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ABSTRACT
This paper aims at allowing noise-based testing and dynamic
analysis of multi-threaded C/C++ programs on the binary
level. First, several problems of monitoring multi-threaded
C/C++ programs on the binary level are discussed together
with their possible solutions. Next, a brief overview of noise
injection techniques is provided along with a proposal of
improving them using a fine-grained combination of several
noise injection techniques within a single program. The pro-
posed ideas have been implemented in a prototype way us-
ing the PIN framework for Intel binaries and tested on a set
of multi-threaded C/C++ programs. The obtained experi-
mental evidence justifying the proposed solutions and illus-
trating the effect of various noise settings in the context of
multi-threaded C/C++ programs is discussed.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Concurrency, Dynamic Analysis, Noise Injection, Testing

Keywords
Concurrency, Dynamic Analysis, Noise Injection, Testing

1. INTRODUCTION
A massive expansion of multi-core processors in the past

decade accelerated development of software products that
use a multi-threaded design to utilise the available hardware
resources. As most of today’s programming languages allow
programmers to create multi-threaded programs, they are
becoming more and more common. Nevertheless, writing
correct multi-threaded programs is significantly harder than
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writing single-threaded programs because errors in concur-
rency are not only easy to create but also very difficult to
discover and localise due to the non-deterministic nature of
multi-threaded computation.

A desire to achieve a high performance is often one of
the main motivations for using C/C++. It is thus natural
to utilise the currently commonly available multi-processor
systems in C/C++ programs to boost their performance
as much as possible. However, much like programming in
C/C++ is often considered more difficult than programming
in some other higher programming languages, writing multi-
threaded C/C++ programs can be more difficult and hence
more error prone too. Moreover, even the diagnostics of er-
rors that happen in running programs tends to be more dif-
ficult for C/C++ programs than, e.g., for some interpreted
languages such as Java or C#. This is simply because the
interpreter usually has more information to provide to the
user than what one can obtain from a crashed C/C++ pro-
gram.

Despite the very active research in the area of formal anal-
ysis and verification, software testing still belongs among
the most common ways of discovering errors in programs.
Testing multi-threaded programs is, however, much more
difficult than testing sequential programs as errors in con-
currency can manifest under very rare scheduling circum-
stances only. That is why techniques like noise injection and
dynamic analysis were developed. Noise injection attempts
to increase the chances to see the rare executions leading to
an error by disturbing the scheduling of threads of a pro-
gram in order to force it to execute differently than usual.
Dynamic analysis takes a different approach of monitoring
the execution of a program and trying to extrapolate the
witnessed behaviour and issue warnings about possible er-
rors even when no such error is really witnessed in the given
execution. Moreover, these two approaches can of course be
combined too.

In order to be able to monitor the execution of a program
and perform some dynamic analysis as well as to insert some
noise into the execution of the program, a need to execute
some additional code in some places of the execution of the
original program arises. There are several levels at which one
can insert such additional code to the program—namely, at
the source code level, at the level of the intermediate code,
or at the binary level.

Inserting the code at the binary level has one big advan-
tage over the other approaches in that it does not need to
have the source files of the program being analysed, which
is particularly important when dealing with libraries whose



source files might not be available even for the developers of
the program under test. Another advantage might be that
this kind of instrumentation is more precise in that we can
insert the code exactly where we want it to be executed, and
the placement is not affected by any optimisations possibly
made by the compiler. These advantages of course come
at the cost of that we may possibly lose access to various
pieces of high-level information about the program (names
of variables, etc.). However, even such information can be
available if we have the debugging information present in
the program, and moreover, we can also get access to some
low-level information, like register allocations, which might
be important for some analyses.

In this paper, with the aim of allowing the above ad-
vantages to be exploited by developers of multi-threaded
C/C++ programs, we concentrate on noise-based testing
and dynamic analysis of multi-threaded C/C++ programs
on the binary level. We identify several typical problems
that arise when trying to monitor the execution of multi-
threaded C/C++ programs at the binary level (such as
monitoring function execution, retrieving information about
the executed code, dealing with atomic, conditional, or re-
peated instructions, as well as supporting different C/C++
multithreading libraries), and we discuss their possible so-
lutions. The problems are first discussed on a general level
and then a more detailed discussion based on our prototype
implementation of the proposed ideas using the PIN [10]
framework for Intel binaries follows. Since we concentrate
on noise-based testing and dynamic analysis, we also pro-
vide a brief overview of existing noise injection techniques,
and moreover, based on our experience, we propose their im-
provement using a fine-grained careful combination of differ-
ent noise techniques within a single program. Last but not
least, we present results of multiple experiments with a pro-
totype implementation of our proposals on a set of C/C++
student projects. We use these results to justify the pro-
posed solutions and also as a basis for a discussion of the
possible influence of various noise injection settings on dy-
namic analysis of multi-threaded C/C++ programs.

Related Work. As many concurrency errors appear only un-
der very specific scheduling circumstances, various ways to
deal with this problem in testing were developed. One ap-
proach is to influence the scheduling of threads of a program
to actually see the interesting scheduling leading to an error
by inserting a random noise into its execution as it is done
in the IBM Concurrency Testing (ConTest) tool [3], or by
systematically forcing some conditions on the program inter-
leaving [14]. Another possibility is to systematically explore
all schedules up to some number of context switches as it is
done, e.g., in the Microsoft CHESS tool [11].

Another often used approach is to use dynamic analysis
that tries to extrapolate the witnessed behaviour of a pro-
gram and warn about errors whose occurrence under dif-
ferent scheduling circumstances seems possible from the ob-
served behaviour of the program. There exist dynamic anal-
ysers for various concurrency errors like data races [13, 7],
atomicity violations [9], or deadlocks [1]. A problem is that
the extrapolation may introduce false alarms.

As for binary instrumentation frameworks, many were de-
veloped over the years. Most of them, such as PIN [10] or
Valgrind [12], control the whole execution of a program, in-
strumenting its code just before it is executed (using just-

in-time compilation) or when it is loaded into the mem-
ory. Other frameworks, e.g., PEBIL [6], instrument the
program’s binary file in advance and do not participate in
its execution in any way. There are also frameworks which
combine these two approaches—e.g., VMAD [4] inserts sev-
eral versions of the instrumented code into the program’s
binary file and then chooses at run-time which version will
be executed.

Plan of the paper. The rest of the paper is organised as fol-
lows. In the next section, various typical problems of moni-
toring the execution of C/C++ programs at the binary level
are discussed. Section 3 discusses the possibilities of utilising
noise injection techniques to help various dynamic analyses
with the detection of errors in multi-threaded C/C++ pro-
grams, including several proposals of improving the use of
noise injection. Section 4 describes a prototype implemen-
tation of the proposed ideas. In Section 5, an experimental
evaluation of the proposed solutions is provided. Section 6
then concludes the paper and discusses some of the interest-
ing directions for future work.

2. MONITORING AT THE BINARY LEVEL
In this section, we discuss several typical problems that

arise when trying to monitor and analyse the execution of
a multi-threaded C/C++ program compiled to a binary
form. In particular, after a brief introduction of the types of
binary instrumentation frameworks that one can use to in-
sert execution-monitoring code, we discuss the problems of
monitoring function execution, retrieving information about
executed instructions, handling atomic, conditional, and re-
peatable instructions, and abstracting concrete synchroni-
sation primitives for the analysers to be used. For these
problems, we analyse possible solutions, trying to stay on
a rather general level. In Section 4, we will then present
some further implementation details concerning the use of
the proposed solutions in our prototype tool.

2.1 Instrumentation Frameworks
There exist several frameworks for binary instrumentation

which can be used to insert execution-monitoring code to
a program. They might be divided into two groups—static
binary instrumentation and dynamic binary instrumenta-
tion frameworks.

Static binary instrumentation frameworks, like, e.g., PE-
BIL [6], insert execution-monitoring code to a program by
rewriting the object or executable code of the program be-
fore the program is executed, thus modifying the content of
the program’s binary file. Dynamic instrumentation frame-
works, like, e.g., PIN [10] or Valgrind [12], insert execution-
monitoring code to a program at run-time, leaving the pro-
gram’s binary file untouched.

An advantage of static binary instrumentation is that it
does not suffer from the overhead of instrumenting the code
of a program every time it is executed. On the other hand,
it cannot handle constructions like self-modifying or self-
generating code, which is not known before the program
actually executes. On the contrary, dynamic binary instru-
mentation is slower, but it can cover all the code that is
executed by a program. Furthermore, since the binary file
of the program is not modified in any way, the instrumen-
tation is more transparent to the user who can run some
(possibly lengthy) analysis on the program and, at the same



. . : . . .
401113: mov $0x602540 ,%edi
401118: cal lq 400 e80 <unlock>
40111d : test %eax,%eax

. . : . . .

ae20 <unlock >:
ae20 : mov $0x1 ,%es i
ae25 : jmpq ad70 <unlock usr>

ad70 <unlock usr >:
ad70 : mov %rdi ,%rdx

. . : . . .
ada5 : xor %eax,%eax
ada7 : retq

Figure 1: An example of an execution not triggering an after-function notification

time, use the program as usual. This possibility is also very
important when analysing libraries as it allows the user to
analyse a library when used by a program being analysed
and simultaneously allow other programs to use the same li-
brary as usual. This is not possible without maintaining two
separate versions of the library and coping with problems
with paths to these versions when the code of the library is
rewritten before its execution (usage) in case of static binary
instrumentation.

However, regardless of which of the two types of the binary
instrumentation approaches is used, there are some issues
that need to be dealt with when analysing multi-threaded
programs at the binary level. These issues are discussed
below.

2.2 Monitoring Execution of Functions
The first problem to deal with is how to properly monitor

the invocation and termination of functions. This is very im-
portant when analysing multi-threaded C/C++ programs as
thread management, synchronisation of threads, and other
thread-related actions are typically implemented by calling
specific library functions. For instance, if an analyser needs
to know that the monitored program acquired a lock, the
best time to issue a notification about this event is after the
function performing the lock acquisition is finished. How-
ever, since call instructions are not fall-through instructions
(i.e., there is no guarantee that the instruction by which the
program will continue after the invoked function finishes will
be the instruction right after the given call instruction), one
cannot place the code notifying an analyser about the event
after the call instruction itself.

One way to solve the above problem could be to wrap
the function to be monitored in another function and call
everywhere in the program the wrapper function instead of
the original one. The wrapper function could then internally
call the original function, but also execute some code before
and after it is called. This solution, however, suffers from
two problems. First, the framework used for the binary
instrumentation would have to support function wrapping
(replacement), and second, calling the original function from
the wrapper function might be quite time consuming and
may lead to a significant slowdown of the whole analysis.
Moreover, to wrap a function, we need to have a wrapper
function with the same signature as the original function,
containing the required monitoring code, so it might also be
problematic to use this approach when we do not know in
advance which functions we will be wrapping.

Another way to solve the problem could be to insert the
monitoring code before and after the code of the monitored
function itself, e.g., by inserting the code before the first
instruction of the function and before each return instruc-
tion in the code of the function. So, instead of issuing the
notification after the function returns, the analyser would
be notified right before the function returns, which would
be practically the same from the point of view of the anal-
yser. An additional advantage of this approach would be

that it would also decrease the instrumentation overhead as
instead of analysing all call instructions (to see whether
they could invoke the function to be monitored) and in-
strumenting many of them, the code of the functions to be
monitored would only be instrumented. Nevertheless, this
approach has one critical pitfall—namely, at the binary level,
it is possible to return from a function even from code not
belonging to that function!

A concrete example where instrumenting all return in-
structions of a function will not trigger the code that should
be executed after the function returns can be seen in Fig-
ure 1. The figure shows three pieces of code. On the left
there is a part of the binary code generated from a simple
C++ program which uses the pthread library to guard a crit-
ical section through the pthread_mutex_lock and pthread_

mutex_unlock functions. The other two code snippets are
parts of the code of the pthread’s __pthread_mutex_unlock
and __pthread_mutex_unlock_usercnt functions. Once the
execution of the program reaches the call instruction at ad-
dress 401118, the program calls __pthread_mutex_unlock1

(the function pthread_mutex_unlock is in fact just an alias
of __pthread_mutex_unlock). The execution then contin-
ues in the __pthread_mutex_unlock function which adds the
second argument of the __pthread_mutex_unlock_usercnt

function and then jumps to it. The program starts executing
the __pthread_mutex_unlock_usercnt function, and after
a while, it returns, but not to the __pthread_mutex_unlock

function (because this function did not call it, it jumped to
it), but to the function that called __pthread_mutex_unlock.
Now, it should be clear where the problem is: If we in-
strument the __pthread_mutex_unlock function, there will
never be a notification that a thread released a lock be-
cause there will be no code inserted before the return in-
struction which is executed to return from the call to the
__pthread_mutex_unlock function. Moreover, when we try
to insert the monitoring code before the return instruction
that is really executed in the given example, we have to be
still careful. The reason is that we do not know whether
some optimisation did not make more functions jump to the
given code. If so, it could, for instance, happen that the
pthread_mutex_lock function jumps to this part of code
too, which would lead to issuing a notification that a thread
released a lock while it instead acquired it.

Nevertheless, there is a solution to the above described
problem. Namely, we can use the fact that no library func-
tion can jump outside of the code of the library itself. This
is because when the library is compiled, the compiler can
insert jumps just to the parts of the code it knows, and it
knows only the code of the library itself. So, if we insert
some monitoring code before every return instruction in the
library, we must be able to detect that the program is re-
turning from a call to some of the library’s functions. The
only issue that is then left is to find out from which function

1For the sake of simplicity, we ignore here the fact that the
function is not called directly, but through the jump table
stored in the .plt section of the program’s binary.



Thread 1 Thread 2

5 f0da0 <AtomicIncrement >:
5 f0da0 : mov $0x1 ,%eax
5 f0da5 : xadd %eax ,(% rdi )
5 f0da9 : add $0x1 ,%eax
5 f0dac : retq

5 f0da0 <AtomicIncrement >:
5 f0da0 : mov $0x1 ,%eax
5 f0da5 : xadd %eax ,(% rdi )
5 f0da9 : add $0x1 ,%eax
5 f0dac : retq

(a) Parts of assembly code executed by the first and second threads,
respectivelly. The code uses the exchange and add (xadd) instruction to

increment a value at a specific memory address atomically.

T1 T2 T1 T2

R

W

R

W

R

W

R

W

(b) The only
possible

interleavings

T1 T2 T1 T2

R

W

R

W

R

W

R

W

(c) Some
impossible

interleavings

Figure 2: An example illustrating problems concerning atomic instructions

the program is actually returning. Probably the most effi-
cient way in doing so is to partially monitor the call stack,
i.e., when a function whose execution should be monitored
is called, some monitoring code inserted before the first in-
struction of the function can be triggered, and in this code,
we can save the current state of the thread’s call stack (the
value of the stack pointer is quite sufficient). Then, when
a return instruction is executed in the library, we can check
if the current stack pointer matches the previous stored one,
and if yes, issue a notification that a certain library function
has been executed.

2.3 Retrieving Required Information
A further problem to be solved is how to provide analysers

with sufficient information about an instruction or function
whose execution has just finished. This is because a lot
of information is lost when an instruction or function is fin-
ished. For example, we often do not know which memory an
instruction has accessed after the instruction is executed be-
cause the memory address might have been computed from
the values of some registers, and those values might have
been changed when the instruction was executed. Similarly,
when a function is executing, we can access its parameters
easily, but when its execution finishes, the arguments might
not be easily obtainable anymore.

To provide an analyser all the information it needs, it is
thus often necessary to preserve some of the information
obtained before executing some instructions and to reuse
this information in the monitoring code executed later. In
case of multi-threaded programs, such information must be
tracked for each thread separately, and since it might be
accessed quite frequently, the efficiency of storing it is of
a high importance. As the best way to deal with this prob-
lem, we see a utilisation of some kind of thread local storage,
which is lock-free, i.e., it does not require any synchronisa-
tion between the threads. Fortunately, some binary instru-
mentation frameworks, such as PIN [10], provide a support
of thread local storage.

In fact, according to our experience, it is often useful to
store also information which can be computed even after ex-
ecuting some instructions. This is, in particular, the case of
source-code information about the code being executed such
as the names of variables accessed. Such information may be
available, e.g., through the debugging information present in
the program’s binary, but accessing this information is of-
ten slow. If we get this information in some monitoring code
and know that some other monitoring code executed after
a while will need this information too, it is better to store
the extracted information and reuse it later than to extract
it again.

2.4 Atomic Instructions
Another problem which may arise when analysing pro-

grams at the binary level is the need to properly handle
atomic instructions that access the memory more than once.
Indeed, when a single instruction accesses the memory mul-
tiple times, the monitoring code should notify the analyser
about that, which is typically done by generating the appro-
priate number of memory access events. If the instruction is
not atomic, this is perfectly fine, but when the instruction
is atomic, some analysers need to be informed about the
atomicity of the appropriate sequence of memory accesses,
or else they might produce false alarms.

In particular, some of the detectors which may have trou-
bles with atomic instructions are data race detectors, such as
Eraser [13] or AtomRace [7], and atomicity violation detec-
tors, such as AVIO [9]. Both these kinds of detectors analyse
possible interleavings of accesses to particular memory ad-
dresses and report an error if there are two unsynchronised
memory accesses to the same memory address and at least
one of the accesses is a write access, or there is an interleav-
ing of the memory accesses which is unserialisable. Clearly,
if such detectors are not informed that some sequence of
memory accesses is guaranteed to execute atomically, they
can produce false alarms. A concrete illustration of such
a scenario can be seen in Figure 2 which shows a situation
when two threads are executing the code of the AtomicIn-

crement function. This function uses the exchange and add
(xadd) instruction to atomically increment a value at a given
memory address. The xadd instruction first reads a value
at a given memory address, then adds some value to it, and
then stores the modified value back at the same memory ad-
dress. If the monitoring code notifies the analysers that the
program read a value from some memory address and then
wrote to the same memory address without the information
that these two accesses happened atomically, the analyser
will assume that all the interleavings shown in Figures 2b
and 2c are possible in the program because the threads are
not synchronised in any way. However, in fact, the inter-
leavings in Figure 2b are the only ones that can happen in
the program.

One possible solution to this problem is to extend the ac-
cess notifications with additional information saying that an
access that has just happened occurred atomically wrt. some
previous access. Pairing such accesses in the analyser may,
however, be problematic (e.g., leading to backtracking in the
analysis). In our opinion, a better way is to introduce a new
type of notification which tells the analyser that one instruc-
tion performed multiple accesses at once, and let it decide
if it wants to react to this situation and how (the analysers
must of course be ready to receive such notifications).



Note that in some higher programming languages like
Java, there is no need to solve this kind of problems when
performing analysis at the binary, or more precisely byte-
code, level as there are no byte-code instructions which ac-
cess the memory more than once [8]. Atomic updates are
implemented here as a block of byte-code instructions placed
between the monitorenter and monitorexit instructions
which lock the memory address securing that no other thread
will access it until the update is completed. If all accesses to
the memory address are guarded by the same lock, the anal-
ysers will see that there are no possible interleavings leading
to an error on this memory address and will not produce
false alarms. The same solution can be used in C/C++
programs, but using atomic instructions can be much more
efficient, and hence it is often used.

2.5 Conditional Instructions and Loops
Beside the atomic instructions there are a few other kinds

of instructions which must be carefully handled in order not
to confuse various existing analysers. This is, in particu-
lar, the case of the conditional instructions and the repeat
instructions. While the conditional instructions might not
be executed at all even when the control reaches them, the
repeat instructions, on the contrary, may be executed more
than once as though they were placed in a loop. For in-
stance, the rep-prefixed instructions, designed for manipu-
lating continuous sequences of memory locations (e.g., within
string operations), are both conditional and repeat instruc-
tions since they may be executed a fixed number of times,
until some condition is met, or sometimes not executed at
all (if the loop they involve should be executed zero times).

Since many of these kinds of instructions access memory,
we need to be sure that the access notifications are sent
correctly, i.e., that the analyser is notified only when the in-
struction was really executed or every time the instruction
was executed in a loop. When using dynamic binary instru-
mentation frameworks, where the instructions are executed
by some kind of a virtual machine, the virtual machine can
usually handle these things for us. On the other hand, in
case of the static binary instrumentation, where we might
not know if the instruction will be executed or how many
times it will be executed, the situation can become unsolv-
able without some approximation.

2.6 Abstraction of Synchronisation Primitives
Since thread management and synchronisation in C/C++

programs is usually done by calling suitable library functions
as we have already mentioned above, and since there exist
many different libraries which can be used for this purpose,
a further question is how to support analysis of programs
using any of these libraries with a minimum additional ef-
fort (at least when no highly non-standard synchronisation
means are used).

In order to allow for an easy support of multiple libraries,
the dynamic analysers themselves should clearly be sepa-
rated from low-level details of using the libraries. For exam-
ple, an analyser should not know that a lock is represented
by a pthread_mutex_t structure or a Windows HANDLE, it
should just be able to say whether two locks are the same or
not. More generally, according to our experience, in order
to satisfy the needs of common analysers, one needs to allow
them (1) to suitably identify program threads in order to be
able to distinguish which thread behaves in which way, (2) to

recognise which functions are used for various standard syn-
chronisation operations, and (3) to suitably identify the syn-
chronisation resources used (such as locks or conditions) in
order to be able to say which of them are used when.

Since one can hardly find a fully automatic solution of the
above needs, we find as appropriate to provide users with
a support allowing them to solve these issues in an easy way
manually. In particular, for a given library, the users should
be able to easily specify:

• Which functions in the library are performing common
thread-related actions such as acquiring a lock, waiting
on a condition, etc.

• Which arguments of these functions represent the syn-
chronisation resources they work with.

• How to transform the concrete representations of syn-
chronisation resources and threads to their abstract
identifications.

In Section 4, we will describe in more detail the concrete im-
plementation of this approach as used in our prototype tool.

3. NOISE INJECTION
We now proceed to noise injection as a means of increasing

chances to spot errors when testing or dynamically analysing
multi-threaded C/C++ programs at the binary level. We
start by a brief summary of some of the ideas behind the
ConTest tool [3] for noise-based testing and dynamic anal-
ysis of Java programs that can be applied in our setting
too. Moreover, we also argue that the approach of [3] can
be improved by a careful fine-grained combination of differ-
ent noise injection techniques, which we then experimentally
validate in Section 5.

Note that apart from increasing chances to see an error
or to produce a warning from a dynamic analyser, noise in-
jection can also be used in conjunction with the mechanism
of C/C++ assertions. The assertions explicitly guard the
execution of a program against situations which, from the
perspective of the programmer, should never happen, but
if they happen, the programmer should be notified about
them. When dealing with the naturally non-deterministic
execution of multi-threaded programs, it is hard to say, even
for a skilled programmer, whether some situation is really
excluded from happening, and so the number of assertion
checks tends to be higher in multi-threaded C/C++ pro-
grams. The noise injection can then be conveniently used
to increase the chances to see the executions which violate
the assertions present in the code alerting the programmer
about situations he/she did not expect to occur.

3.1 Noise Injection Basics
Noise injection techniques [3] aim at increasing the num-

ber of different interleavings witnessed in testing runs by
disturbing the scheduling of threads of a program. This is
achieved by inserting certain noise generating code at some
locations of the program whose goal is to force the program
to switch threads at times when it would normally seldom do
it. This way, rare executions may be forced to appear, pos-
sibly leading to an occurrence of an error (or to a behaviour
that can be claimed suspicious by a dynamic analyser).

When using noise injection, the user typically has to make
several important decisions which include what type of noise
should be used, with what frequency, and with what strength.



As for the types of noise, there have appeared many of
them, but we focus here on two generic ones, namely, yield
and sleep, which were found to often work well in the case
of Java programs. The yield noise forces a thread to give
up the CPU, which effectively forces the program to switch
threads and to continue the execution elsewhere. The sleep
noise puts a thread to sleep for some time which also forces
the program to switch threads, and moreover, it prevents
the program from switching back to the sleeping thread for
a while. The noise frequency tells the noise injection code
how often the noise should occur, while the strength speci-
fies how strong the noise should be. The concrete meaning
of the strength depends on the concrete type of noise used:
for the yield noise, it says how many times the yield should
be called; for the sleep noise, how long a thread should sleep.
The specification of the strength can be interpreted either
as a constant strength to be used, or as the maximum of
randomly generated strength values.

Another important decision is where to put the noise in-
jection code. Of course, one can insert noise generation be-
fore any instruction of the program under test, but placing
the noise generation at too many places may significantly
slow down the execution of the program, especially when
the sleep noise is used. In such a case, the overall benefit of
using noise could be negligible since significantly less testing
runs could be performed. Moreover, as we discuss below,
sometimes, the effects of noise used in unsuitable combina-
tions at unsuitable places may cancel out. Since concurrency
errors are mostly caused by missing or wrong synchronisa-
tion among threads, leading to inconsistent memory con-
figurations or deadlocks, the most meaningful places where
to put the noise injection code are typically various thread
management and synchronisation functions and memory ac-
cesses (as witnessed by various experiments performed with
the ConTest tool [3] on Java programs).

3.2 Fine-Grained Combinations of Noise
In our opinion, the ConTest tool has one drawback—

namely, it allows the user to specify the noise injection set-
tings at a global level only, meaning that the same type of
noise with the same parameters will be used everywhere in
the program (an exception is the random setting of ConTest
when a random type of noise with random parameters is
used every time some noise is to be generated). However, in
our opinion, supported by the later presented experimental
data, it is sometimes beneficial to use different noise injec-
tion settings for different locations in the program (e.g., for
the read accesses, write accesses, each of the thread synchro-
nisation functions, etc.) and to do it in a systematic rather
than random way.

To illustrate our idea, take, e.g., the case of data races.
Considering that a data race arises when there are two un-
synchronised accesses to the same memory address and at
least one of the accesses is a write access, it might appear to
be better to use the sleep noise than the yield noise. This
is because when we encounter some access to the memory
address of interest, the best we can do is to search the other
threads for the second (conflicting) access. This means that
as many of the remaining threads should go through as many
memory accesses as possible. Forcing the program to switch
threads several times using the yield noise of a commonly
used strength will help us to search only a small part of the
executions of the other threads. The sleep noise will block

the execution of the thread performing the first access giving
us considerably more time to detect the second (conflicting)
access in one of the remaining threads.2 However, a problem
is that if we use the same sleep noise for all accesses, we will
block not only the thread performing the first access, but
also many of the remaining threads, which will unnecessar-
ily lower the number of memory accesses they will perform.
Hence, what we want to achieve is to lower the amount of
noise injected into the remaining threads which we search
for the second conflicting access.

The above situation is where the more fine-grained noise
injection configuration can help. In particular, we can use
different noise settings for different, possibly conflicting types
of accesses to hold the threads performing one of the types
of accesses more than the threads performing the other type
of accesses. There are two ways to do that. One possibility
is to use the sleep noise only, but with a bigger strength for
one of the access types and considerably lower for the other.
However, an even better way is to force the threads perform-
ing the second type of accesses to give up the CPU (using
the yield noise) as this will help more threads to perform
more memory accesses. As we will show in the experiments
section, this approach really gives us better results than us-
ing a single global configuration, and, in addition, it often
slows the execution of the program much less.

A question left open in the previous paragraph is which
accesses should be hold more and which less. In our opin-
ion, this mainly depends on which of the conflicting accesses
happens more rarely. Clearly, if one of the conflicting ac-
cesses happens more rarely (e.g., a write access if there are
few possibilities to write and many possibilities to read), it
is better to hold the thread performing the rare access using
a sleep noise and search for the more common accesses than
doing it conversely.

4. PROTOTYPE IMPLEMENTATION
To validate the solutions proposed in the previous sec-

tions, we have implemented a prototype tool which can mon-
itor the execution of a multi-threaded C/C++ program, in-
sert noise into it, and provide analysers that can be written
on top of it with various important pieces of information that
are typically needed when detecting errors in concurrency.
In this section, we will discuss how the above discussed gen-
eral ideas have been concretised in the implementation.

We have based our implementation on top of the PIN
binary instrumentation framework [10]. This framework is
primarily developed for use with the Intel binaries. However,
if the binary code does not contain any special AMD-only
instructions, PIN works fine even for AMD binaries. Also,
as the PIN framework supports both Linux and Windows
binaries, our framework can be used to analyse programs
developed for any of these two operating systems.

To allow the tool to be easily used for developing dy-
namic analysers capable of running over various libraries for
thread management and synchronisation, we followed the
propositions made in Section 2.6 and implemented a sys-
tem which allows the user to easily abstract the information
needed by typical analysers from the concrete form used in

2A similar effect could be reached by using a much stronger
yield noise, which would, however, involve actively waiting
threads that would in turn unnecessarily slow down the en-
tire system.



a given library into a common format available for the anal-
ysers. In particular, for each important type of synchro-
nisation functions, e.g., functions for acquiring and releas-
ing locks or for signaling conditions and waiting on them,
the user may specify the names of the functions implement-
ing these operations. For an abstract identification of the
synchronisation resources used (e.g., locks or conditions),
we introduced special Mapper objects. When the user de-
fines the names of synchronisation functions, he also spec-
ifies the indices of their arguments holding the synchroni-
sations resources used by these functions as well as the the
Mapper object which should be used to translate these re-
sources to their abstract names. The translation is then
done through the map() method which takes a pointer to
an address where the appropriate argument of the encoun-
tered synchronisation function is stored and returns a num-
ber abstractly identifying the appropriate synchronisation
resource. For example, for the case of locks and conditions
from the pthread library used to synchronise threads, the
mapper objects can use the fact that the locks and conditions
are objects of the pthread_mutex_t and pthread_cond_t

structures existing in the same logical memory space shared
by the threads. Since objects existing in the same memory
space are uniquely identified by their addresses, one can de-
vise a Mapper object which simply uses the addresses of the
objects as their identifiers in this case (hashed to 32 bits as
is usual also for various other identifiers in PIN). Finally, as
for an abstract identification of threads, we use the fact that
the PIN framework already provides some thread abstrac-
tion, and so we reuse it for a unique thread identification.

As the synchronisation functions to be monitored are as-
sumed to be specified by the users, and hence we do not
know them and cannot prepare wrappers in advance, we
cannot use the function wrapping approach for monitoring
function executions (not to mention that calling the origi-
nal function from a wrapper function is often really slow).
Therefore, we use the approach for monitoring function ex-
ecutions proposed at the end of Section 2.2. Namely, we
insert a monitoring code before the first instruction of ev-
ery synchronisation function specified by the user and also
before all the return instructions in the libraries containing
at least one of these functions. When some synchronisation
function is about to be executed, the monitoring code stores
the current value of the stack pointer together with a pointer
to the notification function which should be called after the
monitored function is executed to a separate shadow stack.
Once a return instruction is to be executed, the monitoring
code compares the current value of the stack pointer with
the one stored at the top of the shadow stack, and if there
is a match, it will notify the analyser that a synchronisation
function was executed by calling the notification function
stored at the top of the shadow stack.

We have implemented the support for notification about
several atomic accesses to memory from an atomic instruc-
tion as discussed in Section 2.4 (so far for accesses to the
same memory address only, which is sufficient for detect-
ing data races on which we currently concentrated). To
handle conditional instructions discussed in Section 2.5, we
used the PIN’s INS_InsertPredicatedCall() function to
put the monitoring code around these instructions. Insert-
ing the code through this function ensures us that PIN will
check if the instruction will really be executed and invoke the
monitoring code in this case only. However, unfortunately,
using this function to insert the monitoring code around the

rep-prefixed instructions led to a very strange behaviour in
which the monitoring code was sometimes not invoked even
when the instruction was executed. To fix this problem, we
had to use the INS_InsertCall() function as code inserted
using this function is always called, and we then check our-
selves if the instruction will or will not be executed. This
implementation is a little less efficient as letting the PIN do
the checks is quicker, but it behaves correctly, and consid-
ering that the amount of rep-prefixed instructions is not so
large, it is a quite negligible slowdown.

Although the framework we have developed is to a large
degree generic as should be clear from the above, currently,
we have instantiated the generic parts of the framework for
use with the pthreads library only. A support for other
multi-threading environments is a part of our future work.

5. EXPERIMENTS
In this section, we present results of our experiments with

a prototype implementation of the above discussed ideas.
We use these results to justify the proposed solutions and
also as a basis for a discussion of the possible influence of
various noise injection settings on dynamic analysis of multi-
threaded C/C++ programs.

5.1 Experimental Setup
For our experiments, we used 116 multi-threaded pro-

grams implementing a simple ticket algorithm on top of the
pthread library. These programs were created by students
of an advanced operating systems course. Note that most
of them were rated full points as the test script and a brief
code review did not find any errors. We were, however, able
to find various errors in many of these programs using dy-
namic analysis in conjunction with noise injection or even
just the noise injection alone.

Algorithm 1: Ticket algorithm

1 foreach thread do
2 while (ticket = getticket()) < M do
3 sleep(random);
4 await(ticket);
5 doWork();
6 advance();
7 sleep(random);

Algorithm 1 describes the general idea behind the ticket
algorithm that each of the programs implements. The goal
is to synchronise all threads of a program in doing some mu-
tually exclusive work (modelled by calling doWork()). When
a thread wants to do the work, it is assigned a ticket number
and waits for its turn. The getticket() function assigns
a thread the first free ticket (i.e., a ticket with the lowest
ticket number not assigned to any other thread yet). This
is done using a shared variable next_ticket holding the
number of the next free ticket. All accesses to this variable
are done in a critical section guarded by the tmutex lock.
The accesses to the part where the work is done are then
guarded by a monitor entered by calling the await() func-
tion and left by calling the advance() function. These two
functions work with a shared variable curr_ticket which
determines the ticket number needed to enter the monitor.
The await() function reads the curr_ticket variable and
forces the thread to wait if it is not its turn (i.e., if it does
not have a ticket with the curr_ticket number). The ad-



vance() function then increments the curr_ticket variable
allowing another thread to enter the part guarded by the
monitor. Accesses to curr_ticket in each of the functions
are done in critical sections guarded by the mmutex lock. If
the work is done M times, the threads finish their execution.

5.2 Detecting Data Races
To look for data races in the considered programs, we used

the simple detector called AtomRace [7]. AtomRace tracks
which memory addresses are being accessed by the particular
threads by monitoring the before and after memory access
notifications. If it discovers that two threads can concur-
rently access the same memory address (at least one of them
for writing), which is detected by the appropriate pairs of be-
fore and after memory accesses being overlapped, it informs
about a data race. As it is normally not very probable to see
two concurrent memory accesses, AtomRace uses noise in-
jection to disturb the usual scheduling of threads in order to
witness executions in which such memory accesses happen
(if that is allowed by the program under test). Clearly, when
AtomRace announces a data race, it is a real data race, not
a false alarm (of course, provided that it takes into account
the possible appearance of atomic instructions).

Using AtomRace implemented on top of our infrastruc-
ture, we were able to find data races in 23 of the 116 consid-
ered programs, all of them having various kinds of negative
impacts on the expected behaviour of the programs. We find
this quite satisfactory taking into account that three quar-
ters of these programs were rated full points because they
passed all the standard tests.

To further analyse how the noise injection settings influ-
ence the overall success of the detector to find data races,
we selected 13 of the 23 programs in which we were able to
find bugs and performed a large number of tests on them.
The remaining programs were not included in the tests as
they contained deadlocks in addition to data races, which
made them difficult to compare to the rest of the programs.
The results are shown in Table 1, each column representing
one of the tested programs and each row one of the configu-
rations of the noise injection in the following format: First,
a base configuration of noise generation used at memory ac-
cesses and synchronisation functions is given, consisting of
the type of noise, its frequency, and its strength. The rs pre-
fix put before the type of noise indicates that the strength is
not implemented as constant, but as random with the given
value being the maximum possible strength. The values of
the frequency say how probable it is that some noise will be
generated every time the given location is reached on the
scale from 0 to 1000, i.e., 500 means 50 %, 100 means 10 %
etc. The values of the strength say how many times a yield
should be called at the given location of the given thread
or how many milliseconds the thread should wait in case
of the sleep noise. Then, if applicable, differences from the
base configuration in the strength and possibly also type of
noise are given behind a slash separately for the read and
write accesses. The values in the body of the table then
express the percentage of runs (out of 500) in which the
data race detector found a data race, i.e., the percentage
of executions which actually led to an error. The first noise
configuration in the table corresponds to runs where no sleep
nor yield noise is generated, but the noise generation code
is inserted, together with the code notifying the AtomRace
detector about the execution. However, even such instru-
mentation is already generating some small noise which can

help manifestation of errors as we will see in Section 5.3.
The selected programs contain various kinds of errors that

all lead to data races in the end. In two of the programs (t01
and t02), the data race is on the next_ticket variable. In
the first program (t01), the variable is updated in a critical
section, but then read outside of it. Since the getticket()

function performing these accesses is frequently called from
many of the threads, the data race manifests quite often3. In
the second program (t02), the accesses to the variable are
not guarded at all, so the data race manifests even more
often. The next program (t03) contains a data race on
a shared variable used to assign IDs to each of the threads.
This variable is updated and read without any synchronisa-
tion, however, all of these accesses happen when the threads
are started one immediately after another, so the data race
may only occur during this short time. Program t04 uses
a shared structure to store the thread IDs and their current
tickets. Accesses to all the members of this structure are not
synchronised, leading to data races on each of them, mul-
tiplying the probability that a data race appears. Program
t05 has a rarely occurring data race on individual items of
a shared array where each item may be accessed by the main
thread, and one of the other threads simultaneously just be-
fore the main thread starts to wait for the second thread to
end (join). Programs t06, t07, and t08 contain data races
on a timespec structure, shared among all threads, used
to randomly generate the number of milliseconds a thread
should sleep before and after entering the monitor. Some
of these programs access the structure more often than the
others, so the frequency of encountering a data race vary
between them. The next two programs (t09 and t10) read
the curr_ticket variable outside a critical section at one
place. All other accesses are, however, performed in the crit-
ical section, so it is not very likely that a data race would
occur. Program t11 uses the same lock for guarding the
critical section in the getticket() function as well as the
critical sections in the monitor functions await() and ad-

vance() leading to an extremely rare situation where two
threads enter the critical section in the getticket() func-
tion and access the next_ticket variable (because the code
does not check if the tmutex lock was acquired successfully
and just continues). A similar situation happens in program
t12, which initialises the tmutex and mmutex locks in each
of the created threads, which resets the locks’ ownership in-
formation, status, and other fields. Changing the ownership
information often leads to assertion errors as we will see in
Section 5.3. On the other hand, resetting the lock status
leads to data races since it allows more threads to enter the
critical sections guarded by these locks. However, these data
races can manifest only if the noise simultaneously prevents
all assertion errors which may otherwise show up before the
data races. The last program (t13) contains a data race on
a shared variable used to store the return codes of pthread
library’s functions. Since this variable is accessed at so many
places in the program, the data race occurs very often here.

Evaluation of the Results. As can be seen from Table 1, the
sleep noise is clearly superior in helping AtomRace in find-
ing data races when the same strength is used. However,

3This is the case when the program is run with the instru-
mentation needed for AtomRace and with the instrumenta-
tion for noise generation which is just not generating any
sleep nor yield noise. The same holds for the discussion of
the other case studies too.



Table 1: Success ratio of the AtomRace detector for various configurations of the noise injection
(the values represent the percentage of runs, out of 500, in which a data race was found)

Noise configuration \ Program t01 t02 t03 t04 t05 t06 t07 t08 t09 t10 t11 t12 t13
instrumented, no sleep or yield noise 2.4 11.8 0.2 1.2 0.0 1.0 1.6 2.2 0.4 0.0 0.0 0.0 32.2

sleep 500 10 69.2 46.6 100.0 100.0 1.2 53.6 69.4 98.6 0.6 0.2 0.8 0.2 100.0
yield 500 10 3.8 35.4 1.4 10.8 0.0 1.4 5.4 11.6 0.6 1.8 0.0 0.2 84.4

rs-sleep 500 10 96.4 87.8 97.0 86.2 0.6 31.0 79.0 99.2 9.2 10.0 2.4 0.2 100.0
rs-yield 500 10 6.0 17.0 0.2 0.6 0.0 0.6 6.2 9.0 0.4 1.6 0.0 0.4 71.2
sleep 100 10 64.0 69.2 80.2 56.0 5.4 40.2 70.4 81.0 31.2 31.4 0.6 42.4 98.4
yield 100 10 0.8 17.0 0.4 3.0 0.0 0.0 4.2 6.0 0.6 0.8 0.0 0.0 42.8

rs-sleep 100 10 21.4 55.8 23.0 11.8 0.0 18.2 60.4 71.8 34.4 37.0 0.8 27.6 92.8
rs-yield 100 10 1.8 9.0 0.6 1.0 0.0 0.4 3.2 3.4 0.6 2.0 0.0 0.0 34.8
sleep 500 20 34.6 48.2 100.0 100.0 0.6 31.8 79.0 97.8 0.0 0.4 0.2 0.6 100.0
yield 500 20 14.2 56.4 4.4 9.4 0.0 2.2 8.6 17.0 1.0 0.8 0.2 0.0 94.0
sleep 500 5 24.2 68.2 100.0 69.2 6.4 26.8 79.8 90.2 1.8 2.2 1.4 0.0 100.0
yield 500 5 2.8 22.2 3.0 13.4 0.0 3.6 5.8 5.2 0.6 1.2 0.0 0.0 63.0
sleep 100 20 59.2 30.4 78.6 6.0 5.6 61.0 67.2 86.4 32.2 33.6 0.8 42.6 98.8
yield 100 20 1.2 19.0 0.6 3.0 0.0 1.8 6.4 6.8 1.4 0.8 0.0 0.2 54.2
sleep 100 5 52.4 73.6 78.4 74.4 14.2 18.4 61.0 74.0 29.8 30.6 0.2 38.0 98.2
yield 100 5 1.4 13.0 0.2 1.4 0.0 0.6 3.4 4.2 1.8 1.6 0.0 0.2 38.8

sleep 500 10 / read 20 / write 5 64.8 89.4 99.0 80.8 0.0 17.0 28.6 91.2 0.4 2.2 0.4 0.0 100.0
sleep 500 10 / read 5 / write 20 33.4 57.2 100.0 91.6 43.0 92.6 96.2 99.8 1.2 0.6 1.4 0.0 100.0
yield 500 10 / read 20 / write 5 3.8 31.4 3.8 9.0 0.0 1.4 3.6 9.2 1.8 1.8 0.4 0.0 86.0
yield 500 10 / read 5 / write 20 5.0 59.6 2.0 8.2 0.0 1.6 9.2 19.8 1.8 0.2 0.0 0.0 88.0
sleep 100 10 / read 20 / write 5 73.4 44.4 67.4 2.2 0.0 79.0 51.2 73.0 34.4 37.0 0.8 0.0 99.2
sleep 100 10 / read 5 / write 20 31.4 27.6 70.8 69.2 4.8 89.2 79.6 68.8 30.0 29.6 1.2 0.0 99.2
yield 100 10 / read 20 / write 5 0.8 13.2 0.2 2.2 0.0 0.4 4.6 4.2 1.0 0.8 0.0 0.0 49.0
yield 100 10 / read 5 / write 20 1.2 23.0 0.4 2.6 0.0 1.4 6.6 5.8 0.6 0.8 0.0 0.0 48.8

sleep 500 10 / read sleep / write yield 51.2 61.2 59.2 100.0 0.0 2.4 0.8 83.8 0.2 2.6 0.2 0.0 100.0
sleep 500 10 / read yield / write sleep 18.6 38.4 99.4 100.0 50.6 80.8 95.6 97.0 7.4 4.6 1.2 0.0 100.0
yield 500 10 / read sleep / write yield 32.6 64.6 63.8 100.0 0.0 4.6 0.0 68.6 0.2 3.8 0.2 0.0 100.0
yield 500 10 / read yield / write sleep 10.0 52.2 98.0 100.0 51.0 95.0 99.6 98.8 6.0 4.2 2.0 0.0 100.0
sleep 100 10 / read sleep / write yield 34.2 81.0 44.0 7.4 62.4 0.0 2.2 55.0 28.8 37.6 0.8 0.0 87.4
sleep 100 10 / read yield / write sleep 9.4 35.6 52.4 96.8 9.6 37.6 78.6 62.0 1.0 2.4 0.0 0.0 88.2
yield 100 10 / read sleep / write yield 25.8 46.4 51.2 6.2 64.4 0.2 4.4 69.6 43.0 43.4 0.2 0.0 85.6
yield 100 10 / read yield / write sleep 16.6 33.6 43.6 94.4 7.2 35.6 80.2 61.2 1.4 1.6 0.2 0.0 90.6

using the sleep noise too much can sometimes have quite
the contrary effect—hiding the data races instead of helping
to find them. Take, for example, programs t01 and t02.
They contain a similar error of not guarding the accesses
to the next_ticket variable, but while t01 is not guarding
only some of the read accesses, t02 is not guarding any of the
accesses, so the possibility of encountering a data race in an
execution should be higher here than in case of t01. How-
ever, when using the sleep noise with frequency 500 (50 %)
and strength 10, data races are detected in only 47 % of t02
runs, while in case of t01 it was nearly 70 %. After decreas-
ing the frequency to 100 (10 %) or strength to 5, the success
ratio of data race detection increases to nearly 70 %. The
problem here is that if we put all the threads to sleep for
about the same time (which is the more probable the higher
the frequency is), the scheduling of threads will remain the
same as without the noise, not introducing the uncommon
executions we wanted to witness. In many cases, lowering
the frequency helps, likewise using a random strength in-
stead of the fixed one. Sometimes even using a smaller fixed
strength might help as we do not block the threads for too
much time which increases the chances that there will be
some threads which we might search when we start sleeping
(there are often none if we use a too strong strength—e.g.,
when using strength 20 in t02, we detect data races in only
30 % runs even if we use frequency 100). Similar problems
happen when using noise injection in Java programs [2].

The results also support our opinion from Section 3.2 that
using different noise injection settings for different locations
can give better results. This approach can, e.g., help in
solving the problem discussed in the previous paragraph. In-
deed, in case of t02, instead of using a random strength, it
is better to use fixed strengths 20 for reads and 5 for writes,

which leads to detection of a data race in nearly 90 % of runs.
Moreover, the approach also helps in many other cases, e.g.,
in case of t06, t07, and t08 where using sleep noise with
strength 5 for reads and strength 20 for writes gives similar
or better results than using strength 10 for all accesses. In
some cases where lowering the frequency decreases the prob-
ability of detecting a data race, like in t04, we can use yields
for reads and sleeps for writes with the frequency being 100
only and still keep the success ratio as for frequency 500,
which speeds up the execution of the program considerably.
Sometimes combining various strengths or different types of
noise is the only way to detect some data races in a fair
number of testing runs as, e.g., in case of t05.

Further, we also verified our assumptions from Section 3.2
that blocking the more rare types of accesses should give
us better results. For example, t04 contains data races on
members of a structure which are written to several times,
but read from frequently. The results are very good when
using the sleep noise with a high frequency and strength,
but they are considerably worse when the amount of noise
is lower. However, using frequency 100 with the sleep noise
for the rare writes and yield noise for the common reads
gives us nearly the same results as using the strong noise.
On the other hand, when we use the opposite combination
of noise for the different accesses, the results are very poor.
In cases where the read and write accesses to the variable
on which a data race is found are equally common, like in
case of t06 and t07, it is still better to use the sleep noise
for writes and yield noise for reads. This is due to when
considering all accesses to all variables in the program, the
read accesses are typically more frequent, and so we will
not block the remaining threads too much. On the other
hand, consider the t09 and t10 programs. They contain



a data race on a shared variable which is accessed mostly in
a critical section except several reads. So all the writes are
guarded and there are only several reads that may access
the shared variable when it is written to. If we block the
threads performing the write, it is highly improbable that
we will find the rare unguarded read in some of the remaining
threads, but blocking the threads performing the rare reads
allows us to find the data race in a fair number of runs.

The statement that blocking the rarer accesses gives us
better results seems not to hold in case of t05 where with
frequency 500, using the sleep noise for reads and yield noise
for writes is clearly better, but with frequency 100, it is just
the opposite. The problem here is that the write accesses are
so rare that if we use a small frequency, we will not block the
execution of the thread performing the write access to find
the conflicting read in the other threads in the meantime.
So when using a high frequency, the probability to inject the
noise before some write is relatively high, and it is better to
use the sleep noise for writes. On the other hand, the read
accesses are performed in a loop, and so there is a large
number of them. Causing too much noise before the reads
does not help here at all as it often hides the data races, but
if we inject the noise before the reads with a low frequency,
we will still have a good chance to encounter the rare writes
in the other threads.

5.3 Detecting Assertion Errors
We have also tested whether the noise injection can help

us in detecting wrong usages of the pthread library such as
cases when a thread releases a lock which it does not own and
the like. Such scenarios are detected directly by assertions
built into the pthread library. We used the same set of 116
programs as before and checked their output for assertion
errors originating from the pthread library. Among the 116
programs, we found 3 that break the built-in assertions.

Again, we studied how the noise injection settings influ-
ence the overall success of detecting the wrong usages of the
pthread library. The results are shown in Table 2, each col-
umn representing one of the tested programs and each row
one of the configurations of the noise injection in the same
format as in Table 1. The values in the body of the table
then express the percentage of runs (out of 500) which ended
with an assertion error.

The first two programs (t02 and t12) are both initialising
the tmutex lock in each of the created threads, resetting the
lock’s ownership information and status when a new thread
is started. This allows more than one thread to acquire the
lock as one thread may acquire the lock, and then another
thread may start, reset the status of the lock to not acquired
and afterwards acquire the lock itself, hence becoming the
owner of the lock. If the program now switches to the first
thread, and this thread will release the lock, the pthread
library will raise an assertion error saying that some thread
is trying to release a lock which it does not own. This also
leads to data races as more than one thread may access the
critical section guarding the next_ticket variable and ac-
cess it. The third program (t14) releases the mmutex lock
twice in the advance() function, instead of acquiring it and
then releasing it. Due to this, while some thread is inside
the critical section of advance(), another thread can acquire
the not locked mmutex, and then the former thread may re-
lease it despite it never acquired it, which causes the same
assertion error as in case of the first two programs. Note,

Table 2: Success ratio of finding assertion errors for various
configurations of the noise injection (the values represent

the percentage of runs which ended with an assertion error)

Noise configuration \ Program t02 t12 t14
normal run 0.0 0.0 0.0

instrumented, no sleep or yield noise 48.0 50.8 8.0
sleep 500 10 0.0 0.0 1.2
yield 500 10 62.4 51.0 8.8

rs-sleep 500 10 3.2 1.0 3.8
rs-yield 500 10 41.2 48.8 8.0
sleep 100 10 2.0 27.8 7.2
yield 100 10 49.6 51.2 6.6

rs-sleep 100 10 16.4 32.8 6.8
rs-yield 100 10 44.2 56.2 8.8
sleep 500 20 0.0 0.0 2.6
yield 500 20 64.6 55.2 6.6
sleep 500 5 0.0 0.0 3.2
yield 500 5 58.6 48.4 8.2
sleep 100 20 4.2 26.4 2.0
yield 100 20 56.6 47.4 7.4
sleep 100 5 21.2 25.6 4.6
yield 100 5 51.0 49.4 8.0

sleep 500 10 / read 20 / write 5 0.0 0.0 5.2
sleep 500 10 / read 5 / write 20 0.0 0.0 6.0
yield 500 10 / read 20 / write 5 62.4 0.0 7.6
yield 500 10 / read 5 / write 20 64.0 0.0 10.4
sleep 100 10 / read 20 / write 5 7.4 0.0 5.4
sleep 100 10 / read 5 / write 20 9.2 0.0 4.6
yield 100 10 / read 20 / write 5 49.6 0.0 6.2
yield 100 10 / read 5 / write 20 54.6 0.0 7.0

sleep 500 10 / read sleep / write yield 2.2 0.0 3.4
sleep 500 10 / read yield / write sleep 0.0 0.0 3.0
yield 500 10 / read sleep / write yield 0.2 0.0 2.8
yield 500 10 / read yield / write sleep 0.0 0.0 1.6
sleep 100 10 / read sleep / write yield 50.2 0.0 6.4
sleep 100 10 / read yield / write sleep 22.4 0.0 4.4
yield 100 10 / read sleep / write yield 60.6 0.0 9.4
yield 100 10 / read yield / write sleep 47.4 0.0 3.4

however, that this situation is quite rare as the threads may
usually acquire the lock only a moment before the problem-
atic release is done.

As can be seen from Table 2, running the instrumented
program without any noise gives us already good results
when trying to detect a wrong usage of the pthread library.
However, this is because we are in fact injecting a very weak
noise into the execution as we let the framework execute
the noise injection code (although it inserts no noise) which
by itself disturbs the scheduling of the threads. In runs
with no instrumentation (even when the program is running
within the PIN framework), the success ratio is practically
zero. The yield noise may sometimes help us to achieve
slightly better results while the sleep noise is mostly rather
hiding the errors. In case of t14, the success of encountering
an assertion error is very dependent on when and where
the noise is injected and not so much on the noise settings
used, since the wrong usage manifests only in a very specific
situations. So if we manage to inject the noise in the right
place and at the right time, even weak noise will help.

5.4 Testing C/C++ vs. Java Programs
We also tried to compare how much the various types of

noise help in case of C/C++ programs compared to Java
programs. Since implementing the same program in two
different programming languages in a way that the imple-
mentation is as close as possible is not an easy task, we have
chosen a simple bank program for the tests, which is one of
the typical and often used case studies [5]. This program
contains a data race on a shared variable accessed usually
in a critical section, but sometimes also outside of it.



Table 3: Success ratio of the AtomRace detector for various
configurations of the noise injection (the values represent
the percentage of runs in which a data race was found)

Noise Type rs-sleep
Frequency 500 100
Strength 20 10 5 20 10 5

C++ 98.8 99.0 100.0 91.6 91.8 91.2
Java 100.0 100.0 99.6 99.4 99.8 99.0

Noise Type rs-yield
Frequency 500 100
Strength 20 10 5 20 10 5

C++ 67.6 63.8 58.8 52.0 41.8 52.4
Java 36.2 29.0 24.2 22.4 21.8 28.6

To test the Java version of the program, we used Con-
Test [3] together with a Java implementation of AtomRace [7].
Since the ConTest tool uses random strengths, we used the
rs-sleep and rs-yield noise in the C++ version of the
program to be able to compare them to the corresponding
ConTest’s types of noise. The results are shown in Table 3.
The values express the percentage of runs (out of 500) in
which the data race detector found a data race, i.e., the
percentage of executions which actually lead to an error.

We can see that while the sleep noise is a little more helpful
in case of the Java version of the program compared to the
C/C++ version, giving the nearly 100% success ratio even
for lower frequencies, the yield noise is clearly better in case
of the C++ version, helping to find a data race in twice as
many runs as in the Java version. A question that remains is
whether the differences are caused by the programming lan-
guage itself or whether they depend on the concrete thread
management and synchronisation library used.

6. CONCLUSIONS
We have discussed several typical problems which arise

when monitoring multi-threaded C/C++ programs at the
binary level in order to allow for their testing and/or dy-
namic analysis, and we have proposed solutions to these
problems. We have also proposed an improvement of the
noise injection technology to be used to increase chances
of spotting an error when testing or dynamically analysing
a multi-threaded C/C++ program. We have experimen-
tally validated the proposed solutions on a set of C/C++
programs, and we have also discussed the effect of various
noise settings when dealing with the considered programs.

For the future, there are several interesting directions that
can be taken. First, we would like to improve our implemen-
tation of the proposed ideas, extend it by a support of more
C/C++ concurrency libraries, and test the resulting tool on
larger concurrent C/C++ programs. We would also like to
implement more dynamic analyses on top of our framework
and include their evaluation into the further experiments.
Next, although the two simple types of noise that we cur-
rently support belong among the most commonly used ones
and they might often be sufficient, it is interesting to perform
experiments with other known types of noise too. Moreover,
an interesting topic for future research is to try to introduce
some more sophisticated types of noise, e.g., tailored for a
specific detector or type of concurrency errors. Finally, since
using different noise injection configurations for the read and
write accesses proved to be useful in our experiments, it may
be interesting to look more into the fine-grained use of noise
and find more rules how to use it, perhaps supported by
some preliminary analysis of the program at test or allow-

ing the noise settings to be automatically suitably adjusted
during a test execution based on the so-far obtained results.
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