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Abstract. Predator is a shape analyzer that uses the abstract domain of symbolic
memory graphs in order to support various forms of low-level memory manipu-
lation commonly used in optimized C code. This paper briefly describes the ver-
ification approach taken by Predator and its strengths and weaknesses revealed
during its participation in the Software Verification Competition (SV-COMP’14).

1 Verification Approach

Predator is a shape analyzer that uses the abstract domain of symbolic memory graphs
(SMGs) in order to support various forms of low-level memory manipulation commonly
used in optimized C code. Compared to separation logic-based works [1], which our
work is inspired by, SMGs allow one to easily apply various graph-based algorithms to
efficiently manipulate with the low-level memory representation.

The formal definition of SMGs can be found in [2] together with algorithms of
all the operations needed for use of SMGs in a fully automatic shape analysis. This
is in particular the case of a specialised unary abstraction operator and a binary join
operator that aid termination of the SMG-based shape analysis. The join operator is
based on an algorithm that simultaneously traverses a pair of input SMGs and merges
their corresponding nodes. The core of the join algorithm is also used by the algorithm
implementing the abstraction operator to merge pairs of neighbouring nodes, together
with their sub-SMGs (describing the data structures nested below them), into a single
list segment. For checking entailment of SMGs, Predator again reuses the join algorithm
(extended to compare generality of the SMGs being joined).

Predator requires all external functions to be properly modelled wrt. memory safety
in order to exclude any side effects that could possibly break soundness of the analy-
sis. Our distribution of Predator includes models of memory allocation functions (like
malloc or free) and selected memory manipulating functions (memset, memcpy,
memmove, etc.).

Since SV-COMP’13, the core algorithms of shape analysis were reimplemented
in order to match their description presented in [2]. Consequently, the current imple-
mentation is much easier to follow, but at the same time also faster and more precise (as
witnessed by the results of SV-COMP’14).
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2 Software Architecture

Predator is implemented as a GCC (GNU Compiler Collection) plug-in, which makes
the tool easy to use without a need to manually preprocess the source code. GCC as an
industrial-strength compiler takes care of parsing the C code into an intermediate rep-
resentation (known as GIMPLE). The input code is symbolically executed by Predator
using the algorithms proposed in [2] with the aim to precisely interpret various low-
level memory operations (such as pointer arithmetic, valid use of pointers with invalid
targets, operations with memory blocks, or reinterpretation of the memory contents).
Predator is written in C++ and requires Boost libraries, mainly to enable using legacy
compilers for building it. The Predator GCC plug-in can be loaded into any GCC with
a plug-in support up to GCC 4.8.2 (which was the latest release in 2013).

Compared to SV-COMP’ 13, Predator uses an improved algorithm for live variable
analysis (based on a points-to analysis). The improved live variable analysis makes the
shape analysis run five times faster in certain cases (e.g. the Merge-Sort algorithm case
study from [2]).

3 Strengths and Weaknesses

The main strength of Predator is its byte-precise representation of reachable memory
configurations, which makes it possible to successfully verify certain low-level pointer-
intensive programs in the MemorySafety and HeapManipulation categories. The key
design principle of Predator is soundness, which was again confirmed by reaching zero
false negatives on the whole benchmark of SV-COMP’ 14. On the other hand, Predator
does not check spuriousness of possible counterexamples for now, which caused numer-
ous false positives (and consequently a significant loss of score). Since SV-COMP’13,
the MemorySafety category has been extended by case studies that cause problems to
Predator either by operating on data structures not covered by the current abstraction al-
gorithm (trees and skip lists), or by the requirement to track non-pointer data along with
the shapes of data structures (for example, tracking the length of lists). Compared to the
SV-COMP’13 version, Predator now finally achieved the full score in the ProductLines
subcategory. Moreover, the correct results were now delivered five times faster than the
partially correct results in this (sub)category last year.

Results in the ControlFlowlnteger BitVectors categories still suffer from a high ra-
tio of false positives caused mainly by a too coarse analysis of integers. Due to un-
defined external functions, Predator was not able to analyze many test cases in the
DeviceDrivers64 and Concurrency categories.

4 Tool Setup and Configuration

The source code of the Predator release' used in the competition can be downloaded
from the project web page. The file README-SVCOMP—-2014 included in the archive

"http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
download/predator-2013-10-30-d1lbd405.tar.gz



describes how to build Predator from source code and how to apply the tool on the com-
petition benchmarks. After successfully building the tool from sources, the s1_build
directory contains a script named check-property . sh, which needs to be invoked
once for each input program. Besides the name of the input program, the script requires
a mandatory option ——propertyfile specifying the property to be verified. Com-
piler flags needed to compile the input program with GCC must be specified after the
file name of the input program. For programs relying on a particular target architecture
(such as preprocessed C sources), it is important to use the -m32 or —~m64 compiler
flags to specify the architecture. The script also provides a voluntary option ——trace
that allows one to write the error trace to a file. The verification result is printed to the
standard output on success. Otherwise, the verification outcome should be treated as
UNKNOWN. The script does not check for exceeding any resource limits on its own.

Although we use a global configuration of Predator for all categories, the tool pro-
vides many useful compile-time options via the s1/config.h configuration file. The
default configuration is tweaked to obtain good overall results in both the competi-
tion benchmark and Predator’s regression test-suite. The configuration can be further
tweaked to improve the results in a particular category, however, at the cost of loosing
some points in other categories.

5 Software Project and Contributors

Predator is an open source software project developed at Brno University of Technol-
ogy (BUT) and distributed under the GNU General Public License version 3, which
allows Predator to be used for both commercial and non-commercial purposes. There
is no binary distribution of Predator, but it can be easily built from sources on any up
to date distribution of Linux. The interaction with the compiler is facilitated by the
Code Listener infrastructure [3], which is shared with Forester (a shape analyser based
on forest automata [4]), including a suite of regression tests. Both Code Listener and
Forester are projects also developed at BUT. Besides our development teams, we have
numerous external contributors listed in the docs/THANKS file inside the distribution
of Predator. Collaboration on further development of Predator is welcome.
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