
ANaConDA: A Framework for Analysing
Multi-threaded C/C++ Programs on the Binary Level⋆

Jan Fiedor and Tomáš Vojnar

IT4Innovations Centre of Excellence, FIT, Brno Universityof Technology, Czech Republic

Abstract. This paper presents the ANaConDA framework that allows one to eas-
ily create dynamic analysers for analysing multi-threadedC/C++ programs on
the binary level. ANaConDA also supports noise injection techniques to increase
chances to find concurrency-related errors in testing runs.ANaConDA is built
on top of the Intel’s framework PIN for instrumenting binarycode. ANaConDA
can be instantiated for dealing with programs using variousthread models. Cur-
rently, it has been instantiated for programs using the pthread library as well as
the Win32 API for dealing with threads.

1 Introduction

Due to the arrival of multi-core processors to common computers, multi-threaded pro-
gramming has become a standard in all widely used programming languages. Such
programming, however, is more demanding and brings much more space for errors.
Hence, adequate tools for discovering concurrency-related errors are highly needed.

One way to find errors in multi-threaded programs isdynamic analysis that mon-
itors the execution of a program and tries to extrapolate thewitnessed behaviour and
issue warnings about possible errors even when no error is really witnessed in the given
execution. However, monitoring the execution of a program can be quite challenging
and programmers might spend more time writing the monitoring code than by writing
the analysis code itself. In this paper, we present the ANaConDA framework which is
a framework for adaptable native-code concurrency-focused dynamic analysis built on
top of PIN [7]. The goal of the framework is to simplify the creation of dynamic analy-
sers for analysing multi-threaded C/C++ programs on the binary level. The framework
provides a monitoring layer offering notification about important events, such as thread
synchronisation or memory accesses, so that developers of dynamic analysers can fo-
cus solely on writing the analysis code. In addition, the framework also supports noise
injection techniques to increase the number of interleavings witnessed in testing runs
and hence to increase chances to find concurrency-related errors.

The general ideas behind the framework and preliminary experiments with it have
been presented in [2]. In the present paper, apart from mentioning some recent additions
to the framework, we focus more on how to write an analyser using the framework, how

⋆ This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021630528), the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, and the internal Brno
University of Technology projects FIT-S-11-1 and FIT-S-12-1.

to get some useful information which may help the user in locating an error, and how
to use the tool. As the framework can be instantiated to support various multithreading
libraries, we also describe some concrete instantiations,in particular, the instantiation
for pthreads, already used for the experiments in [2], and a new instantiation for
Win32 API. Finally, we discuss several real-life experiments done with the framework.

As for related tools, there exist many frameworks which may be used to simplify
the creation of dynamic analysers for Java programs. The closest to ANaConDA is IBM
ConTest [1] which inspired some parts of the design of ANaConDA. RoadRunner [3] is
another framework very similar to ANaConDA. Both of these frameworks can monitor
the execution of multi-threaded Java programs and provide notification about important
events in their execution to dynamic analysers built on top of the frameworks. Cal-
Fuzzer [5] is an extensible framework for testing concurrent programs which can also
be used to create new static and dynamic analysers and to combine them. Chord [8] is
another extensible framework which might be used to productively design and imple-
ment a broad variety of static and dynamic analyses for Java programs. When dealing
with C/C++ programs, the options are much poorer. One tool somewhat related to ANa-
ConDA is Fjalar [4] which is a framework for creating dynamicanalysers for C/C++
programs. However, Fjalar is primarily designed to simplify access to various compile-
time and memory information. It does not provide any concurrency-related information.
Moreover, it is build on top of Valgrind [9], which brings several disadvantages as dis-
cussed in Section 3.

2 Monitoring Multithreaded C/C++ Programs on the Binary Level

As was mentioned in the introduction, monitoring C/C++ programs can be quite diffi-
cult, especially when the monitoring is done on the binary level. One of the problems
to be dealt with is monitoring of function execution. This isbecause the monitoring
code has to cope with that the control can be passed among several functions by jumps.
Hence, the control can return from a different function thanthe one that was called. An-
other problem is that the monitoring code must properly trigger notifications for various
special types of instructions such as atomic instructions,which access several mem-
ory locations at once but in an atomic way, or conditional andrepeatable instructions,
which might be executed more than once or not at all. Further,some pieces of infor-
mation about the execution of instructions or fuctions (such as the memory locations
accessed by them), which are crucial for various analyses, may be lost once the in-
struction or function finishes its execution, and it is necessary to explicitly preserve this
information for later use. Finally, in order to support various multithreading libraries,
the analysers must be abstracted from the concrete library used. Possible solutions to
the these problems were discussed in [2].

A problem that has not been considered in [2] is that the information needed for
analysis is not the only information useful for the users. When the analyser detects an
error, it should provide the users as much information as possible to help them localise
the error. Retrieving information about the executed code,such as names of variables
or locations in the source code, can give the users some information about the error.
However, this information is often not sufficient since it may be difficult to know how
the program got to the variable or location where the error was detected. A much better
help to the user is a backtrace to the erroneous part of the program.

ANaConDA currently supports backtraces equivalent to the ones given by the Linux
backtrace() function, which contain the return addresses of the currently active
function calls. The return addresses are stored on the call stack in the corresponding
stack frames. The top stack frame’s address can be obtained from the base pointer reg-
ister, and each stack frame also contains the previous valueof the base pointer, referring
to the previous stack frame. By following the chain of base pointers, we can extract the
return addresses and create a backtrace although we have to be careful when processing
the stack frames as sometimes (e.g., during the initialisation of the program) the base
pointer register may be used for other purposes and might point somewhere else than to
a stack frame. The advantage of this approach is that we do notneed to monitor every
function call in the program and update the backtrace constantly. We are constructing
the backtrace on demand, i.e., only when the analyser explicitly requests it, and we only
need to know the value of the base pointer register, which canbe retrieved with a neg-
ligible overhead. The only drawback is that the program mustproperly create the stack
frames, which may sometimes not be true if some optimisations are used.

3 Implementation, Current Instantiations, and Usage

The ANaConDA1 framework is an open-source framework written in C++ on top of
PIN [7]. There are several reasons motivating the use of PIN as a binary instrumentation
backend. First, PIN performs dynamic instrumentation, i.e., it instruments a program in
the memory before it is executed. This means that the binary files of the program are left
untouched. This is especially important when dealing with libraries as it allows one to
transparently use an instrumented version of a library and simultaneously use the library
as usual in other programs. PIN can also be used on both Linux and Windows, compared
to Valgrind which is Linux-only, which allows a much wider range of programs to be
analysed. Of course, PIN is primarily developed for use withIntel binaries. However,
if the binary code does not contain any special AMD-only instructions, PIN works
fine even for AMD binaries. Another advantage of PIN is that itpreserves the parallel
execution of threads of the analysed multi-threaded program. Valgrind, on the contrary,
serialises thread execution [9], which may unnecessarily slow down the program and
also the analysis as the analysis code usually runs in these threads too.

Instantiation. The ANaConDA framework abstracts analysers built on top of it from
the specific multithreading library used, but it of course cannot do that without any in-
formation about the library. As explained in more detail in [2], the user must specify:
(1) the names of the functions performing various thread-related operations, (2) the in-
dices of parameters holding the synchronisation primitives the functions operate with,
and (3) theMapper objects used to abstract the synchronisation primitives tonum-
bers uniquely identifying them. Abstraction of synchronisation primitives is necessary
because their representation varies across various libraries, but analysers need to work
with them in a uniform way.

For example, if we use thepthread library and want to get notifications about
lock acquisitions and releases, we have to specify that thepthread mutex lock

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/anaconda

p t h r e a d m u t e x l o c k 1 addr ()
p t h r e a d m u t e x t r y l o c k 1 addr ()

(a) Lock acquisitions (lock file)

p t h r e a d m u t e x u n l o c k u s e r c n t 1 addr ()

(b) Lock releases (unlock file)

Fig. 1. An example of the configuration of monitoring lock operations in thepthread library

andpthread mutex trylock functions are performing the lock acquisitions and
the pthread mutex unlock usercnt function the lock releases. This is done
by adding the names of these functions to thelock andunlock configuration files,
respectively. All of these functions are taking the lock as the first parameter, and be-
cause locks are objects of thepthread mutex t structure, we can use the ANa-
ConDA framework’s built-in mapper objectaddr to convert the addresses of these
objects into numbers uniquely representing them. To give this information to ANa-
ConDA, we have to specify the index and the name of theMapper object right after
the name of the corresponding monitored function as can be seen in Fig. 1. The instanti-
ation for signaling conditions and waiting on them is similar, we just have to instruct the
framework to monitor thepthread cond signal,pthread cond broadcast,
andpthread cond wait functions by inserting the appropriate information to the
signal andwait configuration files.

As for the Win32 API, there is no function that performs purely lock acquisitions.
Instead, theWaitForSingleObject function is used taking a genericHANDLE as
the first parameter and performing a lock acquisition only ifthe HANDLE represents
a lock (it may also represent, e.g., a thread or an event). In this case, we have an al-
ternate way to tell ANaConDA when a function performs a lock acquisition. We can
specify that theWaitForSingleObject function is a generic wait function whose
behaviour depends on the type of the synchronisation primitive passed to it and then
name a function which creates or initialises new locks. The framework then remem-
bers which synchronisation primitives are locks because they were created by the user-
identified lock creation/initialisation function. Subsequently, when a generic wait func-
tion (like WaitForSingleObject) is called, it will first determine what kind of
synchronisation primitive its parameter represents. If itis a lock, it will properly trigger
the lock acquisition notifications. In particular, in Win32API, locks are created by the
CreateMutex function which returns aHANDLE representing the lock. Configuring
lock releases is much simpler as they are performed by a dedicatedReleaseMutex
function which takes the lock (HANDLE) as the first parameter. As theHANDLE is in
fact a generic pointer, we can also use theaddrmapper object here to transform it into
a unique number.

The Win32 API has no functions for signaling conditions and waiting on them.
If such operations are needed, the users usually implement the operations themselves
or use some libraries likepthread-win32 implementing them. However, as ensur-
ing that the functions performing these operations will trigger the corresponding ANa-
ConDA notifications is as easy as adding a few lines to the appropriate configuration
files, the framework does not have any problems with the usersusing their own custom
functions for these operations, which illustrates the generality of the framework.

Another problem with the Win32 API is that some of the functions that need to be
monitored are jumping at the beginning of other monitored functions. In this case, PIN
executes the monitoring code inserted before such functions, and if no special care was

taken, the analyser would get a notification about a single event multiple times. The
solution could seem to be easy as one could, e.g., think of simply specifying that one of
the functions should not be monitored. However, the functions often have exactly the
same names, so one cannot so easily differentiate between them. The framework solves
this problem by checking if the stack pointer changed when a monitored function is
about to be executed, and it does not issue a notification if its value remained the same
as that means that nobody called the function, and the control must have jumped to it.

Usage of ANaConDA. To analyse a multi-threaded C/C++ program using ANaConDA,
one first has to write (or get) an analyser to be used. The analyser must have the form
of a shared object (in Linux) or a dynamic library (in Windows) which contains a set of
functions that ANaConDA should call when a specific event, such as a lock acquisition,
occurs in the program being analysed. The analyser has to register the callback functions
for the events it needs to be notified about. This is done by calling the appropriate reg-
istration functions (provided by ANaConDA) in theinit() function of the analyser,
which ANaConDA executes once the analyser is loaded. For example, to be notified
about lock acquisitions and releases, the analyser has to register its callback functions
using theSYNC AfterLockAcquireandSYNC BeforeLockRelease functions,
respectively.

Performing the actual analysis is then quite simple. One just needs to execute the
PIN framework with ANaConDA as thepintool2 to be used and specify the analyser
which should perform the desired analysis together with theprogram which should
be analysed. Noise injection can be enabled and configured inthenoise section of
theanaconda.conf configuration file. Currently, only thesleep andyield noise is
supported, but the user may use different noise injection settings for the read and write
accesses and also for each of the monitored functions. The slowdown of the execution
of the analysed program is similar to Fjalar, i.e., around 100 times. Note, however, that
the slowdown is mainly due to PIN and depends on many factors such as the amount
of instrumentation inserted, the amount of information requested by the analyser, the
amount of noise injected into the program, etc.

4 Experiments

A set of preliminary experiments with the framework was donein [2] where we anal-
ysed more than 100 student projects implementing a simple ticket algorithm (100–500
lines of code) under thepthread library. The projects passed all the tests originally
used to mark them, but we still found errors in around 20 % of them using a simple data
race detector called AtomRace [6], which we use in the tests discussed below too.

To test whether ANaConDA can handle really large and complexprograms, we have
used it to analyse theFirefox browser (more than 3 million lines of code) which uses
thepthread library. We did not find any severe or unknown errors. We did, however,
find several data races which are left in the code since they are considered harmless.
Considering the size of the program, the fact that it is thoroughly checked for data races
regularly, and also that we used a very simple data race detector and performed only

2 A pintool can be thought of as a PIN plugin that can modify the code generation process inside
PIN, i.e., it determines which code should be executed and where in the monitored program.

a very limited set of tests since we did not have any automatictest suite to use, we
consider these results to still be quite promising.

We further analysed theunicap libraries for video processing, which also use
the pthread library and are considerably smaller (about 40k lines of code) which
allowed us to perform a larger number of tests. We have found several (previously un-
known) data races in thelibunicap andlibunicapgtk libraries. Two of the data
races can be considered severe as they may cause a crash of theprogram which uses
these libraries. In both cases, one thread may reset a pointer to a callback function (i.e.,
set it toNULL) in between of the times when another thread checks the validity of this
pointer and calls the function referenced by it, which can cause an immediate segmen-
tation fault. We are currently preparing to report these errors to the developers using
the ANaConDA’s recently added backtrace support that can provide a rather detailed
information where and why the error occurred.

Finally, we also successfully tested the framework on several Windows toy pro-
grams (100–500 lines of code). An application to larger programs is planned for the
near future.

5 Conclusion

We have presented ANaConDA—a framework simplifying the creation of dynamic
analysers for analysing multi-threaded C/C++ programs on the binary level. We have
shown how to instantiate it for several widely used multithreading libraries and demon-
strated on several case studies that it can handle even largereal-life programs. With the
help of the framework, we were able to write a simple analyserin a day and successively
find several errors with it, which shows the usefulness of theframework.

References

1. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, andS. Ur. Framework for Testing
Multi-threaded Java Programs. InConcurrency and Computation: Practice and Experience,
15(3-5):485–499, Wiley & Sons, 2003.

2. J. Fiedor and T. Vojnar. Noise-Based Testing and Analysisof Multi-threaded C/C++ Programs
on the Binary Level. InProc. of PADTAD’12, ACM Press, 2012.

3. C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis Framework for Concurrent
Programs. InProc. of PASTE’10, ACM Press, 2010.

4. P. J. Guo. A Scalable Mixed-Level Approach to Dynamic Analysis of C and C++ Programs.
Master’s thesis, Department of EECS, Cambridge, MA, May 5, 2006.

5. P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: An Extensible Active Testing Frame-
work for Concurrent Programs. InProc. of CAV’09, LNCS 5643, Springer, 2009.

6. Z. Letko, T. Vojnar, and B. Křena. AtomRace: Data Race andAtomicity Violation Detector
and Healer. InProc. of PADTAD’08, ACM Press, 2008.

7. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. InProc. of PLDI’05, ACM Press, 2005.

8. M. Naik. Chord: A Static and Dynamic Program Analysis Platform for Java Bytecode. URL:
http://code.google.com/p/jchord.

9. N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. InProc. of PLDI’07, ACM Press, 2007.

