
Predator: A Verification Tool for Programs
with Dynamic Linked Data Structures⋆

(Competition Contribution)

Kamil Dudka, Petr Müller, Petr Peringer, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centreof Excellence, Czech Republic

Abstract. Predator is a tool for automated formal verification of sequential C
programs with dynamic linked data structures. It is in principle based on separa-
tion logic, but uses a graph-based heap representation. This paper first provides
a brief overview of Predator and then discusses experience with its participation
in the Software Verification Competition of TACAS’12.

1 Introduction

Predator is a tool for automated formal verification of sequential C programs with dy-
namic linked data structures. Currently, it supports verification of various linked list
variants, including nested, cyclic, and/or shared lists, possibly using limited pointer
arithmetics to navigate through list nodes as is usual in real-life implementations of
list manipulating programs. Predator implicitly detects various memory-related errors
and can also check for reachability of error labels, which made its participation in the
TACAS’12 Software Verification Competition (SV-COMP’12) possible. However, most
of the capabilities of Predator to detect memory-specific errors could not be applied in
the competition. Predator is publicly available1 as open-source under GPLv3.

This paper provides a brief overview of Predator’s design principles and capabilities,
and then discusses experiments with Predator on the benchmarks of SV-COMP’12.
More details about Predator can be found in the tool paper [1].

2 Overview of Predator

Predator is conceptually based onseparation logic with higher-order inductive pred-
icates. It encodes infinite sets of heaps in a finite symbolic way using a graph-based
representation of separation logic formulae. There are two kinds of nodes inthe graphs:
(1) possibly nestedobjects corresponding to statically and automatically allocated pro-
gram variables, dynamically allocated storage, list segments, etc. and (2)values of the
objects, e.g., addresses of objects and the special valuesundefined, deleted, and
null in the case of pointers and function pointers. This allows for dealing with point-
ers to any variable (not only dynamically allocated) and detection of some classes of
memory-related bugs (stack smashing, buffer overrun, and the like). Predator also im-
plicitly detects other memory-related errors like memory leaks, invalid dereferences,
and double frees. Predator uses a specialisedjoin operator, applicable both on entire
symbolic heaps as well as on their parts. The latter functionality serves for discovering

⋆ This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (projects COST OC10009, MSM 0021630528), and the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator



new list predicates used for a subsequent abstraction (summarisation) of list segments.
The join algorithm is also used for checking entailment of symbolic heaps (by checking
that the join of two symbolic heaps produces one of them). Hence, Predator does not
use any off-the-shelf decision procedures.

The main goal of Predator is to verify real system code in a fully automated way.
Since real-life implementations of lists often use limitedpointer arithmetics (e.g., in
Linux, the list header structure is embedded at any place in list nodes, and pointer
arithmetics is used to move within the list nodes), Predatoris capable of handling typ-
ical patterns of such low-level programming techniques. For this,offsets of sub-objects
within their encapsulating objects are tracked.

Predator is implemented as aGCC plug-in2, which brings significant advantages.
For the many real-life programs whose production versions are built using GCC, the
analysis is performed on the same program representation asthe one used for producing
the actual binary. GCC has also a very large coverage of what it can parse (standard C
and GNU extensions), while other tools, like CIL, used by some other analysers, usually
implement only a subset of the C language standard. Further,using GCC allows an
easier integration with other commonly used development tools. In particular, Predator
presents errors and warnings in the standard GCC format, which many development
tools can handle by default.

Predator is written in C++ and uses Boost libraries. The onlydependencies that
need to be installed are GCC 4.4.6+ with C++ support and CMake. It is recommended
to build Predator against a local build of GCC. This can be done in several steps, which
are described in theREADME file3 of the Predator’s distribution. The local build of GCC
is fully automated and the whole process takes up to 10 minutes assuming a fast enough
Internet connection (needed for downloading GCC sources).The current version of
Predator runs on Linux, but the code of the analyser itself isarchitecture-independent.

3 Experience with Predator

Predator is distributed with a collection of more than 200 test cases. The test cases in-
clude real-world code snippets as well as code focused on corner cases in the use of the
dynamic linked data structures. This collection also serves as our internal benchmark
for measuring the performance of the tool. The errors soughtin these benchmarks are
typical memory manipulation errors (memory leakage, double free, etc.) for which no
user-provided specification is needed. More information onour test cases can be found
in [1]. Four of our test cases were extended by explicit checks of shape properties and
sent as a contribution to the SV-COMP’12 benchmarks.

Below, we summarise our experience with Predator from the training phase of SV-
COMP’12, describe the results we reached on the competitionbenchmarks, and discuss
problems encountered on particular test cases. We refrain from stating precise quantita-
tive data about our results, which is a part of the presentation of SV-COMP’12 itself.

During the experiments with the training set of test cases ofSV-COMP’12, we
encountered problems resulting from Predator’s implicit detection of memory-related
errors (such as invalid dereferences or buffer overruns), which Predator never ignores.

2 Predator uses the low-level GIMPLE representation of the GCC’s intermediate code.
3 Instructions specific for the Software Verification Competition held at TACAS’12 are located

in the file namedREADME-sv-comp-TACAS-2012available in the distribution of Predator.



Some of the test cases in the benchmark were problematic fromthis point of view since
they assumed idealised memory models. These test cases caused Predator to terminate
prematurely and report memory errors unrelated to the reachability of the given error
label. Hence, we needed to create a special layer on top of Predator that distinguishes
between errors defined by the competition rules (where UNSAFE means that an error
label is reachable) and errors caused by using memory in a wrong way.

From the SV-COMP’12 categories, we focused on those that Predator is designed to
verify, especially on the Dynamic Data Structures category. This category contained test
cases contributed by the Predator project itself (heap-manipulation) and test cases taken
from the web page of the BLAST 3.0 project (list-properties). In this category, Predator
succeeded in all but two test cases, which contained lists with alternating small integral
numbers in their nodes. The current version of Predator cannot represent numbers in
an abstract way (as, e.g., integral ranges), which prevented the list segment abstraction
from being applied and consequently the analysis failed to terminate.

Verifying Linux drivers is one of the major goals for Predator, so we expected good
results in this category too. On theldv-regression benchmark, we ended up with the
highest possible score (at least in our home environment). For that to happen, it was
necessary to improve some test cases to make them allocate the memory they use and to
write a few dummy models of external functions, but these changes were accepted by the
competition organisers. Unfortunately, Predator was not successful in theddv-machzwd
benchmark due to the lack of abstraction over integral values as mentioned above.

Across all benchmark categories, Predator never returned SAFE for a test case de-
clared UNSAFE, which confirms that the analysis done by Predator is sound. On the
pthread benchmark, Predator instantly returned UNKNOWN for all test cases because
of an unhandled call topthread create(). As Predator does currently not aim at
the analysis of concurrent programs, this was an expected response. In thelocks bench-
mark, Predator could solve all of the test cases, however, given time and space larger
than allowed by the rules of SV-COMP’12. In the given limits,Predator managed to
analyse only a few of these test cases. This is due to the analysis done by Predator
is quite inefficient for such kind of programs since no (refinable) abstraction of non-
pointer data is currently supported by Predator. Such data is either tracked precisely or
completely discarded. Predator also succeeded on several test cases from thesystemc
benchmark, which were proven SAFE. Like in theddv-machzwd benchmark, Predator
lost many points here because of the lack of abstraction overintegral values.

4 Conclusions and Future Work
We have briefly presented Predator and its participation in SV-COMP’12. Predator is
regularly updated and enhanced. We plan to add support for further kinds of dynamic
data structures (like trees), improve the support for non-pointer data, provide support for
analysing C++ code, and possibly add techniques allowing one to analyse incomplete
programs (e.g., using bi-abduction). SV-COMP’12 providesmany interesting test cases,
which represent a good motivation for further development of Predator.

References
1. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Practical Tool for Checking Manipula-

tion of Dynamic Data Structures Using Separation Logic. InProc. of CAV’11, LNCS 6806,
Springer, 2011, pp. 372–378.


