
Predator Shape Analysis Tool Suite?

Lukáš Holı́k, Michal Kotoun, Petr Peringer, Veronika Šoková,
Marek Trtı́k, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. The paper presents a tool suite centered around the Predator shape
analyzer for low-level C code based on the notion of symbolic memory graphs.
The paper presents the architecture of the tool suite, the various optimizations
and extensions of the original Predator analyzer included into the tool suite, as
well as its different possible inputs, options, and outputs.

1 Introduction

Analysing programs with dynamic pointer-linked data structures is one of the most
difficult tasks in program analysis. The reason is that one has to deal with infinite sets
of program configurations having the form of complex graphs representing the contents
of the program heap. The task becomes even more complicated when considering low-
level pointer manipulating programs where one has to deal with operations such as
pointer arithmetic, address alignment, or block operations.

Many different formalisms have been proposed for finitely representing infinite
sets of heap configurations. One of them is the formalism of symbolic memory graphs
(SMGs) [6]. In particular, SMGs specialise—at least for the time being—in represent-
ing sets of configurations of programs manipulating various kinds of lists, which can be
singly- or doubly-linked, hierarchically nested, cyclic, shared, and have various addi-
tional links (head pointers, tail pointers, data pointers, etc.). SMGs were originally in-
spired by the notion of separation logic with higher-order list predicates, but they were
given a graph form to allow for an as efficient fully-automated shape analysis based on
abstract interpretation as possible. Moreover, SMGs turned out to be a suitable basis for
extensions allowing one to capture various low-level memory features.

SMGs are used as the underlying formalism of the Predator shape analyser for low-
level pointer programs written in C. The first version of Predator, based on a notion
of SMGs significantly simpler than that of [6], appeared in [5]. Predator is capable of
checking memory safety (no dereferencing of invalid pointers, no memory leaks, no
double free operations, etc.), it can check assertions present in the code, and it can also
print out the computed shape invariants. Since its first version, Predator was extended
to support low-level memory operations in the way proposed in [6] and optimized in
various ways (e.g., by using function summaries, elimination of dead variables, etc.).

Later on, a parallelized layer, called Predator Hunting Party (Predator HP), was built
on top of the basic Predator analyzer [8]. Predator HP runs the original analyzer in par-
allel with several bounded versions of the analysis in order to speed up error discovery
? Supported by the Czech Science Foundation project 14-11384S, the IT4IXS: IT4Innovations

Excellence in Science project (LQ1602), and the internal BUT project FIT-S-14-2486.



and reduce the number of false alarms. The efficiency of SMGs together with all the
optimizations allowed Predator to win 6 gold medals, 3 silver medals, and 1 bronze
medal at the International Software Verification Competition SV-COMP’12–16 organ-
ised within TACAS’12–16 as well as the Gödel medal at FLoC’14 Olympic Games.

Apart from optimizations, Predator has also been extended with various further out-
puts, such as error traces required at SV-COMP. Moreover, recently, another (experi-
mental) extension of Predator has been implemented [3] which uses (slightly extended)
shape invariants computed by Predator to automatically convert pointer programs ma-
nipulating lists to higher-level container programs.

In this paper, we describe the architecture of Predator and the entire tool suite
formed around it, its various optimizations, as well as its different inputs, options,
and possible outputs. This should make it significantly easier for anybody interested
in Predator to start using it, join its further development, and/or get inspiration applica-
ble in development of other program analyzers. Moreover, we believe that one can also
directly re-use some of the modules of the architecture, such as the Predator’s connec-
tion to both gcc and (recently added) LLVM. Indeed, all components of the tool suite
are open source and freely available1 together with an extensive set of use cases.

Related work. There are, of course, many other shape analysers, such as TVLA [10], In-
vader [11], SLAyer [1], Xisa [2], or Forester [7]. These tools differ in the underlying for-
malisms, generality, scalability, and/or degree of automation. Predator is distinguished
by its high efficiency, degree of automation, and coverage of low-level features for
analysing list-manipulating programs. Moreover, it is currently the only tool supporting
a sound translation of (a subclass of) low-level list programs to container programs [3].

2 Abstract Domain of Symbolic Memory Graphs

...

hfo nfo pfolist_head custom_record
next
prev

next
prev

next
prev

2+ DLS hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr
size(ptr),ptr

nfo,ptr

region
has-value edge

address
points-to edge

list segment

Fig. 1. An example of a Linux-style cyclic DLL
(top) and its SMG representation (bottom)

Predator is based on the SMG abstract
domain [6]. We now shortly highlight
its main features. For an illustration of
SMGs, see Fig. 1 which provides an
SMG describing a cyclic Linux-style
doubly-linked list with nodes linked
by pointers pointing into the middle
of the nodes (requiring pointer arith-
metic to get access to the data stored
in the list). SMGs are directed graphs
consisting of two kinds of nodes and two kinds of edges. The nodes include objects
representing allocated space and values representing addresses and non-pointer data
(mainly, integers). The edges have the form of has-value and points-to edges.

Objects are further divided into regions representing individual blocks of memory,
doubly- and singly-linked list segments (DLSs/SLSs) representing doubly- and singly-
linked sequences of nodes uninterrupted by any external incoming pointer, respectively,
and optional objects that can but need not be present. Each object has some constant

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator


size in bytes (with a so far preliminary extension to interval-sized objects), a validity
flag (deleted objects are kept till they are pointed to), and a placement tag distinguishing
objects stored in the heap, stack, and statically allocated memory.

Each DLS is given by the hfo offset of the head structure of its nodes, storing the
next and previous (“prev”) pointers, which is the offset to which linking fields usually
point in low-level list implementations, and the nfo/pfo offsets of the next and prev
fields themselves. DLSs are tagged by a length constraint of the form N+ for N ≥ 0,
meaning that the DLS abstractly represents all concrete list segments of length N or
bigger, or by a constraint of the form 0-1 representing segments of length zero or one.
Nodes of DLSs can point to objects that are shared (each node points to the same object)
or nested (each node points to a separate copy of the object). The nesting is implemented
by tagging objects by their nesting level. For SLSs, the situation is similar.

Has-value edges lead from objects to values and are labelled by the field offset at
which the given value is stored and the type of the value (like the simplified pointer type
ptr in Fig. 1—the type system of Predator is, however, consistent with that of C).
Points-to edges lead from values encoding addresses 2 to the objects they point to. They
are labelled by a target offset and a target specifier. For a DLS, the latter specifies
whether a points-to edge encodes a pointer to its first or last node (fst/lst in Fig. 1),
or even a set of pointers (one for each node abstracted by the DLS) incoming into the
DLS from “below”. This way, back-links from nested objects to their parent DLS are
encoded. Predator supports even offsets with constant interval bounds, which is crucial
to support pointers obtained by address alignment wrt an unknown base pointer. In
addition, SMGs can also contain inequality constraints between values.

Program statements are symbolically executed on regions, possibly concretised from
list segments. Block operations, like memcopy, memset, or memmove, are supported.
When reading/writing from/to regions, Predator uses re-interpretation to try to synthe-
sise fields, which were not yet explicitly defined, from the currently known ones. This is
so far supported (and highly needed) for low-level handling of nullified and undefined
blocks—which can, e.g., nullify a field of 32 bytes and then read its sub-field of length
4 only. This way, overlapping fields can arise and be cached for efficiency purposes.

The join operator is based on traversing two SMGs from the same pointer variables
and joining simultaneously encountered objects, sometimes replacing some more con-
crete objects with more abstract ones and/or inserting 0+ or 0-1 list segments when
some list segment is found missing in one of the SMGs. Entailment checking is based
on the join operator: Predator checks whether the two given SMGs can be joined while
always encountering more general objects in the same SMG out of the two given. Ab-
straction collapses uninterrupted sequences of compatible regions and list segments into
a single list segment, using the join operator to join sub-heaps nested below the nodes
being collapsed. Predator always tries to collapse first the longest sequence of objects
with the lowest loss of precision (three different levels are distinguished here: collaps-
ing objects with isomorphic sub-heaps, with sub-heaps where one entails the other, and
otherwise). Moreover, there are (configurable) thresholds for how many objects are to
be collapsed for the abstraction to pay off (with the defaults being one for the first two

2 Explicit address nodes istead of edges leading directly between objects are used to reduce
redundancy (in repeating the same target offsets) and to speed up equality tests on pointers.



predator
ver ifier
kernel bounded

BFS

bounded
DFS

ADT

Pr
ed

at
or

H
P 

sc
ri

ptdefault

plotters

CFGs

errors

errors with location info

safe / error 
+ witness.xml

co
de

 p
ar

se
r i

nt
er

fa
ce

GCC

Clang/LLVM

front end

LLVM

IR

listeners

filters

compiler
GIMPLE

co
de

 s
to

ra
gefilters

CodeListener
IR

source files
*.c,*.h

LLVM

IR

loc info

error
traces

Annotated
CFG

*.txtstderr *.svg

linearized
code

*.svg *.svg

SMGs

compiler
options

analysis
options HP options

forester

fwnull

on CL IR

iterators

config.h
(re -build)

templates of list operations

Fig. 2. Architecture of the Predator tool suite

cases, and two for the third one). The abstraction loop is repeated till some collapsing
can be done.

3 Predator Front End

The architecture of the Predator tool suite is shown in Fig. 2. Its front end is based on
the Code Listener (CL) infrastructure [4] that can accept input from both the gcc and
Clang/LLVM compilers. CL is connected to both gcc and Clang as their plug-in.3

When used with gcc, CL reads in the GIMPLE intermediate representation (IR)
from gcc and transforms it into its own Code Listener IR (CL IR), based on simplified
GIMPLE. The resulting CL IR can be filtered—currently there is a filter that replaces
switch instructions by simple conditions—and stored into the code storage. When
used with Clang/LLVM, CL reads in the LLVM IR and (optionally) simplifies it through
a number of filters in the form of LLVM optimization passes, both LLVM native and
newly added. These filters can in-line functions, split composed initialization of global
variables, remove usage of memcpy and memset added by LLVM, change memory
references to register references (removing unnecessary alloca instructions), and/or
remove LLVM switch instructions. These transformations can be used independently
of Predator to simplify the LLVM IR to have a simpler starting point for developing
new analyzers. Moreover, CL offers a listeners architecture that can be used to further
process CL IR. Currently, there are listeners that can print out the CL IR or produce
a graphical form of the control flow graphs (CFGs) present in it.

The code storage stores the obtained CL IR and makes it available to the Predator
verifier kernel through a special API. This API allows one to easily iterate over the
types, global variables, and functions defined in the code. For each function, one can
then iterate over its parameters, local variables, and its CFG. Of course, other verifier
kernels than the one of Predator can be linked to the code storage. Currently, it is also
used by the Forester shape analyzer [7], and, as a demo example, a simple static analyzer
for finding null pointer dereferences (fwnull) is implemented over it too.

3 In the past, CL was connected to Sparse too, but this connection is not maintained any more.



4 The Predator Kernel

The kernel of Predator (written in C++ like its front end) implements an abstract inter-
pretation loop over the SMG domain. An inter-procedural approach based on function
summaries, in the form of pairs of input/output sub-SMGs encoding parts of the heap
visible to a given function call, is used. As a further optimization, copy-on write is used
when creating new SMGs by modifying the already existing ones.

Predator’s support of non-pointer data is currently limited. Predator can track inte-
ger data precisely up to a given bound and can—optionally—use intervals with constant
bounds (which may be widened to infinity). Arrays are handled as allocated memory
blocks with their entries accessible via field offsets much like in the case of structures.
Re-interpretation is used to handle unions. Predator also supports function pointers.
String and float constants can be assigned, but any operations on these data types con-
servatively yield an undefined value.

The kernel supports many options. Some of them can be set in the config.h file
(requiring the kernel to be re-compiled) and some when starting the analysis. Apart
from various debugging options and some options mentioned already above, one can,
e.g., decide whether the abstraction and join should be performed after every basic block
or at loop points only (abstraction can also be performed when returning from function
calls). One can specify the maximum call depth, choose between various search orders,
switch on/off the use of function summaries and destruction of dead local variables,
control error recovery, and control re-ordering of lists of SMGs kept for program loca-
tions (based on their hit ratio) and/or thueir pruning wrt entailment and their location in
CFGs.

5 Outputs and Extensions

Predator automatically looks for memory safety errors: illegal pointer dereferences (i.e.,
dereferences of uninitialised, deleted, null, or out-of-bound pointers), memory leaks,
and/or double-free errors. It also looks for violations of assertions written in the code.
Predator reports discovered errors together with their location in the code in the standard
gcc format, and so they can be displayed in standard editors or IDEs. Predator can also
produce error traces in a textual or graphical format or in the XML format of SV-COMP.

5.1 Predator Hunting Party

Predator Hunting Party is an extension of the Predator analyzer implemented in Python.
It runs in parallel several instances of Predator with different options. One Predator in-
stance, called verifier, runs the standard sound SMG-based analysis. Then there are sev-
eral (by default two) Predator instances—called DFS hunters—running bounded depth
first searches over the CL IR of the program (with different bounds on the number of
CL IR instructions to perform in one branch of the search). Finally, there is also a single
Predator instance, a BFS hunter, running a timeout-bounded breadth-first search. The
hunters use SMGs but without any heap abstraction, just non-pointer data get abstracted
as usual. The verifier is allowed to claim a program safe, but it cannot report errors (to



avoid false alarms stemming from heap abstraction). The hunters can report errors but
cannot report a program safe (unless they exhaust the state space without reaching any
bound). This strategy significantly increases the speed of the tool as well as its precision.

5.2 Transformation from Low-Level Lists to Containers

The latest (experimental) extension of Predator—denoted as ADT in Fig. 2—leverages
the sound shape analysis of Predator to provide a sound recognition of implementation
of list-based containers in low-level pointer code [3]. Moreover, it also implements
a fully automated (and sound) replacement of the low-level implementation of the con-
tainers by calls of standard container operations (such as push back, pop front,
etc.). Currently, (non-hierarchical) NULL-terminated doubly-linked lists (DLLs), cyclic
DLLs, as well as DLLs with head/tail pointers are supported.

At the input, Predator ADT expects a specification of destructive container opera-
tions (such as push back or pop front) to look for. The operations are specified
by pairs of input/output SMGs whose objects are linked to show which object is trans-
formed into which. A set of non-destructive operations (such as common iterators, tests,
etc.), fixed up to the concrete pointer fields to be used, are also supported. Predator
ADT takes from Predator the program CFG labelled by the computed shape invariants
(i.e., sets of SMGs per location), slightly extended by links showing which objects are
transformed into which between the locations. It then looks in the SMGs for container
shapes (i.e., sub-SMGs representing the supported container types) and sub-sequently
tries to match the way the containers change along the CFG with the provided templates
of container operations. While doing so, safe reordering of program statements is done.
If all operations with some part of memory are covered this way, Predator replaces the
original operations by calls of standard library functions (so far in the CFG labels only).

The recognition of container operations and their transformation to library calls can
be used in a number of ways, ranging from program understanding and optimization to
simplification of verification. The last possibility is due to a split of concerns: first, low-
level pointer manipulation is resolved, then data-related properties can be checked [3].

6 Experiments

Predator was successfully tested on a quite high number of test cases that are all freely
available. Among them, there are over 250 test cases specially created to test capabilities
of Predator. They, however, reflect typical patterns of dealing with various kinds of lists
(creating, traversing, searching, destructing, or sorting) with a stress on the way lists are
used in system code (such as the Linux kernel). Predator was also successfully tested
on the driver code snippets available with SLAyer [1]. Next, Predator found a bug in the
cdrom.c test case of Invader [11] caused by the test harness used (unfound by Invader
itself as it was not designed to track the size of allocated memory blocks)4.

Further, Predator successfully verified several aspects of the Netscape Portable Run-
time (NSPR). Memory safety and built-in asserts during repeated allocation and deallo-
cation of differently sized blocks in arena pools (lists of arenas) and lists of arena pools

4 Other test cases of Invader were not handled due to problems with compiling them.



(lists of lists of arenas) were checked (for one arena size and without allocations exceed-
ing it). Further, some aspects of the Logical Volume Manager (lvm2) were checked, so
far with a restricted test harness using doubly-linked lists instead of hash tables.

Predator was quite successful on memory-related tasks of the SV-COMP competi-
tion as noted already in the introduction. Up to SV-COMP’16, if Predator was beaten
on such tasks, it was by unsound bounded checkers only. In the competition, in line
with its stress on soundness, Predator has never produced a false negative.

Finally, the extension of Predator for transforming pointers to containers was suc-
cessfully tested on more than 20 programs using typical list operations (insertion, re-
moval, iteration, tests) on null-terminated DLLs, cyclic DLLs, and DLLs with head/tail
pointers. Moreover, various SLAyer’s test cases on null-terminated DLLs were han-
dled too. Verification of data-related properties (not handled by Predator) on the result-
ing container programs (transformed to Java) was tested by verifying several programs
(such as insertion into sorted lists) by a combination of Predator and J2BP [9].

7 Future Directions

In the future, the kernel of Predator should be partially re-engineered to allow for easier
extensions. Next, a better support for non-pointer data, a support for non-list dynamic
data structures, and for open programs are planned to be added.

References

1. J. Berdine, B. Cook, and S. Ishtiaq. Memory Safety for Systems-level Code. In Proc. of
CAV’11, LNCS 6806, Springer, 2011.

2. V. Laviron, B.-Y.E. Chang, and X. Rival. Separating Shape Graphs. In Proc. of ESOP’10,
LNCS 6012, Springer, 2010.

3. K. Dudka, L. Holı́k, P. Peringer, M. Trtı́k, and T. Vojnar. From Low-Level Pointers to High-
Level Containers. In Proc. of VMCAI’16, LNCS 9583, Springer, 2016.

4. K. Dudka, P. Peringer, and T. Vojnar. An Easy to Use Infrastructure for Building Static
Analysis Tools. In Proc. of EUROCAST’11, LNCS 6927, Springer, 2011.

5. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures Using Separation Logic. In Proc. of CAV’11, LNCS 6806, 2011.

6. K. Dudka, P. Peringer, and T. Vojnar. Byte-precise Verification of Low-level List Manipula-
tion. In Proc. of SAS’13, LNCS 7935, Springer, 2013.

7. L. Holı́k, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar. Fully Automated Shape
Analysis Based on Forest Automata. In Proc. of CAV’13, LNCS 8044, Springer, 2013.

8. P. Muller, P. Peringer, and T. Vojnar. Predator Hunting Party (Competition Contribution). In
Proc. of TACAS’15, LNCS 9035, Springer, 2015.

9. P. Parı́zek and O. Lhoták. Predicate Abstraction of Java Programs with Collections. In Proc.
of OOPSLA’12, ACM Press, 2012.

10. M. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued Logic. In
ACM Transactions on Programming Languages and Systems (TOPLAS), 24(3), ACM, 2002.

11. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123, Springer, 2008.


	Predator Shape Analysis Tool Suite

