
Multi-objective Genetic Optimization for Noise-based
Testing of Concurrent Software

Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluh´ačková, and Tomáš Vojnar

IT4Innovations Centre of Excellence, Brno University of Technology, Czech Republic
{ihruba, krena, iletko, ipluhackova, vojnar}@fit.vutbr.cz

Abstract. Testing of multi-threaded programs is a demanding work due to the
many possible thread interleavings one should examine. Thenoise injection tech-
nique helps to increase the number of thread interleavings examined during re-
peated test executions provided that a suitable setting of noise injection heuristics
is used. The problem of finding such a setting, i.e., the so called test and noise
configuration search problem (TNCS problem), is not easy to solve. In this pa-
per, we show how to apply a multi-objective genetic algorithm (MOGA) to the
TNCS problem. In particular, we focus on generation of TNCS solutions that
cover a high number of distinct interleavings (especially those which are rare)
and provide stable results at the same time. To achieve this goal, we study suitable
metrics and ways how to suppress effects of non-deterministic thread scheduling
on the proposed MOGA-based approach. We also discuss a choice of a concrete
MOGA and its parameters suitable for our setting. Finally, we show on a set of
benchmark programs that our approach provides better results when compared to
the commonly used random approach as well as to the sooner proposed use of
a single-objective genetic approach.

1 Introduction

Multi-threaded software design has become widespread withthe arrival of multi-core
processors into common computers. Multi-threaded programming is, however, signif-
icantly more demanding. Concurrency-related errors such as data races [9], atomicity
violations [21], and deadlocks [3], are easy to cause but very difficult to discover due to
the many possible thread interleavings to be considered [22, 8]. This situation stimulates
research efforts towards advanced methods of testing, analysis, and formal verification
of concurrent software.

Precise static methods of verification, such as model checking [6], do not scale well
and their use is rather expensive for complex software. Therefore, lightweight static
analyses [2], dynamic analyses [9], and especially testing[26] are still very popular in
the field. A major problem for testing of concurrent programsis the non-deterministic
nature of multi-threaded computation. It has been shown [22, 8] that even repeated exe-
cution of multi-threaded tests, when done naı̈vely, does often miss many possible behav-
iors of the program induced by different thread interleavings. This problem is targeted
by thenoise injectiontechnique [8] which disturbs thread scheduling and thus increases
chances to examine more possible thread interleavings. This approach does significantly
improve the testing process provided that a suitable setting of noise injection heuristics



2 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

is used. The problem of finding such a setting (together with choosing the right tests and
their parameters), i.e., the so-calledtest and noise configuration search problem(TNCS
problem), is, however, not easy to solve [13].

In this paper, we propose an application of amulti-objective genetic algorithm
(MOGA) to solve the TNCS problem such that the solutions provide highefficiency
andstability during repeated executions. Byefficiency, we mean an ability to exam-
ine as much existing and important program behavior with as low time and resource
requirements as possible. On the other hand,stability stands for an ability of a test
setting to provide such efficient results in as many repeatedtest executions as possi-
ble despite the scheduling non-determinism. Such requirements on the tests and testing
environment (and hence noise generation) can be useful, forinstance, in the context of
regression testing[26], which checks whether a previously working functionality works
in a new version of the system under test too and which is executed regularly, e.g., every
night.

Our proposal of a MOGA-based approach for testing of concurrent programs aims
both at high efficiency as well as stability, i.e., we search for such tests, test param-
eters, noise heuristics, and their parameters that examinea lot of concurrency behav-
ior in minimal time and that provide such good results constantly when re-executed.
With that aim, we propose a multi-objective fitness functionthat embeds objectives of
different kinds (testing time, coverage related to finding common concurrency errors
like data races and deadlocks, as well as coverage of generalconcurrency behavior).
Moreover, the objectives also embed means for minimizing the influence of scheduling
non-determinism and means emphasizing a desire to search for less common behav-
iors (which are more likely to contain not yet discovered errors). Further, we discuss
a choice of one particular MOGA from among of several known ones—in particular,
the Non-Dominated Sorting Genetic Algorithm II(NSGA-II) and two versions of the
Strength Pareto Evolutionary Algorithm(SPEA and SPEA2)—as well as a choice of
a configuration of its parameters suitable for our setting. Finally, we show on a number
of experiments that our solution provides better results than the commonly used ran-
dom setting of noise injection as well as the approach of solving the TNCS problem via
a single-objective genetic algorithm (SOGA) presented in [13].

2 Related Work

This section provides a brief overview of existing approaches for testing and dynamic
analysis of multi-threaded programs as well as of applications of meta-heuristics to the
problems of testing and analysis of multi-threaded programs.

Testing Multi-Threaded Programs.Simplestress testingbased on executing a large
number of threads and/or executing the same test in the same testing environment many
times has been shown ineffective [23, 22, 8]. To effectivelytest concurrent programs,
some way of influencing the scheduling is needed. Thenoise injectiontechnique [8]
influences thread interleavings by inserting delays, called noise, into the execution of
selected threads. Many different noise heuristics can be used for this purpose [20]. The
efficiency of the approach depends on the nature of the systemunder test (SUT) and the
testing environment, which includes the way noise is generated [20]. A proper choice



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 3

of noise seeding heuristics(e.g., callingsleep or yield statements, halting selected
threads, etc.),noise placement heuristics(purely random, at selected statements, etc.),
as well as of the values of the many parameters of these heuristics (such as strength,
frequency, etc.) can rapidly increase the probability of detecting an error, but on the
other hand, improper noise injection can hide it [17]. A proper selection of the noise
heuristics and their parameters is not easy, and it is often done by random. In this paper,
we strive to improve this practice by applying multi-objective genetic optimization.

An alternative to noise-based testing isdeterministic testing[12, 22, 30] which can
be seen as execution-based model checking. This approach isbased on deterministic
control over the scheduling of threads, and it can guaranteea higher coverage of dif-
ferent interleavings than noise-based testing. On the other hand, its overhead may be
significantly higher due to a need of computing, storing, andenforcing the considered
thread interleavings. Since the number of possible interleavings is usually huge, the ap-
proach is often applied on abstract and/or considerably bounded models of the SUT. It
is therefore suitable mainly for unit testing.

Both of the above mentioned approaches can be improved by combining them with
dynamic analysis[9, 21, 3] which collects various pieces of information along the exe-
cuted path and tries to detect errors based on their characteristic symptoms even if the
errors do themselves not occur in the execution. Many problem-specific dynamic anal-
yses have been proposed for detecting special classes of errors, such as data races [9],
atomicity violations [21], or deadlocks [3].

Meta-heuristics in Testing of Concurrent Programs.A majority of existing works in
the area of search-based testing of concurrent programs focuses on applying various
meta-heuristic techniques to control state space exploration within theguided (static)
model checkingapproach [11, 27, 1]. The basic idea of this approach is to explore areas
of the state space that are more likely to contain concurrency errors first. The fitness
functions used in these approaches are based on detection oferror states [27], distance
to error manifestation [11], or formula-based heuristics [1] which estimate the num-
ber of transitions required to get an objective node from thecurrent one. Most of the
approaches also search for a minimal counterexample path.

Applications of meta-heuristics in deterministic testingof multi-threaded programs
are studied in [5, 28]. In [5], a cross entropy heuristic is used to navigate deterministic
testing. In [28], an application of a genetic algorithm to the problem of unit test gen-
eration is presented. The technique produces a set of unit tests for a chosen Java class.
Each unit test consists of a prefix initialising the class (usually, a constructor call), a set
of method sequences (one sequence per thread), and a schedule that is enforced by
a deterministic scheduler.

In [13], which is the closest to our work, a SOGA-based approach to the TNCS
problem is proposed and experimentally shown to provide significantly better results
than random noise injection. On the other hand, the work alsoshows that combining
the different relevant objectives into a scalar fitness function by assigning them some
fixed weights is problematic. For instance, some tests were sometimes highly rated due
to their very quick execution despite they provided a very poor coverage of the SUT
behavior. Further, it was discovered that in some cases, thegenetic approach suffered
from degradation, i.e., a quick loss of diversity in population. Such a loss of diversity



4 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

can unfortunately have a negative impact on the ability of the approach to test different
program behaviors. Finally, it turned out that candidate solutions which were highly
rated during one evaluation did not provide such good results when reevaluated again. In
this paper, we try to solve all of the above problems by using aMOGA-based approach
enhanced by techniques intended to increase the stability of the approach as well as to
stress rare behaviors.

3 Background

In this section, we briefly introduce multi-objective genetic algorithms, the TNCS prob-
lem, and the considered noise injection heuristics. Moreover, we provide an overview
of our infrastructure and test cases used for an evaluation of our approach.

Multi-objective Genetic Algorithms (MOGA).The genetic algorithm is a biology-
inspired population-based optimization algorithm [31, 7]. The algorithm works in it-
erations. In each iteration, a set of candidate solutions (i.e., individuals forming a pop-
ulation) is evaluated through a fitness function based on some chosen objective(s). The
obtained fitness is then used by a selection operator to choose promising candidates for
further breeding. The breeding process employs crossover and mutation operators to
modify the selected individuals to meet the exploration and/or exploitation goals of the
search process.

In single-objective optimization, the set of candidate solutions needs to be totally
ordered according to the values of the fitness function. The traditional approach to solve
a multi-objective problem by single-objective optimization is to bundle all objectives
into a single scalar fitness function using aweighted sum of objectives. The efficiency
of this approach heavily depends on the selected weights which are sometimes not easy
to determine.

On the other hand, multi-objective optimization treats objectives separately and
compares candidate solutions using thePareto dominancerelation. A MOGA searches
for non-dominated individuals calledPareto-optimalsolutions. There usually exists
a set of such individuals which form thePareto-optimal front. Solutions on the Pareto-
optimal front are either best in one or more objectives or represent the best avail-
able trade-off among considered objectives. There exist several algorithms for multi-
objective optimization that use different evaluation of individuals, but all of them ex-
ploit the non-dominated sorting. In this paper, we considertheNon-Dominated Sorting
Genetic Algorithm II(NSGA-II) [7] and two versions of theStrength Pareto Evolution-
ary Algorithm(SPEA and SPEA2) [31].

The Test and Noise Configuration Search Problem.The test and noise configuration
search problem(the TNCS problem) is formulated in [13] as the problem of selecting
test cases and their parameters together with types and parameters of noise placement
and noise seeding heuristics that are suitable for certain test objectives. Formally, let
TypeP be a set of available types of noise placement heuristics each of which we as-
sume to be parametrized by a vector of parameters. LetParamP be a set of all possi-
ble vectors of parameters. Further, letP ⊆ TypeP × ParamP be a set of all allowed
combinations of types of noise placement heuristics and their parameters. Analogically,



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 5

we can introduce setsTypeS, ParamS , andS for noise seeding heuristics. Next, let
C ⊆ 2P×S contain all the sets of noise placement and noise seeding heuristics that
have the property that they can be used together within a single test run. We denote
elements ofC asnoise configurations. Further, like for the noise placement and noise
seeding heuristics, letTypeT be a set of test cases,ParamT a set of vectors of their
parameters, andT ⊆ TypeT ×ParamT a set of all allowed combinations of test cases
and their parameters. We letTC = T × C be the set oftest configurations. The TNCS
problem can now be seen as searching for a test configuration from TC according to
given objectives.

Considered Noise Injection Heuristics.We consider 6 basic and 2 advanced noise
seeding techniques that are all commonly used in noise-based testing [20]. The basic
techniques cannot be combined, but any basic technique can be combined with one
or both advanced techniques. The basic heuristics are:yield, sleep, wait, busyWait,
synchYield, andmixed. The yield and sleeptechniques inject calls of theyield()
andsleep() functions. Thewait technique injects a call ofwait(). The concerned
threads must first obtain a special shared monitor, then callwait(), and finally release
the monitor. ThesynchYieldtechnique combines the yield technique with obtaining the
monitor as in thewait approach. ThebusyWaittechnique inserts code that just loops for
some time. Themixedtechnique randomly chooses one of the five other techniques at
each noise injection location. Next, the first of the considered advanced techniques, the
haltOneThreadtechnique, occasionally stops one thread until any other thread cannot
run. Finally, thetimeoutTamperheuristics randomly reduces the time-outs used in the
program under test in calls ofsleep() (to ensure that they are not used for synchroni-
sation). These heuristics can be used with differentstrengthin the range of 0–100. The
meaning of the strength differs for different heuristics—it means, e.g., how many times
the yield operation should be called when injected at a certain location, for how long
a thread should wait, etc.

Further, we consider 3 noise placement heuristics: therandomheuristics which
picks program locations randomly, thesharedVarheuristics which focuses on accesses
to shared variables, and thecoverage-basedheuristics [20] which focuses on accesses
near a previously detected context switch. ThesharedVarheuristics has two parameters
with 5 valid combinations of its values. Thecoverage-basedheuristics is controlled by
2 parameters with 3 valid combinations of values. All these noise placement heuristics
inject noise at selected places with a given probability. The probability is set globally for
all enabled noise placement heuristics by anoiseFreqsetting from the range 0 (never)
to 1000 (always).

The total number of noise configurations that one can obtain from the above can be
computed by multiplying the number of the basic heuristics,which is 6, by 2 reflecting
whetherhaltOneThreadis/is not used, 2 reflecting whethertimeoutTamperis used, 100
possible values of noise strength, 5 values of thesharedVarheuristics, 3 values of of the
coverage-based heuristics, and 1000 values ofnoiseFreq. This gives about 36 million
combinations of noise settings. Of course, the state space of the test and noise settings
then further grows with the possible values of parameters oftest cases and the testing
environment.



6 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

Test Cases and Test Environment. The experimental results presented in the rest of
the paper were obtained using the SearchBestie [19] platform based on the IBM Con-
currency Testing Tool (ConTest) [8] and its plug-ins [16, 18] to inject noise into execu-
tion of the considered programs and to collect the obtained coverage. The used meta-
heuristic algorithms were implemented within the ECJ library [29] which cooperates
with the SearchBestie platform as well.

Among our test cases, we include five multi-threaded Java programs used in the pre-
vious work on the subject [13]: in particular, the Airlines,Animator, Crawler, Elevator,
and Rover case studies (Airlines having 0.3 kLOC, Rover having 5.4 kLOC, and the
other programs having around 1.2–1.5 kLOC of code each). Each of these programs
contains a concurrency-related error. Moreover, three further multi-threaded bench-
mark programs, namely, Moldyn, MonteCarlo, and Raytracer,from the Java Grande
Benchmark Suite [25], which contain a large number of memoryaccesses, have been
used (their sizes range from 0.8 to 1.5 kLOC). All consideredprograms have one
parametrized test that is used to execute them. All our experiments were conducted
on machines with Intel i7 processors with Linux OS, using Oracle JDK 1.6.

4 Objectives and Fitness Function

One can collect various metrics characterizing the execution of concurrent programs.
Our testing infrastructure is, in particular, able to report test failures, measure duration
of test executions, and collect various code and concurrency coverage metrics [18] as
well as numbers of warnings produced by various dynamic analyzers searching for data
races [24, 9], atomicity violations [21], and deadlocks [3]. In total, we are able to collect
up to 30 different metrics describing concurrent program executions. Collecting all of
these data does, of course, introduce a considerable slowdown. Moreover, some of the
metrics are more suitable for use as an objective in our context than others.

In this section, we discuss our selection of objectives suitable for solving the TNCS
problem through a MOGA-based approach. In particular, we focus on the number of
distinctive values produced by the metrics, correlation among the objectives, and their
stability. By the stability, we mean an ability of the objective to provide similar values
for the same individual despite the scheduling non-determinism. Finally, we introduce
a technique that allows us to emphasize uncommon observations and optimize candidate
solutions towards testing of such behaviors.

Selection of suitable objectives.It has been discussed in the literature [7] that multi-
objective genetic algorithms usually provide the best performance when a relatively
low number of objectives is used. Therefore, we try to stay with a few objectives only.
Among them, we first include theexecution time of testssince one of our goals is to
optimize towards tests with small resource requirements.

As for the goal of covering as much as possible of (relevant) program behavior, we
reflect it in maximizing several chosen concurrency-related metrics. When choosing
them, we have first ruled out metrics which suffer from alack of distinct valuessince
meta-heuristics do no work well with such objectives (due tonot distinguishing different
solutions well enough).



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 7

Table 1. Correlation of objectives across all considered test cases.

Time Error WConcurPairsAvio∗ GoldiLockSC∗ GoodLock∗

Time 1 -0.083 0.625 -0.036 -0.038 -0.360
Error -0.083 1 -0.137 -0.213 -0.221 -0.216

WConcurPairs 0.625 -0.137 1 0.116 0.038 -0.263
Avio∗ -0.036-0.213 0.116 1 0.021 -0.274

GoldiLockSC∗ -0.038-0.221 0.038 0.021 1 0.77
GoodLock∗ -0.360-0.216 -0.263 -0.274 0.77 1

Subsequently, we have decided to include some metrics characterizing how well the
behavior of the tested programs has been covered from the point of view of finding three
most common concurrency-related errors, namely, data races, atomicity violations, and
deadlocks. For that, we have decided to use theGoldiLockSC∗, GoodLock∗, andAvio∗

metrics [18]. These metrics are based on measuring how many internal states of the
GoldiLock data race detector [9] or the GoodLock deadlock detector [3], respectively,
have been reached, and hence how well the behavior of the SUT was tested for the
presence of these errors. TheAvio∗ metric measures witnessed access interleaving in-
variants [21] which represent different combinations of read/write operations used when
two consecutive accesses to a shared variable are interleaved by an access to the same
variable from a different thread. A good point forGoldiLockSC∗ andAvio∗ is that they
usually produces a high number of distinct values [18]. WithGoodLock∗, the situation
is worse, but since it is the only metric specializing in deadlocks that we are aware of,
we have decided to retain it.

Next, in order to account for other errors than data races, atomicity violations or
deadlocks, we have decided to add one more metric, this time choosing a general pur-
pose metric capable of producing a high number of distinct tasks. Based on the results
presented in [18], we have chosen theConcurPairmetric [4] in which each coverage
task is composed of a pair of program locations that are assumed to be encountered con-
secutively in a run and a boolean value that istrue iff the two locations are visited by
different threads. More precisely, we have decided to use the weighted versionWCon-
curPairs of this metric [13] which values more coverage tasks comprising a context
switch.

Sincecorrelation among objectivescan decrease efficiency of a MOGA [7], we have
examined our selection of objectives from this point view. Table 1 shows the average
correlation of the selected metrics for 10,000 executions of our 8 test cases with a ran-
dom noise setting. One can see that the metrics do not correlate up to two exceptions.
WConcurPairsandTimeachieved on average the correlation coefficient of 0.625 and
theGoodLock∗ andGoldiLockcSC∗ metrics the correlation coefficient of 0.771. How-
ever, there were also cases where these metrics did not correlate (e.g., the correlation
coeffiecient ofGoldiLockSC∗ andAvio∗ was[TODO: 0.021]). We therefore decided to
reflect the fact that some of our objectives can sometimes correlate in our choice of
a concrete MOGA, i.e., we try to select a MOGA which works welleven under such
circumstances (cf. Section 5).

1 In this case, only three of the case studies containing nested locking and hence leading to
a non-zero coverage underGoodLock∗ were considered in the correlation computation.



8 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

Dealing with Scheduling Nondeterminism.Due to the scheduling nondeterminism,
values of the above chosen objectives collected from singletest runs are unstable.
A classic way to improve the stability is to execute the testsrepeatedly and use a repre-
sentative value [15]. However, there are multiple ways how to compute it, and we now
aim at selecting the most appropriate way for our setting.

Table 2. Stability of representatives.

Case med mod cum
Airlines 0.033 0.0540.051
Animator 0.012 0.0270.092
Crawler 0.211 0.2610.255
Elevator 0.1450.2270.107
Moldyn 0.020 0.0250.024
MonteCarlo 0.015 0.0190.022
Raytracer 0.0220.0200.016
Rover 0.059 0.1000.141

Average 0.065 0.0920.088

For each of our case studies, we randomly se-
lected 100 test configurations, executed each of
them in 10 batches of 10 runs, and computed the
representative values in several different ways for
each batch of 10 runs. In particular, we considered
median (med), mode (mod)2, and the cumulative
value (cum) computed as the sum in the case of time
and as the united coverage in case of the consid-
ered coverage metrics. We do not consider the often
used average value since we realized that the data
obtained from our tests were usually not normally
distributed, and hence the average would not repre-
sent them accurately. We did not consider other more complicated evaluations of rep-
resentative values due the high computational costs associated with using them. Subse-
quently, we compared stability of the representative values obtained across the batches.
Table 2 shows the average values of variation coefficients ofthe representatives com-
puted across all the considered configurations for each casestudy and each way of
computing a representative. Clearly, the best average stability was provided by median,
which we therefore choose as our means of computing representative values across
multiple test runs for all the following experiments.

Emphasizing rare observations.When testing concurrent programs, it is usually the
case that some behavior is seen very frequently while some behavior is rare. Since
it is likely that bugs not discovered by programmers hide in the rare behavior, we
have decided to direct the tests more towards such behavior by penalizingcoverage
of frequently seen behaviors. Technically, we implement the penalization as follows.
We count how many times each coverage task of the considered metrics got covered
in the test runs used to evaluate the first generation of randomly chosen candidate so-
lutions. Each coverage task is then assigned a weight obtained as one minus the ratio
of runs in which the task got covered (i.e., a task that was notcovered at all is given
weight 1, while a task that got covered in 30 % of the test runs is given weight 0.7).
These weights are then used when evaluating the coverage obtained by subsequent gen-
erations of candidate solutions.

Selected fitness function.To sum up, based on the above described findings, we pro-
pose a use of the following fitness functions, which we use in all our subsequent ex-
periments: Each candidate solution is evaluated 10 times, the achieved coverage is pe-
nalized, and the median values for the 4 selected metrics (GoldiLockSC∗, GoodLock∗,
WConcurPairs, andTime) are computed.

2 Taking the biggest modus if there are several modus values.



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 9

5 Selection of a Multi-objective Optimization Algorithm

Another step needed to apply multi-objective optimizationfor solving the TNCS prob-
lem is to choose a suitable multi-objective optimization algorithm and its parameters.
Hence, in this section, we first select one algorithm out of three well-known multi-
objective optimization algorithms, namely,SPEA, SPEA2, andNSGA-II[7, 31]. Subse-
quently, we discuss a suitable setting of parameters of the selected algorithm.

The main role of the multi-objective algorithms is to classify candidate solutions
into those worth and not worth further consideration. We aimat selecting one of the
algorithms that is most likely to provide a satisfactory classification despite the obsta-
cles that can be faced when solving the TNCS problem. As we have already discussed,
these obstacles include the following: (a) Some objectivescan sometimes be able to
achieve only asmall number of distinct valuesbecause the kind of concurrency-related
behavior that they concentrate on does not show up in the given test case. (b) Some of
the objectives can sometimescorrelateas discussed in Section 4. (c) We are working
with a nondeterministic environmentwhere the evaluation of objectives is not stable.
We have proposed ways of reducing the impact of these issues already in Section 4, but
we now aim at a further improvement by a selection of a suitable MOGA.

In addition, we also consider the opposite of Issue (a), namely, the fact that some
objectives can sometimes achieve ratherhigh numbers of values. Dealing with high
numbers of values is less problematic than the opposite (since a high number of objec-
tive values can be divided into a smaller number of fitness values but not vice versa),
yet we would like to assure that the selected MOGA does indeedhandle well the high
numbers of values and classifies them into a reasonable number of fitness values.

We studied the ability of the considered algorithms to deal with correlation and
low or high numbers of distinct objective values using four pairs of objectives. In these
pairs, we used theAvio∗ metric (based on the Avio atomicity violation detector [21])
and theGoldiLockSC∗ metric, which we found to highly correlate with the correlation
coefficient of 0.966 in the same kind of correlation experiments as those presented in
Section 4 (i.e., they correlate much more than the objectives we have chosen into our
fitness functions). As a representative of objectives that often achieve a small number of
values, we included the number of detected errors (Error) into the experiments, and as
a representative of those that can often achieve high values, we take the execution time
(Time). We performed experiments with 40 different individuals (i.e., test and noise
configurations) and evaluated each of them 11 times on the Crawler test case.

Table 3. Pairs of objectives and their evaluation by multi-
objective optimization algorithms.

Pair of objectives SPEA SPEA2 NSGA-II
(Avio∗, GoldiLockSC∗) 4 366 106

(Time, Error) 7 437 386
(Error, GoldiLockSC∗) 8 240 199
(Time, GoldiLockSC∗) 30 410 38

Table 3 shows into how
many classes the obtained 440
results of the above experiments
were classified by the consid-
ered algorithms when using four
different pairs of objectives. We
can see that theSPEAalgorithm
often classifies the results into
a very low number of classes whileSPEA2into a large number of classes, which is
close to the number of evaluations.NSGA-II stays in all cases in between of the ex-
tremes, and we therefore consider it to provide the best results for our needs.



10 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

Next, we discuss our choice of suitable values of parametersof the selected MOGA,
such as the size of population, number of generations, as well as the selection, crossover,
and mutation operators to be used. Our choice is based on the experience with a SOGA-
based approach presented in [13] as well as on a set of experiments withNSGA-IIin our
environment. In particular, we experimented with population sizes and the number of
generations such that the number of individual evaluationsin one experiment remained
constant (in particular, 2000 evaluations of individuals per experiment3). Therefore, for
populations of size 20, 40, and 100, we used sizes of 100, 50, and 20 generations,
respectively. Next, we studied the influence of three different crossover operators avail-
able in the ECJ toolkit [29] (calledone, two andany) and three different probabilities
of mutation (0.01, 0.1 and 0.5). As the selection operator, we used the mating scheme
selection algorithm instead of the fitness-based tournament or proportional selection
which are commonly used in single-objective optimization but provide worse results or
are not applicable in multi-objective optimization [14]. We fixed the size of the archive
to the size of the population.

In total, we experimented with 27 different settings of the chosen MOGA (3 sizes
of population, 3 crossover operators, and 3 mutation probabilities). For each setting, we
performed 10 executions of the MOGA process which differ only in the initial random
seed values (i.e., only in the individuals generated in the first generation) on the Air-
lines, Animator, and Crawler test cases. In general, we did not see big differences in
the results obtained with different sizes of populations. On the other hand, low prob-
abilities of mutation (0.01 and 0.1) often led to degeneration of the population within
a few generations and to low achieved fitness in the last generation. A high mutation
set to 0.5 did not suffer from this problem. Further, theanycrossover operator provided
considerably lower values of fitness values in the last generation, while there were no
significant differences among theoneandtwo crossover operators.

Based on these experiments, we decided to work with 50 generations and 20 in-
dividuals in a population (i.e., compared with the above experiments, we decrease the
number of generations for the given number of individuals since at the beginning the
number of coverage tasks grew up, but after the 50th generation there was not much
change). In the breeding process, we use the mating scheme algorithm as the selection
operator with the recommended parametersα = 5, β = 3; and we use the crossover
operator denoted astwo in ECJ, which takes two selected individuals (integer vectors),
divides them into 3 parts at random places, and generates a new candidate solution as the
composition of randomly chosen 1st, 2nd, and 3rd part of parents. Finally, to implement
mutation, we use an operator that randomly selects an element in the vector of a can-
didate solution and sets it to a random value within its allowed range with probability
0.5. The resulting agile exploration is compensated by theNSGA-IIarchive, and so the
search does not loose promising candidate solutions despite the high mutation rate.

6 Experimental Evaluation

In this section, four experimental comparisons of the proposed MOGA-based approach
with the random approach and a SOGA-based approach are presented. First, we show

3 We used 2000 evaluations because after the 2000 evaluations, saturation used to happen.



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 11

that our MOGA-based approach does not suffer from degeneration of the search pro-
cess identified in the SOGA-based approach in [13]. Then, we show that the proposed
penalization does indeed lead to a higher coverage of uncommon behavior. Finally, we
focus on a comparison of the MOGA, SOGA, and random approaches with respect to
their efficiency and stability. All results presented here were gathered from testing of
the 8 test cases introduced in Section 3.

In the experiments, we use the following parameters of the SOGA-based approach
taken from [13]: size of population 20, number of generations 50, two different selection
operators (tournament among 4 individuals and fitness proportional4), the any-point
crossover with probability 0.25, a low mutation probability (0.01), and two elites (that
is 10 % of the population). However, to make the comparison more fair, we build the
fitness function of the SOGA-based approach from the objectives selected above5:

WConcurPairs

WConcurPairsmax

+
GoodLock∗

GoodLock∗max

+
GoldiLockSC∗

GoldiLockSC∗

max

+
timemax − time

timemax

Here, the maximal values of objectives were estimated as 1.5times the maximal ac-
cumulated numbers we got in 10 executions of the particular test cases. As proposed
in [13], the the SOGA-based approach uses cumulation of results obtained from multi-
ple test runs without any penalization of frequent behaviors.

All results presented in this section were tested by the statistical t-test with the
significance levelα = 0.05, which tells one whether the achieved results for Random,
MOGA, and SOGA are significantly different. In a vast majority of the cases, the test
confirmed a statistically significant difference among the approaches.

0 10 20 30 40 50

0
5

10
15

20

generation

in
di

vi
du

al
s

MOGA
SOGA

Fig. 1. Degeneration of the MOGA-based and
SOGA-based search processes.

Degeneration of the Search Process.
Degeneration, i.e., lack of variability
in population, is a common problem
of population-based search algorithms.
Figure 1 shows average variability of
the MOGA-based and SOGA-based ap-
proaches computed from the search pro-
cesses on the 8 considered test cases. The
x-axis represents generations, and the y-
axis shows numbers of distinct individ-
uals in the generations (max. 20). The
higher value the search process achieves
the higher variability and therefore low
degeneration was achieved. The graph
clearly shows that our MOGA-based approach does not suffer from the degeneration
problem unlike the SOGA-based approach.

4 Experiments presented in [13] showed that using these two selection operators is beneficial.
Therefore, we used them again. On the other hand, for MOGA, the mating schema provides
better results.

5 In the experiments performed in [13], the fitness function was sensitive on weight. Therefore,
we remove the weight from our new fitness function for SOGA.



12 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

Degeneration of the SOGA-based approach, and subsequently, its tendency to get
caught in a local maximum (often optimizing strongly towards a highly positive value
of a single objective, e.g., minimum test time but almost no coverage) can in theory be
resolved by increasing the amount of randomness in the approach, but then it basically
shifts towards random testing. An interesting observation(probably leading to the good
results presented in [13]) is that even a degenerated population can provide a high cov-
erage if the repeatedly generated candidate solutions suffer from low stability, which
allows them to test different behaviors in different executions.

Table 4. Impact of the penalization built into the
MOGA approach.

Test MOGA SOGA Random
Airlines 59.66 60.61 19.14
Animator 70.1 74.31 44.73
Crawler 70.73 66.32 61.19
Elevator 89.26 83.96 65.69
Moldy 68.32 44.25 39.73
Montecarlo 40.13 54.52 28.25
Raytracer 73.08 60.49 54.68
Rover 53.87 41.45 30.62

Average 65.52 60.73 43.00

Effect of Penalization. The goal of the
above proposed penalization scheme is to
increase the number of tested uncommon
behaviors. An illustration of the fact that
this goal has indeed been achieved is pro-
vided in Table 4. The table in particular
compares results collected from 10 runs
of the final generations of 20 individuals
obtained through the MOGA-based and
SOGA-based approaches with results ob-
tained from 200 randomly generated in-
dividuals. Each value in the table gives
the average percentage of uncommon be-
haviors spot by less than 50 % of candidate solutions, i.e., by less than 10 individuals.
Number 60 therefore means that, on average, the collected coverage consists of 40 %
of behaviors that occur often (i.e., in more than 50 % of the runs) while 60 % are rare.

Table 5. Efficiency of the considered approaches.

Case Metrics MOGA SOGA Random
Airlines C/Time 0.06 0.06 0.04

S/Time 3.73 3.29 2.98
Animator C/Time 0.07 0.29 0.19

S/Time 0.33 1.01 0.65
Crawler C/Time 0.21 0.22 0.12

S/Time 4.15 3.84 2.05
Elevator C/Time 0.03 0.04 0.02

S/Time 2.69 3.64 1.28
Moldy C/Time 0.01 0.01 0.01

S/Time 11.73 16.83 2.56
MontecarloC/Time 0.01 0.01 0.01

S/Time 9.52 9.66 0.01
Raytracer C/Time 0.01 0.01 0.01

S/Time 7.16 5.13 0.69
Rover C/Time 0.11 0.10 0.08

S/Time 5.17 2.49 2.18

Avg. impr. 2.01 2.11

In most of the cases, if some
approach achieved the highest per-
centage of uncommon behaviors un-
der one of the coverage metrics, it
achieved the highest numbers un-
der the other metrics as well. Ta-
ble 4 clearly shows that our MOGA-
based approach is able to provide
a higher coverage of uncommon be-
haviors (where errors are more likely
to be hidden) than the other consid-
ered approaches.

Efficiency of the Testing.Next, we
focus on the efficiency of the gener-
ated test settings, i.e., on their ability
to provide a high coverage in a short
time. We again consider 10 test-
ing runs of the 20 individuals from
the last generations of the MOGA-
based and SOGA-based approaches
and 200 test runs under random generated test and noise settings. Table 5 compares the



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 13

efficiency of these tests. In order to express the efficiency,we use two metrics. Namely,
C/Timeshows how many coverage tasks of theGoldiLockcSC∗ andGoodLock∗ metrics
got covered on average per time unit (milisecond). Next,S/Timeindicates how many
coverage tasks of the general purposeWConcurPairscoverage metric got covered on
average per a time unit. Higher values in the table thereforerepresent higher average ef-
ficiency of the testing runs under the test settings obtainedin one the considered ways.
The last row gives the average improvement (Avg. impr.) of the genetic approaches
against random testing. We can see that both genetic approaches are significantly bet-
ter than the random approach. In some cases, the MOGA-based approach got better
evaluated while SOGA won in some other cases. Note, however,that as shown in the
previous paragraph, the MOGA-based approach is more likelyto cover rare tasks, and
so even if it covers a comparable number of tasks with the SOGA-based approach, it is
still likely to be more advantageous from the practical point of view.

Table 6. Stability of testing.

Case MOGA SOGA Random
Airlines 0.06 0.17 0.29
Animator 0.02 0.11 0.12
Crawler 0.38 0.38 0.26
Elevator 0.50 0.48 0.58
Moldyn 0.11 0.20 0.70
Montecarlo 0.13 0.11 0.89
Raytracer 0.16 0.46 0.76
Rover 0.08 0.10 0.32

Average 0.18 0.25 0.49

Stability of Testing. Finally, we show that
candidate solutions found by our MOGA-
based approach provide more stable re-
sults than the SOGA-based and random ap-
proaches. In particular, for the MOGA-based
and SOGA-based approaches, Table 6 gives
the average values of variation coefficients of
the coverage under each of the three consid-
ered coverage criteria for each of the 20 can-
didate solutions from the last obtained gener-
ations across 10 test runs. For the case of ran-
dom testing, the variation coefficients were
calculated from 200 runs generated randomly. The last row ofthe table shows the av-
erage variation coefficient across all the case studies. Thetable clearly shows that our
MOGA-based approach provides more stable results when compared to the other ap-
proaches.

7 Threats to Validity

Any attempt to compare different approaches faces a number of challenges because
it is important to ensure that the comparison is as fair as possible. The first issue to
address is that of theinternal validity, i.e., whether there has been a bias in the experi-
mental design or stochastic behavior of the meta-heuristicsearch algorithms that could
affect the obtained results. In order to deal with this issue, Section 5 provides a brief
discussion and experimental evidence that supports the choice of the NSGA-II MOGA
algorithm out of the three considered algorithms. In order to address the problem of
setting the various parameters of meta-heuristic algorithms, a number of experiments
was conducted to choose configurations that provide good results in the given context.
Similarly, our choice of suitable objectives was done basedon observations from previ-
ous experimentation [18]. Care was taken to ensure that all approaches are evaluated in
the same environment.

Another issue to address is that of theexternal validity, i.e., whether there has been
a bias caused by external entities such as the selected case studies (i.e., programs to be



14 Vendula Hrubá, Bohuslav Křena, Zdeněk Letko, Hana Pluháčková, and Tomáš Vojnar

tested in our case) used in the empirical study. The diverse nature of programs makes it
impossible to sample a sufficiently large set of programs. The chosen programs contain
a variety of synchronization constructs and concurrency-related errors that are common
in practice, but they represent a small set of real-life programs only. The studied execu-
tion traces conform to real unit and/or integration tests. As with many other empirical
experiments in software engineering, further experimentsare needed in order to confirm
the results presented here.

8 Conclusions and Future Work

In this paper, we proposed an application of multi-objective genetic optimization for
finding good settings of tests and noise. We discussed a selection of suitable objectives
taking into account their usefulness for efficiently findingconcurrency-related errors
as well as their properties important for the process of genetic optimization (numbers
of distinct values, correlation) as well as for stability. We also proposed a way how
to emphasize uncommon behaviors in which so-far undiscovered bugs are more likely
to be hidden. Further, we compared suitability of three popular multi-objective genetic
algorithms for our purposes, which showed that the NSGA-II algorithm provides the
best ability to classify candidate solutions in our setting. Finally, we demonstrated on
a set of experiments with 8 case studies that our approach does not suffer from the
degeneration problem, it emphasizes uncommon behaviors, and generates settings of
tests and noise that improve the efficiency and stability of the testing process.

As a part of our future work, we plan to further improve the efficiency and stability
of the generated test and noise settings. For this purpose, we would like to exploit the
recently published results [10] indicating that searchingfor a test suite provides better
results than searching for a set of the best individuals.

Acknowledgement.We thank Shmuel Ur and Zeev Volkovich for many valuable com-
ments on the work presented in this paper. The work was supported by the Czech Min-
istry of Education under the Kontakt II project LH13265, theEU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070, andthe internal BUT projects
FIT-S-12-1 and FIT-S-14-2486. Z. Letko was funded through the EU/Czech Interdisci-
plinary Excellence Research Teams Establishment project (CZ.1.07/2.3.00/30.0005).

References

1. E. Alba and F. Chicano. Finding Safety Errors with ACO. InProc. of GECCO’07, ACM,
2007.

2. N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou. Using FindBugs on Pro-
duction Software. InProc. of OOPSLA’07, ACM, 2007.

3. S. Bensalem and K. Havelund. Dynamic Deadlock Analysis ofMulti-threaded Programs. In
Proc. of PADTAD’05, LNCS 3875, Springer-Verlag, 2005.

4. A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of Synchronization Coverage.
In Proc. of PPoPP’05, ACM, 2005.

5. H. Chockler, E. Farchi, B. Godlin, and S. Novikov. Cross-entropy Based Testing. InProc.
of FMCAD ’07, IEEE, 2007.

6. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
7. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley paperback

series. Wiley, 2009.



Multi-objective Genetic Optimization for Noise-based Testing of Concurrent Software 15

8. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, andS. Ur. Framework for Testing
Multi-threaded Java Programs.Concurrency and Computation: Practice and Experience,
15(3-5), John Wiley & Sons, Ltd., 2003.

9. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race andTransaction-aware Java Run-
time. InProc. of PLDI’07, ACM, 2007. ACM.

10. G. Fraser and A. Arcuri. Whole Test Suite Generation.IEEE Transactions on Software
Engineering, 39(2), 2013.

11. P. Godefroid and S. Khurshid. Exploring Very Large StateSpaces Using Genetic Algorithms.
International Journal on Software Tools for Technology Transfer, 6(2), 2004.

12. S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. TestingConcurrent Programs to
Achieve High Synchronization Coverage. InProc. of ISSTA’12, ACM, 2012.

13. V. Hrubá, B. Křena, Z. Letko, S. Ur, and T. Vojnar. Testing of Concurrent Programs Using
Genetic Algorithms. InProc. of SSBSE’12, LNCS 7515, Springer-Verlag, 2012.

14. H. Ishibuchi and Y. Shibata. A Similarity-based Mating Scheme for Evolutionary Multiob-
jective Optimization. InProc. of GECCO’03, LNCS 2723, Springer, 2003.

15. Y. Jin and J. Branke. Evolutionary Optimization in Uncertain Environments – A Survey.
IEEE Transactions on Evolutionary Computation, 9(3), 2005.

16. B. Křena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref-Brill, S. Ur, and T. Vojnar. A Concurrency
Testing Tool and Its Plug-ins for Dynamic Analysis and Runtime Healing. InProc. of RV’09,
LNCS 5779, Springer-Verlag, 2009.

17. B. Křena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing Data Races On-the-fly. InProc.
of PADTAD’07, ACM, 2007.

18. B. Křena, Z. Letko, and T. Vojnar. Coverage Metrics for Saturation-based and Search-based
Testing of Concurrent Software. InProc. of RV’11, LNCS 7186, Springer-Verlag, 2012.

19. B. Křena, Z. Letko, T. Vojnar, and S. Ur. A Platform for Search-based Testing of Concurrent
Software. InProc. of PADTAD’10, ACM, 2010.

20. B. Křena, Z. Letko, and T. Vojnar. Influence of Noise Injection Heuristics on Concurrency
Coverage. InProc. of MEMICS’11, LNCS 7119, Springer-Verlag, 2012.

21. S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via Access
Interleaving Invariants. InProc. of ASPLOS’06, ACM, 2006.

22. M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,and I. Neamtiu. Finding and
Reproducing Heisenbugs in Concurrent Programs. InOSDI, USENIX Association, 2008.

23. T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java Concurrency in
Practice. Addison-Wesley Professional, 2005.

24. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic Data
Race Detector for Multi-threaded Programs. InProc. of SOSP’97, ACM, 1997.

25. L.A. Smith, J.M. Bull, J. Obdržálek. A Parallel Java Grande Benchmark Suite. InProc. of
Supercomputing’01, ACM, 2001.

26. A. Spillner, T. Linz, and H. Schaefer.Software Testing Foundations: A Study Guide for the
Certified Tester Exam. Rocky Nook, 3rd edition, 2011.

27. J. Staunton and J. A. Clark. Searching for Safety Violations Using Estimation of Distribution
Algorithms. InProc. of ICSTW’10, IEEE, 2010.

28. S. Steenbuck and G. Fraser. Generating Unit Tests for Concurrent Classes. InICST’13,
IEEE, 2013.

29. D. White. Software Review: The ECJ Toolkit.Genetic Programming and Evolvable Ma-
chines, 13, 2012.

30. J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: ACoverage-driven Testing Tool
for Multithreaded Programs. InProc. of OOPSLA’12, ACM, 2012.

31. E. Zitzler.Evolutionary Algorithms for Multiobjective Optimization: Methods and Applica-
tions. PhD thesis, ETH Zurich, 1999.


