ANaConDA: A Framework for Analysing
Multi-threaded C/C++ Programson the Binary L evel*

Jan Fiedor and Tom&as Vojnar

IT4Innovations Centre of Excellence, FIT, Brno UniversifyTechnology, Czech Republic

Abstract. This paper presents the ANaConDA framework that allows oeas-
ily create dynamic analysers for analysing multi-threa@#@++ programs on
the binary level. ANaConDA also supports noise injectiarhtéques to increase
chances to find concurrency-related errors in testing rAh&ConDA is built
on top of the Intel’s framework PIN for instrumenting binargde. ANaConDA
can be instantiated for dealing with programs using vartbusad models. Cur-
rently, it has been instantiated for programs using theegithiibrary as well as
the Win32 API for dealing with threads.

1 Introduction

Due to the arrival of multi-core processors to common comimulti-threaded pro-
gramming has become a standard in all widely used progragtaimguages. Such
programming, however, is more demanding and brings mucte repace for errors.
Hence, adequate tools for discovering concurrency-rkaters are highly needed.

One way to find errors in multi-threaded programslysamic analysis that mon-
itors the execution of a program and tries to extrapolatentireessed behaviour and
issue warnings about possible errors even when no erraally veitnessed in the given
execution. However, monitoring the execution of a program be quite challenging
and programmers might spend more time writing the monitpciode than by writing
the analysis code itself. In this paper, we present the AM@2oframework which is
a framework for_daptable ntive-code conurrency-focusedyhamic aalysis built on
top of PIN [7]. The goal of the framework is to simplify the aten of dynamic analy-
sers for analysing multi-threaded C/C++ programs on tharlitevel. The framework
provides a monitoring layer offering notification about ionfant events, such as thread
synchronisation or memory accesses, so that developegsahdc analysers can fo-
cus solely on writing the analysis code. In addition, thenfeavork also supports noise
injection techniques to increase the number of interleginitnessed in testing runs
and hence to increase chances to find concurrency-related.er

The general ideas behind the framework and preliminary axgats with it have
been presented in [2]. In the present paper, apart from pr@ng some recent additions
to the framework, we focus more on how to write an analysergiie framework, how

* This work was supported by the Czech Science Foundatiofeiri®103/10/0306), the Czech
Ministry of Education (projects COST OC10009 and MSM 00Z1%28), the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.0500102.0070, and the internal Brno
University of Technology projects FIT-S-11-1 and FIT-S-1.2



to get some useful information which may help the user intiagaan error, and how
to use the tool. As the framework can be instantiated to stppoous multithreading
libraries, we also describe some concrete instantiationsarticular, the instantiation
for pt hr eads, already used for the experiments in [2], and a new instémtigor
Win32 API. Finally, we discuss several real-life experirtsathone with the framework.

As for related tools, there exist many frameworks which mayubed to simplify
the creation of dynamic analysers for Java programs. Tteestd@o ANaConDA is IBM
ConTest [1] which inspired some parts of the design of ANd@®rRoadRunner [3] is
another framework very similar to ANaConDA. Both of thesanfieworks can monitor
the execution of multi-threaded Java programs and provatifeation about important
events in their execution to dynamic analysers built on tbghe frameworks. Cal-
Fuzzer [5] is an extensible framework for testing concurprngrams which can also
be used to create new static and dynamic analysers and tarmmathiem. Chord [8] is
another extensible framework which might be used to pradelgtdesign and imple-
ment a broad variety of static and dynamic analyses for Jesgrams. When dealing
with C/C++ programs, the options are much poorer. One tanksehat related to ANa-
ConDA is Fjalar [4] which is a framework for creating dynanaicalysers for C/C++
programs. However, Fjalar is primarily designed to sinypdi€cess to various compile-
time and memory information. It does not provide any coreney-related information.
Moreover, it is build on top of Valgrind [9], which brings sal disadvantages as dis-
cussed in Section 3.

2 Monitoring Multithreaded C/C++ Programson the Binary Level

As was mentioned in the introduction, monitoring C/C++ peogs can be quite diffi-
cult, especially when the monitoring is done on the binarglleOne of the problems
to be dealt with is monitoring of function execution. Thishiecause the monitoring
code has to cope with that the control can be passed amongkwetions by jumps.
Hence, the control can return from a different function ttrenone that was called. An-
other problem is that the monitoring code must properhgeignotifications for various
special types of instructions such as atomic instructiarigch access several mem-
ory locations at once but in an atomic way, or conditional esygkatable instructions,
which might be executed more than once or not at all. Furene pieces of infor-
mation about the execution of instructions or fuctions sas the memory locations
accessed by them), which are crucial for various analysey, lme lost once the in-
struction or function finishes its execution, and it is nseeg to explicitly preserve this
information for later use. Finally, in order to support wars multithreading libraries,
the analysers must be abstracted from the concrete libsag. (Possible solutions to
the these problems were discussed in [2].

A problem that has not been considered in [2] is that the mé&dion needed for
analysis is not the only information useful for the users.eWkhe analyser detects an
error, it should provide the users as much information asiptesto help them localise
the error. Retrieving information about the executed cadeh as names of variables
or locations in the source code, can give the users someniatayn about the error.
However, this information is often not sufficient since ityrze difficult to know how
the program got to the variable or location where the errar detected. A much better
help to the user is a backtrace to the erroneous part of tlgraomo



ANaConDA currently supports backtraces equivalent to ties@iven by the Linux
backt race() function, which contain the return addresses of the curettive
function calls. The return addresses are stored on the teak én the corresponding
stack frames. The top stack frame’s address can be obtaimredlie base pointer reg-
ister, and each stack frame also contains the previous wéthe base pointer, referring
to the previous stack frame. By following the chain of basi{grs, we can extract the
return addresses and create a backtrace although we haveaodful when processing
the stack frames as sometimes (e.g., during the initiadisatf the program) the base
pointer register may be used for other purposes and might poimewhere else than to
a stack frame. The advantage of this approach is that we doesat to monitor every
function call in the program and update the backtrace catigtd\Ve are constructing
the backtrace on demand, i.e., only when the analyser ékplequests it, and we only
need to know the value of the base pointer register, whictheartrieved with a neg-
ligible overhead. The only drawback is that the program rpusperly create the stack
frames, which may sometimes not be true if some optimisatwa used.

3 Implementation, Current Instantiations, and Usage

The ANaConDA framework is an open-source framework written in C++ on tép o
PIN [7]. There are several reasons motivating the use of Bl&ldanary instrumentation
backend. First, PIN performs dynamic instrumentation, it&nstruments a program in
the memory before it is executed. This means that the birlasydf the program are left
untouched. This is especially important when dealing wiitaries as it allows one to
transparently use an instrumented version of a library andlsaneously use the library
as usual in other programs. PIN can also be used on both Limdi¥\éndows, compared
to Valgrind which is Linux-only, which allows a much widemge of programs to be
analysed. Of course, PIN is primarily developed for use Witkl binaries. However,
if the binary code does not contain any special AMD-only rinstions, PIN works
fine even for AMD binaries. Another advantage of PIN is thatréserves the parallel
execution of threads of the analysed multi-threaded prog¥@lgrind, on the contrary,
serialises thread execution [9], which may unnecessddly sown the program and
also the analysis as the analysis code usually runs in thesads too.

Instantiation. The ANaConDA framework abstracts analysers built on tog &bim
the specific multithreading library used, but it of coursergat do that without any in-
formation about the library. As explained in more detail 2, the user must specify:
(1) the names of the functions performing various thredalted operations, (2) the in-
dices of parameters holding the synchronisation prinstives functions operate with,
and (3) theMapper objects used to abstract the synchronisation primitivesutm-
bers uniquely identifying them. Abstraction of synchratign primitives is necessary
because their representation varies across variousiéibrdout analysers need to work
with them in a uniform way.

For example, if we use thet hr ead library and want to get notifications about
lock acquisitions and releases, we have to specify thapthe ead_nut ex_| ock

Yhttp://ww. fit.vutbr.cz/research/ groups/verifit/tools/anaconda



pthreadmutex.lock 1 addr () __pthreadmutexunlock-usercnt 1 addr ()
pthreadmutextrylock 1 addr ()

(a) Lock acquisitionsl(ock file) (b) Lock releasesun! ock file)
Fig. 1. An example of the configuration of monitoring lock operatian thept hr ead library

andpt hr ead_mut ex_t r yl ock functions are performing the lock acquisitions and
the __pt hr ead_nut ex_unl ock_user cnt function the lock releases. This is done
by adding the names of these functions toltlee k andunl ock configuration files,
respectively. All of these functions are taking the lock las first parameter, and be-
cause locks are objects of tipe hr ead_nut ex_t structure, we can use the ANa-
ConDA framework’s built-in mapper objeeddr to convert the addresses of these
objects into numbers uniquely representing them. To gii® itiformation to ANa-
ConDA, we have to specify the index and the name ofapper object right after
the name of the corresponding monitored function as candseisd-ig. 1. The instanti-
ation for signaling conditions and waiting on them is simil@e just have to instruct the
framework to monitor thet hr ead_cond_si gnal , pt hr ead_cond_br oadcast ,
andpt hr ead_cond_wai t functions by inserting the appropriate information to the
si gnal andwai t configuration files.

As for the Win32 API, there is no function that performs pwyrelck acquisitions.
Instead, théMi t For Si ngl eObj ect function is used taking a genettANDLE as
the first parameter and performing a lock acquisition onlthd& HANDLE represents
a lock (it may also represent, e.g., a thread or an eventhisncese, we have an al-
ternate way to tell ANaConDA when a function performs a lockusition. We can
specify that thaMi t For Si ngl eCbj ect function is a generic wait function whose
behaviour depends on the type of the synchronisation pvienitassed to it and then
name a function which creates or initialises new locks. Taenework then remem-
bers which synchronisation primitives are locks becausg Were created by the user-
identified lock creation/initialisation function. Subseptly, when a generic wait func-
tion (like Wai t For Si ngl ehj ect) is called, it will first determine what kind of
synchronisation primitive its parameter represents.igf@ lock, it will properly trigger
the lock acquisition notifications. In particular, in Win321, locks are created by the
Cr eat eMut ex function which returns &lANDLE representing the lock. Configuring
lock releases is much simpler as they are performed by a atediRel easeMut ex
function which takes the lockHANDLE) as the first parameter. As th#ANDLE is in
fact a generic pointer, we can also usedldelr mapper object here to transform it into
a unigue number.

The Win32 API has no functions for signaling conditions anaiting on them.

If such operations are needed, the users usually implerherdggerations themselves
or use some libraries likpt hr ead- wi n32 implementing them. However, as ensur-
ing that the functions performing these operations wigder the corresponding ANa-
ConDA notifications is as easy as adding a few lines to theagpjate configuration
files, the framework does not have any problems with the useng their own custom
functions for these operations, which illustrates the galitg of the framework.

Another problem with the Win32 API is that some of the funnidhat need to be
monitored are jumping at the beginning of other monitorettfions. In this case, PIN
executes the monitoring code inserted before such fursstaomd if no special care was



taken, the analyser would get a notification about a singémemultiple times. The
solution could seem to be easy as one could, e.g., think gfigispecifying that one of
the functions should not be monitored. However, the fumgioften have exactly the
same hames, so one cannot so easily differentiate between Tthe framework solves
this problem by checking if the stack pointer changed whenoaitared function is
about to be executed, and it does not issue a notificatios Ve remained the same
as that means that nobody called the function, and the dontrst have jumped to it.

Usageof ANaConDA. To analyse a multi-threaded C/C++ program using ANaConDA,
one first has to write (or get) an analyser to be used. The sexatgust have the form
of a shared object (in Linux) or a dynamic library (in Windgwehich contains a set of
functions that ANaConDA should call when a specific everthsas a lock acquisition,
occursin the program being analysed. The analyser hasitbeethe callback functions
for the events it needs to be notified about. This is done Hingahe appropriate reg-
istration functions (provided by ANaConDA) in theni t () function of the analyser,
which ANaConDA executes once the analyser is loaded. Fanpla to be notified
about lock acquisitions and releases, the analyser hagigigeits callback functions
using theSYNC_Af t er LockAcqui r e andSYNC_Bef or eLockRel ease functions,
respectively.

Performing the actual analysis is then quite simple. Onerjaeds to execute the
PIN framework with ANaConDA as thpintool? to be used and specify the analyser
which should perform the desired analysis together withpgtegram which should
be analysed. Noise injection can be enabled and configurttkimoi se section of
theanaconda. conf configuration file. Currently, only thdeep andyield noise is
supported, but the user may use different noise injectitiimgs for the read and write
accesses and also for each of the monitored functions. da@sivn of the execution
of the analysed program is similar to Fjalar, i.e., around tides. Note, however, that
the slowdown is mainly due to PIN and depends on many factars as the amount
of instrumentation inserted, the amount of informationuested by the analyser, the
amount of noise injected into the program, etc.

4 Experiments

A set of preliminary experiments with the framework was donf?] where we anal-
ysed more than 100 student projects implementing a simgkettalgorithm (100-500
lines of code) under thpt hr ead library. The projects passed all the tests originally
used to mark them, but we still found errors in around 20 % effrtlusing a simple data
race detector called AtomRace [6], which we use in the tdstaidsed below too.

To test whether ANaConDA can handle really large and complegrams, we have
used it to analyse thiel r ef ox browser (more than 3 million lines of code) which uses
thept hr ead library. We did not find any severe or unknown errors. We dalyéver,
find several data races which are left in the code since theeg@msidered harmless.
Considering the size of the program, the fact that it is thghdy checked for data races
regularly, and also that we used a very simple data racetdetaied performed only

2 A pintool can be thought of as a PIN plugin that can modify tbéegeneration process inside
PIN, i.e., it determines which code should be executed aretevim the monitored program.



a very limited set of tests since we did not have any autontesit suite to use, we
consider these results to still be quite promising.

We further analysed theni cap libraries for video processing, which also use
the pt hr ead library and are considerably smaller (about 40k lines ofejadhich
allowed us to perform a larger number of tests. We have foewudral (previously un-
known) data races in tHei buni cap andl i buni capgt k libraries. Two of the data
races can be considered severe as they may cause a crashpoddhem which uses
these libraries. In both cases, one thread may reset a ptrdesallback function (i.e.,
set it toNULL) in between of the times when another thread checks theityatifithis
pointer and calls the function referenced by it, which camseaan immediate segmen-
tation fault. We are currently preparing to report thesemsrto the developers using
the ANaConDA's recently added backtrace support that cawige a rather detailed
information where and why the error occurred.

Finally, we also successfully tested the framework on s#Watindows toy pro-
grams (100-500 lines of code). An application to larger paiots is planned for the
near future.

5 Conclusion

We have presented ANaConDA—a framework simplifying theatiom of dynamic
analysers for analysing multi-threaded C/C++ programsherbinary level. We have
shown how to instantiate it for several widely used mulgtuting libraries and demon-
strated on several case studies that it can handle everré&aigife programs. With the
help of the framework, we were able to write a simple analysaiday and successively
find several errors with it, which shows the usefulness ofith@mework.

References

1. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, &dJr. Framework for Testing
Multi-threaded Java Programs. Goncurrency and Computation: Practice and Experience,
15(3-5):485-499, Wiley & Sons, 2003.

2. J. Fiedor and T. Vojnar. Noise-Based Testing and Anabfdidulti-threaded C/C++ Programs
on the Binary Level. IrProc. of PADTAD’ 12, ACM Press, 2012.

3. C.Flanaganand S. N. Freund. The RoadRunner Dynamic sisdfyamework for Concurrent
Programs. IrProc. of PASTE’ 10, ACM Press, 2010.

4. P.J. Guo. A Scalable Mixed-Level Approach to Dynamic Asi of C and C++ Programs.
Master’s thesis, Department of EECS, Cambridge, MA, May0b&2

5. P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: Areisible Active Testing Frame-
work for Concurrent Programs. Proc. of CAV' 09, LNCS 5643, Springer, 2009.

6. Z. Letko, T. Vojnar, and B. Kfena. AtomRace: Data Race Ataimicity Violation Detector
and Healer. IrProc. of PADTAD’ 08, ACM Press, 2008.

7. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowné&. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program AnalysislSavith Dynamic Instrumen-
tation. InProc. of PLDI’05, ACM Press, 2005.

8. M. Naik. Chord: A Static and Dynamic Program Analysis feliah for Java Bytecode. URL:
http://code. googl e. com p/j chord.

9. N. Nethercote and J. Seward. Valgrind: A Framework forweeeight Dynamic Binary
Instrumentation. IiProc. of PLDI' 07, ACM Press, 2007.



