stored to an
programmer visible storage vpv ∈ Va ∪ Vwp by writing to
a target storage vk ∈ Vs. Each influence path must fulfill
the following set of properties: (i) The target storage vk
must be either (a) an architectural register or a write port,
i.e., the case when vk = vpv , or (b) a pipeline register s.t.
t(ek−1) = (vk, cl). Indeed, clearing of the pipeline register
vk will surely influence all programmer visible storages that
belong to stages s ≥ ϕ(vk). Next, (ii) the influence path must
not traverse through stall connections of pipeline registers.
Such paths cannot influence the value of any programmer
visible register. Their only impact can be that they stall a stage
but in such a case the previously established satisfaction of
the consistency rules assures the correct conservation of all
the partially executed instructions. Finally, (iii) access stages
of elements along the path must conform to those obtained
during the data-flow analysis and these stages have to form
an increasing sequence. Otherwise, there could not be any
instruction capable of a data transfer along the influence path.

An error in the RAW hazard prevention logic is manifested
upon the first write of incorrect data into some programmer
visible storage of the design. Therefore, it is sufficient to
further work only with the minimal influence path which is an
influence path where vi 6∈ Va ∪ Vwp and t(ei−1) 6∈ Vp × {cl}
for all 1 < i < k. To discover the minimal influence paths
in the given PSG, one can think of using a standard breadth-
first search with the rules (i-iii) and the minimality checked
on-the-fly.

A hazard case (vw, sw, vr, sr, vt, st, π) consists of (i) a pro-
grammer visible storage vw (i.e., a register or a writing
port of the memory), (ii) its write stage sw ∈ ϕwr (vw),
(iii) a reading storage vr such that vr = vw if vr is a register or
such that vr and vw are ports of the same memory, (iv) the read
stage sr ∈ ϕrd(vr) such that sr < sw in order that the
storage is read before it is written to evoke the RAW hazard,
(v) a target storage vt where the potentially incorrect value
read from vr is stored, (vi) a stage st ∈ ϕwr (vt), sr ≤ st,
in which the incorrect value is stored, and (vii) a minimal
influence path π describing how data are propagated from vr to
vt between the stages sr and st. Note that since the definition
of a hazard case speaks about storages, their access stages,
and the path along which the problematic data is transferred,
it is not related to a single instruction only but to an entire

TABLE I: Pipeline stages and potential hazards.

Storage Type Stage Write stages Read stages Potential
ϕ ϕwr ϕrd hazard

pc arch 1 {0, 1, 2, 3} {0, 1} X
pm1 port – ∅ {1} ×
ir pipe 2 {1, 2, 3} {0, 1, 2} –
rf1 port – ∅ {2} X
rf2 port – ∅ {2} X
op pipe 3 {2, 3} {0, 3} –
rA pipe 3 {2, 3} {0, 3} –
rB pipe 3 {2, 3} {0, 3} –
rW pipe 3 {2, 3} {0, 1, 2, 3} –
wen pipe 3 {2, 3} {0, 1, 2, 3} –
rf3 port 4 {3} ∅ X

class of instructions. Further, note that the case when sr = sw
is not included since the consistency checking guarantees an
isolated execution of the instructions.

Example 2. Consider results of data-flow analysis computed
for the PSG from Fig. 1 shown in Table I. In the table, one
can see that there is a potential RAW hazard on storage rf
because, for example, its read port rf2 can be read in stage 2
(ϕrd(rf2) = {2}), and its write port rf3 can be written
in stage 3 (ϕwr (rf3) = {3}). Therefore, the subsequent
verification will include a check whether a RAW hazard is
indeed possible between two classes of instructions. The first
one consists of instructions writing to rf3 at address a in
stage 3. The other includes instructions reading from rf2 at the
same address a in stage 2. In the PSG, there are several target
storages, such as rf3 and pc, where the reading instruction can
store potentially incorrectly fetched data. Thus, multiple haz-
ard cases need to be considered. For example, assume the rf3
as a target. There are multiple minimal influence paths leading
to rf3, e.g., π1 = 〈rf2, rB.d, rB, +.op2, +, mux.add,
mux, rf3.d, rf3〉 or π2 = 〈rf2, rB.d, rB, mux.dir,
mux, rf3.d, rf3〉. This means that the following two haz-
ard cases need to be investigated: (rf3, 3, rf2, 2, rf3, 3, π1)
and (rf3, 3, rf2, 2, rf3, 3, π2). An analogical process is then
applied for pc as the target. /

D. Generation of a PS Modelling the Possible Hazards

We will now describe how the behaviour of the instructions
given by constraints of a hazard case can be modelled and
verified for correctness using a PS P = (Q,∆). In the system
P , we map n instructions in the pipeline to n processes in
a linear array (with the earliest on the left). Initially, they are
in a state saying that their execution has not started. Then,
they proceed through individual stages of the pipeline during
which they may interact with each other by the means of
pipeline flow logic, e.g., an earlier instruction may force a later
instruction to be stalled, or cleared. Finally, the instructions
end up in a state denoting that they left the pipeline.

Let us have a hazard case (vw, sw, vr, sr, vt, st, π). In the
system P , we model interactions among three classes of
processes (and hence 3 types of instructions) K = {w , rw ,
any}. The w -class includes every instruction that writes to
storage vw in stage sw. The rw -class includes instructions that
read from storage vr in stage sr, perform a data computation
that involves the data path π, and write to storage vt in
stage st. The any-class instructions are used as pipeline



filler representing ANY other instruction. The set of states of
a parametrized system P is then given by pairs (k, s) ∈ K×S
where k given a type of an instruction and s gives the
stage in which the instruction is currently executing. Hence,
Q ⊆ K×S, and we will use the notation qks to denote a stage
(k, s) ∈ Q. For a pipeline of length m, the sequence qk0 , ..., q

k
m

records each step of a k-class instruction in the pipeline.
To simplify the following explanation of the transition

relation ∆, we assume existence of a mapping ξ and predicates
Rst , Rcl , Rcf . The mapping ξ : Q → 2E describes the
behaviour of an instruction using a set of edge conditions
that hold in the given state q ∈ Q. The construction of the
mapping ξ is based on the hazard case and its major step
is determination of edge conditions required to (i) perform
a write to vw in stage sw, (ii) make a read from vr in
stage sr, (iii) propagate data over the influence path π in
stages sr, ..., st1, and (iv) make a write to vt in stage st. The
conditions found in (i) are used to form the mapping ξ for
states of the w -class instruction while those from (ii–iv) are
related to the rw -class.

Next, the predicates Rst , Rcl ⊆ S × Q2, Rcf ⊆ Q2 reflect
the pipeline’s control logic which disallows some instruction
interleavings. The predicate Rst(s, qk1s1 , q

k2
s2 ), resp. Rcl(s +

1, qk1s1 , q
k2
s2 ), evaluates to true for s, s1, s2 ∈ S, k1, k2 ∈ K

iff edge conditions ξ(qk1s1 ) ∪ ξ(qk2s2 ) that hold in states qk1s1 ,
qk2s2 lead to stalling, resp. clearing, of the stage s, resp. s+ 1.
The predicate Rcf holds iff conditions ξ(qk1s1 ) ∪ ξ(qk2s2 ) are in
contradiction meaning that concurrent presence of instructions
in states qk1s1 , qk2s2 is impossible within the verified design.
The needed reasoning over edge conditions to evaluate the
predicates can be done automatically, e.g., by utilizing bit-
vector solver [15].

Now, to retain in order execution, an k-class instruction
yields a step qks → qks+1, s ∈ S, k ∈ K if there is no earlier
instruction in stage s + 1. Moreover, an instruction stays in
the same state qk1s1 , i.e., yields a step qk1s1 → qk1s1 , s1 ∈ S,
k1 ∈ K, in the case when there exists another instruction in
state qk2s2 , s2 ∈ S, k2 ∈ K, for which Rst(s1, q

k1
s1 , q

k2
s2 ) holds.

An instruction in state qk1s1 is cleared if there exists another
instruction in state qk2s2 causing Rcl(s1 + 1, qk1s1 , q

k2
s2 ) to be

positive and simultaneously Rst(s1, q
k1
s1 , q

k2
s2 ) to be negative.

The clearing of an instruction is represented by a transition
qk1s1 → qanys1+1, where qanys1+1 denotes a state of an any-class
instruction in stage s1+1. As for the conflicting case, presence
of an instruction in state qk1s1 is considered as spurious if there
exists an instruction in a state qk2s2 so that Rcf (qk1s1 , q

k2
s2 ) is

positive. To avoid false alarms, a transition qk1s1 → qanys1+1 is
made in such a case. All of the above mentioned transition
rules can be encoded into ∆ by using existentially and
universally guarded transitions. For technical details about the
encoding and as well as description of the predicates Rst , Rcl ,
Rcf and the mapping ξ, we kindly refer reader to [2].

Example 3. Consider the first hazard case from Example 2.
We will demonstrate the reasoning done in order to define

1This step includes, e.g., a calculation of edge conditions that must hold
for selectors of multiplexers of the path π.

value of the predicate Rst(2, qrw2 , qw3 ), that is, whether con-
current presence of two instructions in states qrw2 , qw3 implies
stalling of stage 2. Presence of an w -class instruction in state
qw3 implies validity of the edge conditions ξ(qw3 ) = {rf3.en 
1, rf3.addr  a} (meaning that a write to register a is
enabled). Similarly, existence of rw -class instruction in state
qrw2 means that the edge conditions ξ(qrw2 ) = {rf2.en  
1, rf2.addr a} (enabling reading from register a) to hold.

Now, we take arbitrary representative pipeline storage from
stage 2, e.g., register ir. This can be done because the require-
ment for stalling of all storages of the stalled stage is one of the
previously checked consistency rules. Stalling of the stage 2
thus necessary means setting the value of its stall edge ir.st to
“1”. The value of ir.st is computed by flow circuit. Therefore,
the value of the predicate Rst(2, qrw2 , qw3 ) corresponds to
flow(sa1, sa2, den, da) = den ∧ (sa1 = da ∨ sa2 = da). Be-
cause rf3.en  1 ∈ ξ(qw3 ) and both edges flow .den, rf3.en
have the same source vertex wen and its connection q, one can
derive that flow .den  1. Similarly, because rf3.addr  a,
rf2.addr  a ∈ ξ(qw3 ) ∪ ξ(qrw2 ), and the pairs of edges
(rf3.addr,flow .da), resp. (rf2.addr,flow .sa2), share com-
mon source vertex rW , resp. [7..4], we can state flow .da a
and flow .sa2  a. Thus, flow(sa1, a, 1, a) = 1 ∧ (sa1 =
a∨a = a) and so Rst(2, qrw2 , qw3 ) surely evaluates to true. /

Initially, any instruction of w , rw as well as any class
can enter the pipeline. Therefore, the regular set I of initial
states is ({w , rw , any} × {0})+. In order to describe bad
configurations, we have to determine the number of cycles h,
during which an rw -class instruction must not store a value
into vt because it would necessary mean that the written data
were incorrectly fetched. From the hazard case, we know that
data supposed to be written to vt are computed in stage st, and
the computed value is committed to vt in the next cycle, i.e.,
in stage st + 1. To ensure that data computed in stage st are
correct, no write to vw can occur for st−sr cycles. Otherwise,
during the execution of an rw -class instruction, there would be
an update of storage vr that is read by the instruction and thus
the instruction would perform computation with incorrect data.
Because a RAW hazard is exhibited only after commitment of
the incorrectly fetched data to vt, the value of h is given by
(st + 1)− sr. Hence, for w -class instructions, we consider h
subsequent states following the one involving write to vw, i.e.,
qwsw+1, ..., q

w
sw+h, as hazardous. A configuration is considered

as bad if it includes an occurrence of a hazard state followed
by a state qrwst+1 of an rw -class instruction.

The reachability problem defined by the parametrized sys-
tem P and by the sets of initial and bad states can be checked
using techniques described, e.g., in [12], [16].

Example 4. Consider the first hazard case described in
Example 2 to be present in five staged CPU. The execu-
tion of a w -class instruction writing to register file port
rf3 is described by a process going through the sequence
of states qw0 , q

w
1 , q

w
2 , q

w
3 , q

w
4 , q

w
5 , q

w
6 where rf3 is written in

state qw3 and q0, q6 denote initial, resp. final, state. The
execution of the rw -class instructions reading from port rf2
and writing to port rf3 passed through the sequence of states



TABLE II: Verification times.

Processor / Data flow Consistency Par. Mod. Total Hazard
variant analysis [s] checking [s] verif. [s] [s] Cases [#]

TinyCPU S 8 1 12 21 9
SF 10 3 21 34 19
B 8 1 13 22 9

SPP8 S 28 6 62 96 40
B 29 6 67 102 40

SPP16 S 34 7 89 130 58
B 33 7 97 137 58

Codea2 SFH 162 18 856 1036 281
DLX5 S 77 26 378 481 43

B 123 29 590 742 44

S stalling logic B bypassing logic F flag reg. H special reg.

qrw0 , qrw1 , qrw2 , qrw3 , qrw4 , qrw5 , qrw6 . Here, the port rf2 is read in
state qrw2 , and port rf3 is written in state qrw3 with its value
committed in state qrw4 . Because the value of rf3 is committed
in state qrw4 , i.e., in stage 4, and rf2 is read in state qrw2 , i.e., in
stage 2, the length h is 4− 2 = 2 causing states qw4 , qw5 to be
hazard states. Thus, the set B of minimal bad configurations
is {qw4 qrw4 , qw5 q

rw
4 }. A chosen parametric verification method

can then be used to check whether a bad configuration, e.g.,
qany6 qw5 q

rw
4 qany3 qany2 qany1 qany0 , is reachable. /

V. EXPERIMENTAL EVALUATION

We have implemented the above described method in a pro-
totype tool [17] and tested it on five processors: TinyCPU
is a small 8-bit processor that we mainly use for testing
of new verification methods. SPP8 is an 8-bit ipcore with
3 pipeline stages, 16 general-purpose registers, and a RISC
instruction set consisting of 9 instructions. SPP16 is a 16-
bit variant of the previous processor with a more complex
memory model. Codea2 is a 16-bit processor dedicated for
signal processing applications [18]. It is equipped with 16
general-purpose registers, 15 special registers, a flag register,
and an instruction set including 41 instructions where each
may use up to 4 available addressing modes. Finally, DLX5
is a 5-staged 32-bit processor able to execute a subset of the
instruction set of the DLX architecture [19] (without floating
point instructions). Some of the processors were in multiple
variants that differ from each other, e.g., in the way how RAW
hazards are avoided or in having some additional instruction
specific registers such as a register for storing MSB bits of the
product, or flag registers.

We conducted series of experiments on a PC with Intel Core
i7-3770K @3.50GHz and 16 GB RAM with results presented
in Table II. The columns give the verified processor, its variant,
the time needed for the data flow analysis, the duration of
the consistency checking, the time spent by verification of
the PSs that are created based on each hazard case, and
the overall verification time. The last column represents the
number of hazard cases that had to be verified during the
model verification phase. Note that each hazard case represents
a separate task so the part of model verification can be
parallelized.

By verifying the above processors, we identified a flaw in
a RAW hazard resolution when accessing of the data memory
in a development version of SPP8 processor.

VI. CONCLUSION

We have presented an approach that combines data-flow
analysis and methods for formal verification of PSs in order
to discover incorrectly handled RAW hazards in the RTL
implementation of pipelined microprocessors. The approach
was developed with the aim to be highly automated, not re-
quiring any additional efforts from the developers (apart from
specifying the architectural registers). We have implemented
the approach and successfully tested it on several non-trivial
microprocessors where the approach was able to discover
previously unknown flaws caused by unhandled hazards.

In the future, we plan to complement the approach pro-
posed in the paper by techniques suitable for verification of
other processor features, such as write-after-write and control
hazards. This is motivated by our general idea of trying to split
processor verification into several simpler, specialised tasks.
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