Multi-objective Genetic Optimization for Noise-based
Testing of Concurrent Software

Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Hana &blkovva, and Tomas Vojnar

IT4lnnovations Centre of Excellence, Brno University othiaology, Czech Republic
{i hruba, krena, iletko, ipluhackova, vojnar}@it.vutbhr.cz

Abstract. Testing of multi-threaded programs is a demanding work duthé
many possible thread interleavings one should examinendise injection tech-
nigue helps to increase the number of thread interleavirgmmed during re-
peated test executions provided that a suitable settingisérinjection heuristics
is used. The problem of finding such a setting, i.e., the seaatst and noise
configuration search problem (TNCS problem), is not easylees In this pa-
per, we show how to apply a multi-objective genetic algonittMOGA) to the
TNCS problem. In particular, we focus on generation of TN@&itions that
cover a high number of distinct interleavings (especidiigse which are rare)
and provide stable results at the same time. To achievedhiswe study suitable
metrics and ways how to suppress effects of non-deterranisead scheduling
on the proposed MOGA-based approach. We also discuss aeabicécconcrete
MOGA and its parameters suitable for our setting. Finallg, skhow on a set of
benchmark programs that our approach provides betteitseghén compared to
the commonly used random approach as well as to the soongog@® use of
a single-objective genetic approach.

1 Introduction

Multi-threaded software design has become widespreadtitarrival of multi-core
processors into common computers. Multi-threaded progriaig is, however, signif-
icantly more demanding. Concurrency-related errors sgatiasa races [9], atomicity
violations [21], and deadlocks [3], are easy to cause buytdificult to discover due to
the many possible thread interleavings to be considere@]22his situation stimulates
research efforts towards advanced methods of testingysisaand formal verification
of concurrent software.

Precise static methods of verification, such as model chgdki, do not scale well
and their use is rather expensive for complex software. &fbeg, lightweight static
analyses [2], dynamic analyses [9], and especially tegfiihare still very popular in
the field. A major problem for testing of concurrent programthe non-deterministic
nature of multi-threaded computation. It has been showngPthat even repeated exe-
cution of multi-threaded tests, when done naively, doesahiss many possible behav-
iors of the program induced by different thread interlegginThis problem is targeted
by thenoise injectiortechnique [8] which disturbs thread scheduling and thuesmes
chances to examine more possible thread interleavings apiproach does significantly
improve the testing process provided that a suitable ggettimoise injection heuristics

2 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Hana &tbva, and Tomas Vojnar

is used. The problem of finding such a setting (together withosing the right tests and
their parameters), i.e., the so-caltedt and noise configuration search problEFNCS
problem), is, however, not easy to solve [13].

In this paper, we propose an application ofrailti-objective genetic algorithm
(MOGA) to solve the TNCS problem such that the solutions lewhigh efficiency
and stability during repeated executions. Bfficiency we mean an ability to exam-
ine as much existing and important program behavior withomstime and resource
requirements as possible. On the other hastability stands for an ability of a test
setting to provide such efficient results in as many repetastdexecutions as possi-
ble despite the scheduling non-determinism. Such reqanésron the tests and testing
environment (and hence noise generation) can be usefuhdtance, in the context of
regression testinf26], which checks whether a previously working functiatyalvorks
in a new version of the system under test too and which is éedcagularly, e.g., every
night.

Our proposal of a MOGA-based approach for testing of comeuprograms aims
both at high efficiency as well as stability, i.e., we seamhduch tests, test param-
eters, noise heuristics, and their parameters that examloieof concurrency behav-
ior in minimal time and that provide such good results cambfavhen re-executed.
With that aim, we propose a multi-objective fitness functioat embeds objectives of
different kinds (testing time, coverage related to findimgnenon concurrency errors
like data races and deadlocks, as well as coverage of gatmralirrency behavior).
Moreover, the objectives also embed means for minimiziegrifluence of scheduling
non-determinism and means emphasizing a desire to seartésfocommon behav-
iors (which are more likely to contain not yet discoveredes). Further, we discuss
a choice of one particular MOGA from among of several knowass#rin particular,
the Non-Dominated Sorting Genetic Algorithm(INSGA-I1) and two versions of the
Strength Pareto Evolutionary AlgorithSPEA and SPEA2)—as well as a choice of
a configuration of its parameters suitable for our settingally, we show on a number
of experiments that our solution provides better resulés tthe commonly used ran-
dom setting of noise injection as well as the approach ofisglthe TNCS problem via
a single-objective genetic algorithm (SOGA) presented B[

2 Reated Work

This section provides a brief overview of existing appracfor testing and dynamic
analysis of multi-threaded programs as well as of appbicatof meta-heuristics to the
problems of testing and analysis of multi-threaded progtam

Testing Multi-Threaded Programs.Simple stress testindpased on executing a large
number of threads and/or executing the same test in the ssstiregt environment many
times has been shown ineffective [23, 22, 8]. To effectivelst concurrent programs,
some way of influencing the scheduling is needed. fibise injectiontechnique [8]
influences thread interleavings by inserting delays, dailgise into the execution of
selected threads. Many different noise heuristics can beé fos this purpose [20]. The
efficiency of the approach depends on the nature of the systeler test (SUT) and the
testing environment, which includes the way noise is gardrf20]. A proper choice

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 3

of noise seeding heuristi¢e.g., callings| eep oryi el d statements, halting selected
threads, etc.)poise placement heuristi¢purely random, at selected statements, etc.),
as well as of the values of the many parameters of these liesiffsuch as strength,
frequency, etc.) can rapidly increase the probability aedeéng an error, but on the
other hand, improper noise injection can hide it [17]. A mopelection of the noise
heuristics and their parameters is not easy, and it is oftee 8y random. In this paper,
we strive to improve this practice by applying multi-objeetgenetic optimization.

An alternative to noise-based testinglsterministic testing12, 22, 30] which can
be seen as execution-based model checking. This approdeisésl on deterministic
control over the scheduling of threads, and it can guaraateigher coverage of dif-
ferent interleavings than noise-based testing. On ther ¢thied, its overhead may be
significantly higher due to a need of computing, storing, enfibrcing the considered
thread interleavings. Since the number of possible irdgntgs is usually huge, the ap-
proach is often applied on abstract and/or considerablyntbed models of the SUT. It
is therefore suitable mainly for unit testing.

Both of the above mentioned approaches can be improved biginorg them with
dynamic analysi§9, 21, 3] which collects various pieces of information ajdhe exe-
cuted path and tries to detect errors based on their chasdictsymptoms even if the
errors do themselves not occur in the execution. Many profsipecific dynamic anal-
yses have been proposed for detecting special classesod,esuch as data races [9],
atomicity violations [21], or deadlocks [3].

Meta-heuristics in Testing of Concurrent ProgramsA majority of existing works in
the area of search-based testing of concurrent progranasdéemn applying various
meta-heuristic techniques to control state space exjmoratithin theguided (static)
model checkingpproach [11, 27, 1]. The basic idea of this approach is ttoexpreas
of the state space that are more likely to contain concuyrenors first. The fithess
functions used in these approaches are based on detectoroogtates [27], distance
to error manifestation [11], or formula-based heuristits\Which estimate the num-
ber of transitions required to get an objective node fromdingent one. Most of the
approaches also search for a minimal counterexample path.

Applications of meta-heuristics in deterministic testofgnulti-threaded programs
are studied in [5, 28]. In [5], a cross entropy heuristic isdit navigate deterministic
testing. In [28], an application of a genetic algorithm te ghroblem of unit test gen-
eration is presented. The technique produces a set of gtstftar a chosen Java class.
Each unit test consists of a prefix initialising the classiélly, a constructor call), a set
of method sequences (one sequence per thread), and a sclieatuis enforced by
a deterministic scheduler.

In [13], which is the closest to our work, a SOGA-based apginda the TNCS
problem is proposed and experimentally shown to provideifstgntly better results
than random noise injection. On the other hand, the work sti@ovs that combining
the different relevant objectives into a scalar fitness fioncby assigning them some
fixed weights is problematic. For instance, some tests waresmes highly rated due
to their very quick execution despite they provided a vergrpmverage of the SUT
behavior. Further, it was discovered that in some casegehetic approach suffered
from degradation, i.e., a quick loss of diversity in popigiat Such a loss of diversity

4 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Hana &tbva, and Tomas Vojnar

can unfortunately have a negative impact on the ability efapproach to test different
program behaviors. Finally, it turned out that candidatetgms which were highly
rated during one evaluation did not provide such good resilien reevaluated again. In
this paper, we try to solve all of the above problems by usiM2EGA-based approach
enhanced by techniques intended to increase the stalfiiye@pproach as well as to
stress rare behaviors.

3 Background

In this section, we briefly introduce multi-objective ganeigorithms, the TNCS prob-
lem, and the considered noise injection heuristics. Moggove provide an overview
of our infrastructure and test cases used for an evaluationrapproach.

Multi-objective Genetic Algorithms (MOGA).The genetic algorithm is a biology-
inspired population-based optimization algorithm [31,The algorithm works in it-
erations. In each iteration, a set of candidate solutiaes {ndividuals forming a pop-
ulation) is evaluated through a fitness function based oresdmsen objective(s). The
obtained fitness is then used by a selection operator to elrosising candidates for
further breeding. The breeding process employs crossawknatation operators to
modify the selected individuals to meet the exploratiorvanexploitation goals of the
search process.

In single-objective optimization, the set of candidateusohs needs to be totally
ordered according to the values of the fitness function. fdditional approach to solve
a multi-objective problem by single-objective optimizatiis to bundle all objectives
into a single scalar fitness function usingvaighted sum of objectiveEhe efficiency
of this approach heavily depends on the selected weightshvelie sometimes not easy
to determine.

On the other hand, multi-objective optimization treatseshiyes separately and
compares candidate solutions using Hageto dominanceelation. A MOGA searches
for non-dominated individuals calleBareto-optimalsolutions. There usually exists
a set of such individuals which form thrRareto-optimal front Solutions on the Pareto-
optimal front are either best in one or more objectives oresgnt the best avail-
able trade-off among considered objectives. There exigrakalgorithms for multi-
objective optimization that use different evaluation adiinduals, but all of them ex-
ploit the non-dominated sorting. In this paper, we consideNon-Dominated Sorting
Genetic Algorithm lIINSGA-II) [7] and two versions of th&trength Pareto Evolution-
ary Algorithm(SPEA and SPEA?2) [31].

The Test and Noise Configuration Search Problerthetest and noise configuration
search problenfthe TNCS problem) is formulated in [13] as the problem oésthg
test cases and their parameters together with types anthetEas of noise placement
and noise seeding heuristics that are suitable for cergainabjectives. Formally, let
Typep be a set of available types of noise placement heuristids ebehich we as-
sume to be parametrized by a vector of parametersPuetim p be a set of all possi-
ble vectors of parameters. Further, ItC Typep x Paramp be a set of all allowed
combinations of types of noise placement heuristics arid paeameters. Analogically,

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 5

we can introduce setBypeg, Paramg, andS for noise seeding heuristics. Next, let
C C 2P*5 contain all the sets of noise placement and noise seedingstiesi that
have the property that they can be used together within destegt run. We denote
elements ofC asnoise configurationg~urther, like for the noise placement and noise
seeding heuristics, l&fyper be a set of test caseBaramr a set of vectors of their
parameters, andl C T'yper x Paramy a set of all allowed combinations of test cases
and their parameters. We [€C' = T x C be the set ofest configurationsThe TNCS
problem can now be seen as searching for a test configuratonfC' according to
given objectives.

Considered Noise Injection HeuristicsWe consider 6 basic and 2 advanced noise
seeding techniques that are all commonly used in noiseditaséng [20]. The basic
techniques cannot be combined, but any basic technique e@mormbined with one

or both advanced techniques. The basic heuristicsyaedd, sleep wait, busyWait
synchYield and mixed The yield and sleeptechniques inject calls of thgi el d()
andsl eep() functions. Thewait technique injects a call ofai t () . The concerned
threads must first obtain a special shared monitor, themaalt () , and finally release
the monitor. ThesynchYieldechnique combines the yield technique with obtaining the
monitor as in thevait approach. TheéusyWaitechnique inserts code that just loops for
some time. Thenixedtechnique randomly chooses one of the five other technidues a
each noise injection location. Next, the first of the con®deadvanced techniques, the
haltOneThreadechnique, occasionally stops one thread until any othreathcannot
run. Finally, thetimeoutTampeheuristics randomly reduces the time-outs used in the
program under test in calls ef eep() (to ensure that they are not used for synchroni-
sation). These heuristics can be used with diffestreingthin the range of 0—100. The
meaning of the strength differs for different heuristics+eans, e.g., how many times
the yield operation should be called when injected at a iceldaation, for how long

a thread should wait, etc.

Further, we consider 3 noise placement heuristics:rémelom heuristics which
picks program locations randomly, tekaredVarmeuristics which focuses on accesses
to shared variables, and tkeverage-baseteuristics [20] which focuses on accesses
near a previously detected context switch. SharedVatheuristics has two parameters
with 5 valid combinations of its values. Tlteverage-basebeuristics is controlled by
2 parameters with 3 valid combinations of values. All thesis@ placement heuristics
inject noise at selected places with a given probabilitg probability is set globally for
all enabled noise placement heuristics byagseFregsetting from the range 0 (never)
to 1000 (always).

The total number of noise configurations that one can obtain the above can be
computed by multiplying the number of the basic heuristidsich is 6, by 2 reflecting
whethermaltOneThreads/is not used, 2 reflecting whethameoutTampeis used, 100
possible values of noise strength, 5 values ofst@redVameuristics, 3 values of of the
coverage-based heuristics, and 1000 valuasoigeFreq This gives about 36 million
combinations of noise settings. Of course, the state spfabe ¢test and noise settings
then further grows with the possible values of parametetssgifcases and the testing
environment.

6 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Hana &tbva, and Tomas Vojnar

Test Cases and Test Environmen®The experimental results presented in the rest of
the paper were obtained using the SearchBestie [19] ptatharsed on the IBM Con-
currency Testing Tool (ConTest) [8] and its plug-ins [16], ttBinject noise into execu-
tion of the considered programs and to collect the obtaimegrage. The used meta-
heuristic algorithms were implemented within the ECJ lilbri29] which cooperates
with the SearchBestie platform as well.

Among our test cases, we include five multi-threaded Javgranos used in the pre-
vious work on the subject [13]: in particular, the Airlindsiimator, Crawler, Elevator,
and Rover case studies (Airlines having 0.3 KLOC, Roverrw®.4 KLOC, and the
other programs having around 1.2-1.5 kLOC of code eachh Bathese programs
contains a concurrency-related error. Moreover, threthéurmulti-threaded bench-
mark programs, namely, Moldyn, MonteCarlo, and Raytratem the Java Grande
Benchmark Suite [25], which contain a large number of menamgesses, have been
used (their sizes range from 0.8 to 1.5 kLOC). All considepedgrams have one
parametrized test that is used to execute them. All our é@xeets were conducted
on machines with Intel i7 processors with Linux OS, usingalrdDK 1.6.

4 Objectives and Fitness Function

One can collect various metrics characterizing the exeoudf concurrent programs.
Our testing infrastructure is, in particular, able to regest failures, measure duration
of test executions, and collect various code and concuyreonerage metrics [18] as
well as numbers of warnings produced by various dynamic/aees searching for data
races [24, 9], atomicity violations [21], and deadlocks [8]total, we are able to collect
up to 30 different metrics describing concurrent programceions. Collecting all of
these data does, of course, introduce a considerable slawddoreover, some of the
metrics are more suitable for use as an objective in our gbtitan others.

In this section, we discuss our selection of objectivesablgtfor solving the TNCS
problem through a MOGA-based approach. In particular, veeiscon the number of
distinctive values produced by the metrics, correlatiomagihe objectives, and their
stability. By the stability, we mean an ability of the objeetto provide similar values
for the same individual despite the scheduling non-detaismi. Finally, we introduce
atechnique that allows us to emphasize uncommon obsemsatial optimize candidate
solutions towards testing of such behaviors.

Selection of suitable objectivedt has been discussed in the literature [7] that multi-
objective genetic algorithms usually provide the bestgrenfince when a relatively
low number of objectives is used. Therefore, we try to stay wifew objectives only.
Among them, we first include thexecution time of testsnce one of our goals is to
optimize towards tests with small resource requirements.

As for the goal of covering as much as possible of (relevamy@am behavior, we
reflect it in maximizing several chosen concurrency-relatetrics. When choosing
them, we have first ruled out metrics which suffer froraek of distinct valuesince
meta-heuristics do no work well with such objectives (duedbdistinguishing different
solutions well enough).

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 7

Table 1. Correlation of objectives across all considered test cases

| || Time| Error [WConcurPair$ Avio* |GoldiLockSC[GoodLocK]

Time 1 |-0.083 0.625 -0.034 -0.038 -0.360
Error -0.083 1 -0.137 |-0.213 -0.221 -0.216
WConcurPairg 0.625|-0.137 1 0.116 0.038 -0.263
Avio® -0.036-0.213 0.116 1 0.021 -0.274
GoldiLockSC ||-0.038-0.221) 0.038 0.021 1 0.77
GoodLock ||-0.36(-0.216 -0.263 |-0.274 0.77 1

Subsequently, we have decided to include some metricsatkamng how well the
behavior of the tested programs has been covered from thegfaiiew of finding three
most common concurrency-related errongmely, data races, atomicity violations, and
deadlocks. For that, we have decided to useGb#&liLockSC, GoodLock, andAvio*
metrics [18]. These metrics are based on measuring how nmesnal states of the
GoldiLock data race detector [9] or the GoodLock deadlodkder [3], respectively,
have been reached, and hence how well the behavior of the Si$Ttested for the
presence of these errors. TAgi0* metric measures witnessed access interleaving in-
variants [21] which represent different combinations aeid#&vrite operations used when
two consecutive accesses to a shared variable are intedégvan access to the same
variable from a different thread. A good point fGoldiLockSC andAvio* is that they
usually produces a high number of distinct values [18]. Vl@tdhodLocK, the situation
is worse, but since it is the only metric specializing in dealls that we are aware of,
we have decided to retain it.

Next, in order to account for other errors than data racesniaity violations or
deadlocks, we have decided to add one more metric, this tesing a general pur-
pose metric capable of producing a high number of distirsitdaBased on the results
presented in [18], we have chosen tBencurPair metric [4] in which each coverage
task is composed of a pair of program locations that are asdtorbe encountered con-
secutively in a run and a boolean value thatrige iff the two locations are visited by
different threads. More precisely, we have decided to usevisighted versiolVCon-
curPairs of this metric [13] which values more coverage tasks conmmis context
switch.

Sincecorrelation among objectivesan decrease efficiency of a MOGA [7], we have
examined our selection of objectives from this point vieable 1 shows the average
correlation of the selected metrics for 10,000 executidrmio 8 test cases with a ran-
dom noise setting. One can see that the metrics do not crigbeto two exceptions.
WConcurPairsand Time achieved on average the correlation coefficient of 0.625 and
the GoodLock andGoldiLockcSC metrics the correlation coefficient of 0.7 How-
ever, there were also cases where these metrics did notater(e.g., the correlation
coeffiecient ofGoldiLockSC andAvio* was[TODO: 0.021). We therefore decided to
reflect the fact that some of our objectives can sometime=lete in our choice of
a concrete MOGA, i.e., we try to select a MOGA which works veslen under such
circumstances (cf. Section 5).

1 1n this case, only three of the case studies containing ddetking and hence leading to
a non-zero coverage undéoodLock were considered in the correlation computation.

8 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Hana &tbva, and Tomas Vojnar

Dealing with Scheduling NondeterminismDue to the scheduling nondeterminism,
values of the above chosen objectives collected from sitegeruns are unstable.
A classic way to improve the stability is to execute the tespeatedly and use a repre-
sentative value [15]. However, there are multiple ways hmwdmpute it, and we now
aim at selecting the most appropriate way for our setting.

For each of our case studies, we randomly S€able 2. Stability of representatives.
lected 100 test configurations, executed each [Bfase med Imod lcum
them in 10 batches of 10 runs, and computed t[&fines 0.033/0.0540.051
representative values in several different ways f0imator 110.012/0.0270.092
each batch of 10 runs. In particular, we consideregawier 0.21110.2610.255
median (med, mode (Mod?, and.the cumuIauye Elevator _110.1450.2270.107
value cum) computed as the sumin the case of ti F/Ioldyn 0.020/0.0250.024
and as the united coverage in case of the con 'MonteCarIc 0.015/0.0190 022
ered coverage metrics. We do not consider the thﬁéytracer 0.0220.0200.016
used average value since we realized that the dat

over 0.059/0.1000.141
obtained from our tests were usually not normally
distributed, and hence the average would not repre¥€rage]0.065[0.0920.084
sent them accurately. We did not consider other more comatplicevaluations of rep-
resentative values due the high computational costs adsdaiith using them. Subse-
quently, we compared stability of the representative \&@bl#ained across the batches.
Table 2 shows the average values of variation coefficientsefepresentatives com-
puted across all the considered configurations for each stasly and each way of
computing a representative. Clearly, the best averagdistatas provided by median,
which we therefore choose as our means of computing regegsenvalues across
multiple test runs for all the following experiments.

g

Emphasizing rare observationsWhen testing concurrent programs, it is usually the
case that some behavior is seen very frequently while sorhavime is rare. Since
it is likely that bugs not discovered by programmers hideha tare behavior, we
have decided to direct the tests more towards such behayipebalizingcoverage
of frequently seen behaviors. Technically, we implemestplnalization as follows.
We count how many times each coverage task of the considee&icemgot covered
in the test runs used to evaluate the first generation of rahdochosen candidate so-
lutions. Each coverage task is then assigned a weight @ut@ia one minus the ratio
of runs in which the task got covered (i.e., a task that wascowéred at all is given
weight 1, while a task that got covered in 30 % of the test rgngiven weight 0.7).
These weights are then used when evaluating the coveragiaethby subsequent gen-
erations of candidate solutions.

Selected fitness functionTo sum up, based on the above described findings, we pro-
pose a use of the following fitness functions, which we usdliowr subsequent ex-
periments: Each candidate solution is evaluated 10 tirhesa¢hieved coverage is pe-
nalized, and the median values for the 4 selected metdofd{LockSC, GoodLocK,
WConcurPairsandTimé are computed.

2 Taking the biggest modus if there are several modus values.

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 9

5 Selection of a Multi-objective Optimization Algorithm

Another step needed to apply multi-objective optimizafimnsolving the TNCS prob-
lem is to choose a suitable multi-objective optimizatiogaaithm and its parameters.
Hence, in this section, we first select one algorithm out oéehwell-known multi-
objective optimization algorithms, nameBPEA SPEA2andNSGA-II[7, 31]. Subse-
quently, we discuss a suitable setting of parameters ofdleeted algorithm.

The main role of the multi-objective algorithms is to clégsiandidate solutions
into those worth and not worth further consideration. We ainselecting one of the
algorithms that is most likely to provide a satisfactoryssification despite the obsta-
cles that can be faced when solving the TNCS problem. As we hAkgady discussed,
these obstacles include the following: (a) Some objectbas sometimes be able to
achieve only amall number of distinct valudxecause the kind of concurrency-related
behavior that they concentrate on does not show up in the gast case. (b) Some of
the objectives can sometimesrrelateas discussed in Section 4. (c) We are working
with a nondeterministic environmemthere the evaluation of objectives is not stable.
We have proposed ways of reducing the impact of these iséneeslg in Section 4, but
we now aim at a further improvement by a selection of a suatAblDGA.

In addition, we also consider the opposite of Issue (a), hartiee fact that some
objectives can sometimes achieve rathggh numbers of value®ealing with high
numbers of values is less problematic than the oppositedsirhigh number of objec-
tive values can be divided into a smaller number of fithessaesbut not vice versa),
yet we would like to assure that the selected MOGA does intieedle well the high
numbers of values and classifies them into a reasonable mahfimess values.

We studied the ability of the considered algorithms to deitth worrelation and
low or high numbers of distinct objective values using foairg of objectives. In these
pairs, we used thAvio* metric (based on the Avio atomicity violation detector [21]
and theGoldiLockSC metric, which we found to highly correlate with the corrédat
coefficient of 0.966 in the same kind of correlation experitseas those presented in
Section 4 (i.e., they correlate much more than the objextive have chosen into our
fithess functions). As a representative of objectives titah@chieve a small number of
values, we included the number of detected errBreof) into the experiments, and as
a representative of those that can often achieve high vakestake the execution time
(Timg. We performed experiments with 40 different individuale.(test and noise
configurations) and evaluated each of them 11 times on thsl@rgest case.

Table 3 shows into how Table 3. Pairs of objectives and their evaluation by multi-
many classes the obtained 440bjective optimization algorithms.

results of the above experiments g ohiectives | SPEA| SPEAZ NSGA-II
were classified by the consid- (Avio*, GOldiLockSC)| 4 366 106
ered algorithms when using four ('I,'ime Error) = 37 356
different pairs of objectives. We (Error, GoldiLockSC)| 8 540 199

can see that thePEAalgorithm g "o ks T30 | 410 | 38
often classifies the results into

a very low number of classes whigPEA2into a large number of classes, which is
close to the number of evaluatiol§SGA-II stays in all cases in between of the ex-
tremes, and we therefore consider it to provide the besttsefeu our needs.

10 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Handa&kova, and Tomas Vojnar

Next, we discuss our choice of suitable values of parameféhe selected MOGA,
such as the size of population, number of generations, das/eile selection, crossover,
and mutation operators to be used. Our choice is based orpkeence with a SOGA-
based approach presented in [13] as well as on a set of exg@asmithNSGA-Ilin our
environment. In particular, we experimented with populatsizes and the number of
generations such that the number of individual evaluatiosie experiment remained
constant (in particular, 2000 evaluations of individuads experimer®). Therefore, for
populations of size 20, 40, and 100, we used sizes of 100,r&D28 generations,
respectively. Next, we studied the influence of three dffiiticrossover operators avail-
able in the ECJ toolkit [29] (calledne two andany) and three different probabilities
of mutation (0.01, 0.1 and 0.5). As the selection operateruged the mating scheme
selection algorithm instead of the fithess-based tourn&wreproportional selection
which are commonly used in single-objective optimizatiabrovide worse results or
are not applicable in multi-objective optimization [14]eWixed the size of the archive
to the size of the population.

In total, we experimented with 27 different settings of thesen MOGA (3 sizes
of population, 3 crossover operators, and 3 mutation priibeg). For each setting, we
performed 10 executions of the MOGA process which diffeyanithe initial random
seed values (i.e., only in the individuals generated in tfs¢ dieneration) on the Air-
lines, Animator, and Crawler test cases. In general, we didsae big differences in
the results obtained with different sizes of populations.te other hand, low prob-
abilities of mutation (0.01 and 0.1) often led to degeneratf the population within
a few generations and to low achieved fitness in the last géoar A high mutation
set to 0.5 did not suffer from this problem. Further, #msgcrossover operator provided
considerably lower values of fithess values in the last gaiar, while there were no
significant differences among tlo@eandtwo crossover operators.

Based on these experiments, we decided to work with 50 gémesaand 20 in-
dividuals in a population (i.e., compared with the aboveegipents, we decrease the
number of generations for the given number of individuatesiat the beginning the
number of coverage tasks grew up, but after the 50th gepartitere was not much
change). In the breeding process, we use the mating schegorilan as the selection
operator with the recommended parameters 5, 5 = 3; and we use the crossover
operator denoted d@wo in ECJ, which takes two selected individuals (integer vexjto
divides them into 3 parts at random places, and generateseamelidate solution as the
composition of randomly chosen 1st, 2nd, and 3rd part ofrgar&inally, to implement
mutation, we use an operator that randomly selects an etaméme vector of a can-
didate solution and sets it to a random value within its aldwange with probability
0.5. The resulting agile exploration is compensated byNB&A-Ilarchive, and so the
search does not loose promising candidate solutions édsgithigh mutation rate.

6 Experimental Evaluation

In this section, four experimental comparisons of the psgdOGA-based approach
with the random approach and a SOGA-based approach arefgdsEirst, we show

% We used 2000 evaluations because after the 2000 evaluaimsation used to happen.

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 11

that our MOGA-based approach does not suffer from degenarat the search pro-

cess identified in the SOGA-based approach in [13]. Then hew shat the proposed
penalization does indeed lead to a higher coverage of un@onb@havior. Finally, we

focus on a comparison of the MOGA, SOGA, and random appraaefith respect to

their efficiency and stability. All results presented hemrevgathered from testing of
the 8 test cases introduced in Section 3.

In the experiments, we use the following parameters of th&&®ased approach
taken from [13]: size of population 20, number of generaiv®, two different selection
operators (tournament among 4 individuals and fitness ptiopal*), the any-point
crossover with probability 0.25, a low mutation probakili©.01), and two elites (that
is 10 % of the population). However, to make the comparisorenfair, we build the
fitness function of the SOGA-based approach from the objestelected above

W ConcurPairs n GoodLock* GoldiLockSC* timemar — time
WConcurPairsme. GoodLock?,,. GoldiLockSCY, . timemax

Here, the maximal values of objectives were estimated asirhés the maximal ac-
cumulated numbers we got in 10 executions of the particetrdases. As proposed
in [13], the the SOGA-based approach uses cumulation oftseslotained from multi-
ple test runs without any penalization of frequent behavior

All results presented in this section were tested by thassitatl t-test with the
significance levely = 0.05, which tells one whether the achieved results for Random,
MOGA, and SOGA are significantly different. In a vast majpiff the cases, the test
confirmed a statistically significant difference among thpraaches.

Degeneration of the Search Process. . |
Degeneration, i.e., lack of variability

in population, is a common problem
of population-based search algorithm% o
Figure 1 shows average variability o .‘ — MOGA
the MOGA-based and SOGA-based ag ¢ 1 - SOGA
proaches computed from the search pré- E

cesses on the 8 considered test cases. The -
X-axis represents generations, and the y-
axis shows numbers of distinct individ- . |

uals in the generations (max. 20). The o M M w %

higher value the search process achieves generation

the higher variability and therefore lowFig. 1. Degeneration of the MOGA-based and
degeneration was achieved. The grapHOGA-based search processes.

clearly shows that our MOGA-based approach does not sufien the degeneration
problem unlike the SOGA-based approach.

4 Experiments presented in [13] showed that using these tlectim operators is beneficial.
Therefore, we used them again. On the other hand, for MOGAnthting schema provides
better results.

5 In the experiments performed in [13], the fitness functios wensitive on weight. Therefore,
we remove the weight from our new fitness function for SOGA.

12 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Handa&kova, and Tomas Vojnar

Degeneration of the SOGA-based approach, and subsequentsndency to get
caught in a local maximum (often optimizing strongly towsedhighly positive value
of a single objective, e.g., minimum test time but almost agecage) can in theory be
resolved by increasing the amount of randomness in the appybut then it basically
shifts towards random testing. An interesting observajwabably leading to the good
results presented in [13]) is that even a degenerated piputzan provide a high cov-
erage if the repeatedly generated candidate solutionsrsiuéim low stability, which
allows them to test different behaviors in different exémus.

Effect of Penalization. The goal of the Table4. Impact of the penalization built into the
above proposed penalization scheme is MOGA approach.
increase the number of tested uncommon [Test MOGAISOGARandon
behaviors. An illustration of the fact that |Ajrlines 59.668 60.61| 19.14
this goal has indeed been achieved is pro- [Animator 70.1 74.31] 44.73
vided in Table 4. The table in particular [Crawier 70.73 66.32 61.10
compares results collected from 10 runs [Ejevator 8926/ 83.96 65.69
of the final generations of 20 individuals Moldy 68.32| 4425 39.73
obtained through the MOGA-based and fiontecarld 40.13 5452 28.25
SOGA-based approaches with results ob- Raytracer | 73.08| 60.49 54.69
tained from 200 randomly generated in- Rover 5387 41.45 30.62
dividuals. Each value in the table gives
the average percentage of uncommon be-Average | 6552] 60.79 43.04
haviors spot by less than 50 % of candidate solutions, iyeleds than 10 individuals.
Number 60 therefore means that, on average, the collectetage consists of 40 %
of behaviors that occur often (i.e., in more than 50 % of thesjuvhile 60 % are rare.
In most of the cases, if some Table5. Efficiency of the considered approaches.
approach achieved the highest pefeage Metrics MOGA[SOGARandon

centage of uncommon behaviors u Airlines |C/Time_ 0.06] 0.06 0.04
der one of the coverage metrics, it STmel 373 329 598

‘;‘Chifr‘]’ed tt::e higrt‘?‘St ””mbeﬁs Animator_|CTTime| 0.07 029 0.19
bler A |e °| erhme r;ﬁstas WMedG A"" S/Time| 0.33 1.01] 0.65
baeseg Z?)rp):c?agr:’v?s :blgutro providec rawler |C/Time 021 022 0.12
a higher coverage of uncommon b Elevator g-'ll::rrrr]wz g(l)z gg: (2)82
havi h likel - - -

aviors (where errors are more like STime 269 364 128

to be hidden) than the other consid- 2
Moldy C/Time| 0.01] 0.01 0.01

ered approaches. .
. . S/Time| 11.73 16.83 2.56
Efficiency of the Testing.Next, we VontecarlgC/Time 0.01] 001 0.01

focus on the efficiency of the genert S/Timel 952 9.66 0.01
ated test settings, i.e., on their ability Raytracer |C/Time| 0.01] 0.01 0.01
to provide a high coverage in a shornt STimel 716l 5.13 0.69
time. We again consider 10 testrs cor Cmime 011 010 008
ing runs of the 20 individuals from STimel 517 2.49 518
the last generations of the MOGA =

based and SOGA-based approaché®/9- Mpr: | [201 211 |

and 200 test runs under random generated test and noisgsefiable 5 compares the

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 13

efficiency of these tests. In order to express the efficiameyyse two metrics. Namely,
C/Timeshows how many coverage tasks of GeldiLockcSC andGoodLock metrics
got covered on average per time unit (milisecond). N8tTimeindicates how many
coverage tasks of the general purp@¢€oncurPairscoverage metric got covered on
average per a time unit. Higher values in the table theretgresent higher average ef-
ficiency of the testing runs under the test settings obtaimede the considered ways.
The last row gives the average improvemefttd. impr) of the genetic approaches
against random testing. We can see that both genetic agmoace significantly bet-
ter than the random approach. In some cases, the MOGA-bagedazh got better
evaluated while SOGA won in some other cases. Note, howtharas shown in the
previous paragraph, the MOGA-based approach is more litketpver rare tasks, and
so even if it covers a comparable number of tasks with the S®@&sed approach, it is
still likely to be more advantageous from the practical poirview.

Stability of Testing. Finally, we show that Table 6. Stability of testing.

candidate solutions found by our MOGA{Case MOGA|SOGARandon
based approach provide more stable rgairlines 0.06] 0.177 0.29
sults than the SOGA-based and random apmimator 002 0.11] o0.12
proaches. In particular, for the MOGA-baseErawler 038 038 026
and SOGA-based approaches, Table 6 givigSevator 050 048 0.58
the average values of variation coefficients ¢f oldyn 011 020 070
the coverage under each of the three consffontecar 013 011 0.89
ered coverage criteria for each of the 20 ca Raytracer 016 046 0.78
didate solutions from the last obtained geneiz g oy 008 010 032

ations across 10 test runs. For the case of ras=
dom testing, the variation coefficients wer verage | 0'18| 0'23 0'49|
calculated from 200 runs generated randomly. The last rotliefable shows the av-
erage variation coefficient across all the case studiestdliie clearly shows that our
MOGA-based approach provides more stable results when a@dpgo the other ap-
proaches.

7 Threatsto Validity

Any attempt to compare different approaches faces a nunfbehadlenges because
it is important to ensure that the comparison is as fair asiptes The first issue to
address is that of thaternal validity, i.e., whether there has been a bias in the experi-
mental design or stochastic behavior of the meta-heusstcch algorithms that could
affect the obtained results. In order to deal with this is&ection 5 provides a brief
discussion and experimental evidence that supports theecbbthe NSGA-Il MOGA
algorithm out of the three considered algorithms. In ordeaddress the problem of
setting the various parameters of meta-heuristic algmstha number of experiments
was conducted to choose configurations that provide goadtsén the given context.
Similarly, our choice of suitable objectives was done basedbservations from previ-
ous experimentation [18]. Care was taken to ensure thapptbaches are evaluated in
the same environment.

Another issue to address is that of #wdernal validity i.e., whether there has been
a bias caused by external entities such as the selectedtudsesgi.e., programs to be

14 Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Handa&kova, and Tomas Vojnar

tested in our case) used in the empirical study. The diveagea® of programs makes it
impossible to sample a sufficiently large set of programe. difiosen programs contain
a variety of synchronization constructs and concurremtgted errors that are common
in practice, but they represent a small set of real-life paots only. The studied execu-
tion traces conform to real unit and/or integration tests with many other empirical
experiments in software engineering, further experimargsieeded in order to confirm
the results presented here.

8 Conclusionsand Future Work

In this paper, we proposed an application of multi-objextienetic optimization for
finding good settings of tests and noise. We discussed aiselet suitable objectives
taking into account their usefulness for efficiently findicgncurrency-related errors
as well as their properties important for the process of iegtimization (numbers
of distinct values, correlation) as well as for stabilitye\allso proposed a way how
to emphasize uncommon behaviors in which so-far undiseaMeugs are more likely
to be hidden. Further, we compared suitability of three pepuulti-objective genetic
algorithms for our purposes, which showed that the NSGAgbathm provides the
best ability to classify candidate solutions in our settiRgpally, we demonstrated on
a set of experiments with 8 case studies that our approach mmtesuffer from the
degeneration problem, it emphasizes uncommon behaviodsgenerates settings of
tests and noise that improve the efficiency and stabilityheftesting process.

As a part of our future work, we plan to further improve thecéfincy and stability
of the generated test and noise settings. For this purpas®jould like to exploit the
recently published results [10] indicating that searcHorga test suite provides better
results than searching for a set of the best individuals.

AcknowledgementWe thank Shmuel Ur and Zeev Volkovich for many valuable com-
ments on the work presented in this paper. The work was stggpby the Czech Min-
istry of Education under the Kontakt Il project LH13265, #g/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070, thiedinternal BUT projects
FIT-S-12-1 and FIT-S-14-2486. Z. Letko was funded throdghEU/Czech Interdisci-
plinary Excellence Research Teams Establishment praitt(07/2.3.00/30.0005).

References

1. E. Alba and F. Chicano. Finding Safety Errors with ACO.Pimc. of GECCO’'07 ACM,
2007.

2. N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y..Zhdsing FindBugs on Pro-
duction Software. IfProc. of OOPSLA'07ACM, 2007.

3. S. Bensalem and K. Havelund. Dynamic Deadlock Analysidalfi-threaded Programs. In
Proc. of PADTAD'05LNCS 3875, Springer-Verlag, 2005.

4. A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applicatisiof Synchronization Coverage.
In Proc. of PPOPP’05ACM, 2005.

5. H. Chockler, E. Farchi, B. Godlin, and S. Novikov. Cros$repy Based Testing. IRroc.

of FMCAD '07, IEEE, 2007.

. E. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, 1999.

7. K. Deb. Multi-Objective Optimization Using Evolutionary Algdrins Wiley paperback
series. Wiley, 2009.

(@]

Multi-objective Genetic Optimization for Noise-based flieg of Concurrent Software 15

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, &dJr. Framework for Testing
Multi-threaded Java ProgramsConcurrency and Computation: Practice and Experience
15(3-5), John Wiley & Sons, Ltd., 2003.

. T. EImas, S. Qadeer, and S. Tasiran. Goldilocks: A RaceTeasaction-aware Java Run-

time. InProc. of PLDI'07, ACM, 2007. ACM.

G. Fraser and A. Arcuri. Whole Test Suite GeneratidBEE Transactions on Software
Engineering 39(2), 2013.

P. Godefroid and S. Khurshid. Exploring Very Large S8paces Using Genetic Algorithms.
International Journal on Software Tools for TechnologyBter, 6(2), 2004.

S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Test@wmncurrent Programs to
Achieve High Synchronization Coverage. Rnoc. of ISSTA'12ACM, 2012.

V. Hruba, B. Kfena, Z. Letko, S. Ur, and T. Vojnar. Tagtiof Concurrent Programs Using
Genetic Algorithms. IrProc. of SSBSE'12.NCS 7515, Springer-Verlag, 2012.

H. Ishibuchi and Y. Shibata. A Similarity-based Matingh&me for Evolutionary Multiob-
jective Optimization. IrProc. of GECCO'03LNCS 2723, Springer, 2003.

Y. Jin and J. Branke. Evolutionary Optimization in Uriagr Environments — A Survey.
IEEE Transactions on Evolutionary Computati@¢3), 2005.

B. Kfena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref-Bri$s. Ur, and T. Vojnar. A Concurrency
Testing Tool and Its Plug-ins for Dynamic Analysis and RomgiHealing. IrProc. of RV’09
LNCS 5779, Springer-Verlag, 2009.

B. Kfena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. HaglData Races On-the-fly. Proc.

of PADTAD’07 ACM, 2007.

B. Kfena, Z. Letko, and T. Vojnar. Coverage Metrics fatiBation-based and Search-based
Testing of Concurrent Software. FProc. of RV'11LNCS 7186, Springer-Verlag, 2012.

B. Kfena, Z. Letko, T. Vojnar, and S. Ur. A Platform foreBeh-based Testing of Concurrent
Software. InProc. of PADTAD'1QACM, 2010.

B. Kfena, Z. Letko, and T. Vojnar. Influence of Noise btjen Heuristics on Concurrency
Coverage. IrProc. of MEMICS'11LNCS 7119, Springer-Verlag, 2012.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Ataity Violations via Access
Interleaving Invariants. IiProc. of ASPLOS'06ACM, 2006.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nairgad |. Neamtiu. Finding and
Reproducing Heisenbugs in Concurrent Program®© 3Dl USENIX Association, 2008.

T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and @lmés. Java Concurrency in
Practice Addison-Wesley Professional, 2005.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and @efson. Eraser: A Dynamic Data
Race Detector for Multi-threaded Programs Plroc. of SOSP’97ACM, 1997.

L.A. Smith, J.M. Bull, J. Obdrzalek. A Parallel Javaa@de Benchmark Suite. Froc. of
Supercomputing’01ACM, 2001.

A. Spillner, T. Linz, and H. Schaefe®oftware Testing Foundations: A Study Guide for the
Certified Tester ExanRocky Nook, 3rd edition, 2011.

J. Staunton and J. A. Clark. Searching for Safety Viofe&iUsing Estimation of Distribution
Algorithms. InProc. of ICSTW'10IEEE, 2010.

S. Steenbuck and G. Fraser. Generating Unit Tests focu@ant Classes. [HCST'13
IEEE, 2013.

D. White. Software Review: The ECJ ToolkiGenetic Programming and Evolvable Ma-
chines 13, 2012.

J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maplavarage-driven Testing Tool
for Multithreaded Programs. IRroc. of OOPSLA'12ACM, 2012.

E. Zitzler.Evolutionary Algorithms for Multiobjective Optimizatioklethods and Applica-
tions PhD thesis, ETH Zurich, 1999.

