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Abstract. Predator is a tool for automated formal verification of sequential C pro-
grams operating with pointers and linked lists. The core algorithms of Predator
were originally inspired by works on separation logic with higher-order list pred-
icates, but they are now purely graph-based and significantly extended to support
various forms of low-level memory manipulation used in system-level code. This
paper briefly introduces Predator and describes its participation in the Software
Verification Competition SV-COMP’13 held at TACAS’13.

1 Predator Introduction

Predator is a tool for fully automated verification of sequential C programs with pointers
and dynamic linked data structures, such as complex kinds of singly- and doubly-linked
lists that can be circular, shared, and/or hierarchically nested in an arbitrary way. The
long term goal of the Predator project is handling real system code, such as the Linux
kernel. To achieve this, the tool strives to cope with implementation tricks and tech-
niques used frequently by system programmers to obtain highly efficient code. Such
techniques include pointer arithmetic, valid usage of pointers with invalid targets, op-
erations with memory blocks, or reinterpretation of the memory contents. The degree
to which Predator can deal with such techniques is currently to a large degree unique
among fully automated shape analysis tools. Although Predator supports checking for
error label reachability, it concentrates on an implicit detection of memory-related bugs.
Hence, our main focus in SV-COMP’13 is the newly introduced MemorySafety compe-
tition category.

Predator is available in the form of a GCC plug-in, which brings several advantages.
First, it is possible to re-use the existing build systems of GCC-based projects for run-
ning the verification without a need to manually process the source code. Predator, as
a GCC plugin, can take advantage of the powerful parsing capabilities of GCC. Error
messages are presented in a format compatible with GCC, hence Predator can be used
with any IDE that can use GCC. Predator uses the low-level GIMPLE representation
of the GCC intermediate code as an input for its analysis. By default, Predator disal-
lows external function calls in order to exclude any side effects that could potentially
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break memory safety. The only allowed external functions are those which are prop-
erly modelled by Predator wrt. proving memory safety. Besides malloc and free,
Predator supports selected memory manipulating functions like memset, memcpy, or
memmove.

Predator is implemented in C++ and runs on Linux. The dependencies needed for
building Predator are Boost, CMake, and the GCC plug-in development files. Predator
is publicly available under the GPLv3 license.

2 Verification Approach

Predator was inspired by works on fully automated shape analysis using separation logic
with higher-order inductive predicates [1]. However, Predator represents sets of heap
configurations using a graph-based representation instead of separation logic formulae,
which allows one to easily apply various efficient graph-based algorithms for dealing
with the representation. Since SV-COMP’12, the graph-based representation has been
redesigned into the form of the so-called symbolic memory graphs (SMGs) and made
much more fine-grained (byte-precise) to allow for successfully verifying programs that
use the above mentioned low-level memory manipulation techniques [3].

Predator iteratively computes sets of SMGs for each basic block of the CFG of the
given program, covering all its reachable configurations. Termination of the analysis
is aided by join and abstraction algorithms operating on SMGs. The join algorithm is
based on simultaneously traversing two SMGs and merging their corresponding nodes.
The abstraction uses the join algorithm to merge pairs of neighbouring nodes of the
same SMG, together with their sub-SMGs, into a single list segment. Predator does
not use any off-the-shelf decision procedure since an expensive conversion from our
representation would be needed. Instead, entailment between SMGs is checked rather
efficiently using the join algorithm, which is extended to compare on-the-fly the gen-
erality of the SMGs being joined. To allow for multiple views of a single block of
memory, Predator implements read and write reinterpretation algorithms (needed, e.g.,
for dealing with unions and type-casts). For more details, see [3].

Predator can prove absence of common memory safety bugs, such as invalid deref-
erences or memory leaks. Apart from that, Predator uses the fact that SMGs make it
possible to easily check whether a given pair of memory areas overlaps in order to
check for bugs caused by memory overlapping in a way prohibited by the C language
(as in the parameters of memcpy). Predator can provide diagnostic information accom-
panying errors or warnings, which due to the use of abstraction and join has a form of
acyclic graphs covering multiple program paths possibly leading to the error.

Predator supports pointers with both positive and negative offsets from the begin-
ning of allocated objects. Moreover, it even supports pointers with offsets given by
integer intervals, which is needed to cope with some low-level code using, e.g., address
alignment. Predator provides a simple support for integer data by tracking integers pre-
cisely up to some bound and then abstracting them to unknown values. Further details
can be found in the tool paper [2] and in the technical report [3].



3 Benchmark Results

The latest release of Predator can be downloaded from its web page1. Specific instruc-
tions for building and running Predator within the SV-COMP’13 competition are lo-
cated in the file README-sv-comp-TACAS-2013 in the distribution of Predator.

Since the main focus of Predator is on memory- and pointer-related bugs, where it
can utilize its precise analysis of reachable heap configurations, we concentrate on the
MemorySafety and HeapManipulation categories. Compared to the SV-COMP’12 ver-
sion of Predator, we successfully analysed many more test cases in the MemorySafety
category. The new version of Predator managed all but one test case in this category.
In particular, it did not scale well-enough to verify a program working with a 32KB ar-
ray. On the other hand, even the new version of Predator still timed out on several tests
in the HeapManipulation category. These test cases store integral data in list nodes in
a way that prevents the list segment abstraction of Predator from applying. As Predator
aims at verification of system software (including device drivers), we were interested
in the FeatureChecks category as well. Predator successfully verified all test cases in
the ldv-regression directory and a few test cases from the ddv-machzwd directory. Fur-
ther, Predator achieved good results in the ProductLines category, where it successfully
verified 585 of 597 test cases.

Results in the SystemC, Loops, and ControlFlowInteger categories had a higher
ratio of false positives than in the above mentioned categories, but still with a majority
of judgements being correct. The false positives are again caused mostly by a too coarse
analysis of integers. For many cases in these categories, Predator was unable to provide
an answer. The BitVectors category is problematic for Predator: safe test cases were
often judged as unsafe because the byte-precise memory model used by Predator was
too coarse for the bit-level operations. Due to undefined external functions, Predator was
not able to analyze any test case from the DeviceDrivers64 and Concurrency categories.

Over all categories, there was not a single case where Predator would issue an in-
correct TRUE answer. This is a design goal of Predator, and it strengthens our claims
that implementation of our verification techniques is sound.

Our future work includes handling of low-level tree data structures, a support for
code fragment analysis, and better handling of integer data. Especially the last item
would be beneficial for Predator’s performance in some SV-COMP categories since we
observed a high number of false positives caused by a too coarse analysis of integer data.
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