Predator: A Verification Tool for Programs

with Dynamic Linked Data Structures™
(Competition Contribution)

Kamil Dudka, Petr Muller, Petr Peringer, and Tomas Vojna
FIT, Brno University of Technology, IT4lnnovations CentEExcellence, Czech Republic

Abstract. Predator is a tool for automated formal verification of setja¢ C
programs with dynamic linked data structures. It is in ppiebased on separa-
tion logic, but uses a graph-based heap representatios.pBiper first provides
a brief overview of Predator and then discusses experieitbete participation
in the Software Verification Competition of TACAS’12.

1 Introduction

Predator is a tool for automated formal verification of sedia¢ C programs with dy-
namic linked data structures. Currently, it supports veatfon of various linked list
variants, including nested, cyclic, and/or shared listsssibly using limited pointer
arithmetics to navigate through list nodes as is usual iklifeaimplementations of
list manipulating programs. Predator implicitly detectsisus memory-related errors
and can also check for reachability of error labels, whiclieniés participation in the
TACAS'12 Software Verification Competition (SV-COMP’12psgsible. However, most
of the capabilities of Predator to detect memory-specifiararcould not be applied in
the competition. Predator is publicly availabls open-source under GPLv3.

This paper provides a brief overview of Predator’s desigmgiples and capabilities,
and then discusses experiments with Predator on the benktmaSV-COMP’12.
More details about Predator can be found in the tool paper [1]

2 Overview of Predator

Predator is conceptually based saparation logic with higher-order inductive pred-
icates. It encodes infinite sets of heaps in a finite symbolic way gisigraph-based
representation of separation logic formulae. There are two kinds of nodékérgraphs:
(1) possibly nestedbjects corresponding to statically and automatically allocatest p
gram variables, dynamically allocated storage, list segmetc. and (2yalues of the
objects, e.g., addresses of objects and the special vahd=f i ned, del et ed, and
nul | in the case of pointers and function pointers. This allowsifaling with point-
ers to any variable (not only dynamically allocated) andedédn of some classes of
memory-related bugs (stack smashing, buffer overrun, la@dike). Predator also im-
plicitly detects other memory-related errors like memargls, invalid dereferences,
and double frees. Predator uses a specialigidoperator, applicable both on entire
symbolic heaps as well as on their parts. The latter funatitynserves for discovering

* This work was supported by the Czech Science Foundatiofeiri®103/10/0306), the Czech
Ministry of Education (projects COST OC10009, MSM 002162385 and the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05(0102.0070.

Yhttp://ww. fit.vutbr.cz/research/groups/verifit/tools/predator



new list predicates used for a subsequent abstraction (awisation) of list segments.
The join algorithm is also used for checking entailment ahbylic heaps (by checking
that the join of two symbolic heaps produces one of them).ddeRredator does not
use any off-the-shelf decision procedures.

The main goal of Predator is to verify real system code in by falitomated way.
Since real-life implementations of lists often use limifgainter arithmetics (e.g., in
Linux, the list header structure is embedded at any placésimbdes, and pointer
arithmetics is used to move within the list nodes), Prediatoapable of handling typ-
ical patterns of such low-level programming techniques.tkis, offsets of sub-objects
within their encapsulating objects are tracked.

Predator is implemented asGCC plug-in?, which brings significant advantages.
For the many real-life programs whose production versigesbailt using GCC, the
analysis is performed on the same program representatibe ase used for producing
the actual binary. GCC has also a very large coverage of whahiparse (standard C
and GNU extensions), while other tools, like CIL, used by sather analysers, usually
implement only a subset of the C language standard. Funiserg GCC allows an
easier integration with other commonly used developmenistdn particular, Predator
presents errors and warnings in the standard GCC formathwhany development
tools can handle by default.

Predator is written in C++ and uses Boost libraries. The aldgendencies that
need to be installed are GCC 4.4.6+ with C++ support and CMakerecommended
to build Predator against a local build of GCC. This can beedarseveral steps, which
are described in thREADVE file® of the Predator’s distribution. The local build of GCC
is fully automated and the whole process takes up to 10 nsragsuming a fast enough
Internet connection (needed for downloading GCC source®}. current version of
Predator runs on Linux, but the code of the analyser itselféhitecture-independent.

3 Experience with Predator

Predator is distributed with a collection of more than 208 tases. The test cases in-
clude real-world code snippets as well as code focused arecoases in the use of the
dynamic linked data structures. This collection also sea& our internal benchmark
for measuring the performance of the tool. The errors soingtitese benchmarks are
typical memory manipulation errors (memory leakage, deditde, etc.) for which no
user-provided specification is needed. More informatioowintest cases can be found
in [1]. Four of our test cases were extended by explicit chkexflshape properties and
sent as a contribution to the SV-COMP’12 benchmarks.

Below, we summarise our experience with Predator from thiaitrg phase of SV-
COMP’12, describe the results we reached on the compeliganhmarks, and discuss
problems encountered on particular test cases. We refaimgtating precise quantita-
tive data about our results, which is a part of the presemtaif SV-COMP’12 itself.

During the experiments with the training set of test caseS\WWICOMP’'12, we
encountered problems resulting from Predator’s implieitedtion of memory-related
errors (such as invalid dereferences or buffer overrunisiciwPredator never ignores.

2 Predator uses the low-level GIMPLE representation of th€G @termediate code.
3 Instructions specific for the Software Verification Compieti held at TACAS'12 are located
in the file namedREADVE- sv- conp- TACAS- 2012 available in the distribution of Predator.



Some of the test cases in the benchmark were problematidfismoint of view since
they assumed idealised memory models. These test casesld2neslator to terminate
prematurely and report memory errors unrelated to the edality of the given error
label. Hence, we needed to create a special layer on top daferethat distinguishes
between errors defined by the competition rules (where UNSAfeans that an error
label is reachable) and errors caused by using memory in agusay.

From the SV-COMP’12 categories, we focused on those thaaf®weis designed to
verify, especially on the Dynamic Data Structures categinis category contained test
cases contributed by the Predator project itdedfp-manipulation) and test cases taken
from the web page of the BLAST 3.0 projedis{-properties). In this category, Predator
succeeded in all but two test cases, which contained ligtsalternating small integral
numbers in their nodes. The current version of Predatoraampresent numbers in
an abstract way (as, e.qg., integral ranges), which pregahtelist segment abstraction
from being applied and consequently the analysis failedrminate.

Verifying Linux drivers is one of the major goals for Predatn we expected good
results in this category too. On thev-regression benchmark, we ended up with the
highest possible score (at least in our home environmeat)ttiat to happen, it was
necessary to improve some test cases to make them alloeatesthory they use and to
write a few dummy models of external functions, but thesenglea were accepted by the
competition organisers. Unfortunately, Predator was notessful in theldv-machzwd
benchmark due to the lack of abstraction over integral wafisementioned above.

Across all benchmark categories, Predator never returA&@ESor a test case de-
clared UNSAFE, which confirms that the analysis done by Roeds sound. On the
pthread benchmark, Predator instantly returned UNKNOWN for alt tzsses because
of an unhandled call tpt hr ead _cr eat e() . As Predator does currently not aim at
the analysis of concurrent programs, this was an expecsponse. In théocks bench-
mark, Predator could solve all of the test cases, howewsndgime and space larger
than allowed by the rules of SV-COMP’12. In the given limi&edator managed to
analyse only a few of these test cases. This is due to the s9agne by Predator
is quite inefficient for such kind of programs since no (rdfiled abstraction of non-
pointer data is currently supported by Predator. Such dagdtier tracked precisely or
completely discarded. Predator also succeeded on seestalases from thgystemc
benchmark, which were proven SAFE. Like in tthdv-machzwd benchmark, Predator
lost many points here because of the lack of abstractioniotegral values.

4 Conclusions and Future Work

We have briefly presented Predator and its participationhtCOMP’12. Predator is
regularly updated and enhanced. We plan to add support fitrefiukinds of dynamic
data structures (like trees), improve the support for noimer data, provide support for
analysing C++ code, and possibly add techniques allowirggtoranalyse incomplete
programs (e.g., using bi-abduction). SV-COMP’12 provichesy interesting test cases,
which represent a good motivation for further developmértredator.

References

1. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Pratfleml for Checking Manipula-
tion of Dynamic Data Structures Using Separation LogicPtac. of CAV’' 11, LNCS 6806,
Springer, 2011, pp. 372-378.



