
Verifying Concurrent Programs
Using Contracts

FIT BUT Technical Report Series

Carla Ferreira, Jan Fiedor, João M. Lourenço,
Aleš Smrčka, Diogo G. Sousa, and Tomáš Vojnar

Technical Report No. FIT-TR-2016-02

Faculty of Information Technology, Brno University of Technology

Last modified: October 4, 2016

Verifying Concurrent Programs using Contracts

Ricardo F. Dias†, Carla Ferreira†, Jan Fiedor∗, João M. Lourenço†, Aleš Smrčka∗, Diogo G. Sousa†, Tomáš Vojnar∗

∗ FIT, Brno University of Technology † FCT, Universidade Nova de Lisboa

Abstract—The central notion of this paper is that of contracts
for concurrency, allowing one to capture the expected atomicity
of sequences of method or service calls in a concurrent program.
The contracts may be either extracted automatically from the
source code, or provided by developers of libraries or software
modules to reflect their expected usage in a concurrent setting. We
start by extending the so-far considered notion of contracts for
concurrency in several ways, improving their expressiveness and
enhancing their applicability in practice. Then, we propose two
complementary analyses—a static and a dynamic one—to verify
programs against the extended contracts. We have implemented
both approaches and present promising experimental results
from their application on various programs, including real-world
ones where our approach unveiled previously unknown errors.

I. Introduction

The divide-and-conquer strategy is frequently applied to

the development of large software products where the whole

application is divided into interacting software modules, col-

laboratively developed by multiple teams. Objects in object-

oriented programming languages are an example of such soft-

ware modules. Accessing the services provided by a software

module requires one to follow a protocol that includes: (i) the

syntax of the service, i.e., the name of the service and the

type of its input and output parameters; (ii) the semantics

of the service, i.e., the expected behavior of the service for

a given set of input parameters; and (iii) the service access

restrictions, e.g., the domain of the valid values for each

parameter, dependency relations between services, atomicity

requirements for execution in a concurrent setting, etc.

Violating the protocol of a service may cause all sorts

of misbehaviors—from subtle, perhaps admissible, but wrong

results to fault-stop fails, such as exceptions and segmentation

faults. Compilers take good care of Aspect (i) of the protocol,

i.e., syntax validation. Aspect (ii), service semantics, although

not verified by compilers, is usually at least documented. As-

pect (iii), service access restrictions, is usually not verified by

compilers nor documented, which results in a deep dependency

on programmers’ clairvoyance on the usage of the services—

in particular, when concurrency issues are involved.

Reports [10], [27], [36] emphasize that it often takes more

than a month to fix a concurrency-related error and that nearly

70 % of the fixes are buggy when first released. In this paper,

we aim at reducing this problem by addressing Aspect (iii)

from the list above, i.e., service access restrictions, for the

context of concurrent (multi-threaded) programs. In particular,

we address restrictions of using services provided by software

modules in a concurrent setting with the aim of avoiding

atomicity violations and similar concurrency-related errors.

We build on the concept of contracts for concurrency [17],

[38], a particular case of a software protocol, allowing one to

enumerate sequences of public methods of a module that are

required to be executed atomically. We extend the previously

proposed notion of contracts for concurrency by allowing them

to reflect both the data flow between the methods (in that

a sequence of methods calls only needs to be atomic if they

manipulate the same data) and the contextual information (in

that a sequence of methods calls needs not be atomic wrt all

other sequences of methods but only some of them).

Moreover, we propose novel methods for both static and

dynamic validation of such protocols in client programs. While

the static approach can analyse all possible executions of

a program at once, it may not be feasible for larger programs

and often reports false alarms. The dynamic analysis is more

scalable and suffers much less from false alarms, but it is

restricted to concrete program executions and to the errors

that can be deduced from them. The static analysis is based

on grammars and parsing trees while the dynamic uses the

happens-before relation and vector clocks optimized for con-

tract validation. We implemented both approaches in publicly

available prototype tools and obtained promising experimental

results with both of them, including discovery of previously

unknown errors in large real-world programs.

The rest of the paper is organised as follows. In Section II,

we present the notion of contracts for concurrency and extend

them to consider the data flow and/or the contextual informa-

tion of method calls. In Sections III and IV, we describe our

static and dynamic contract validation methods, respectively,

together with results of experiments with them. Section V

summarises related works, and Section VI concludes the paper.

II. Contracts for Concurrency

A contract for concurrency [17], [38] (or simply contract

herein) is a protocol for accessing public services of a module,

i.e., the methods of its public API, expressing which of the

methods are correlated and should be executed in the same

atomic context (wrt its API usage) if applied on the same

computational object. Therefore, a program that conforms to

a contract is guaranteed to be safe from atomicity violations.

A. Basic Contracts

In [17], [38], a contract is formally defined as follows. Let

ΣM be a set of all public method names (the API) of a software

module (or library). A contract is a set R of clauses where

each clause ̺ ∈ R is a regular expression over ΣM. A contract

violation occurs if any of the sequences represented by the

contract clauses is interleaved with an execution of methods

from ΣM over the same object.

Example. Consider the java.util.ArrayList implementa-

tion of a resizable array of the Java standard library, and, for

simplicity, take the following subset of the available meth-

ods: add(obj), contains(obj), indexOf(obj), get(idx),

set(idx, obj), remove(idx), and size(). The below

clauses belong to the contract for the ArrayList library:

(̺1) contains indexOf

(̺2) indexOf (set | remove | get)

(̺3) size (remove | set | get)

(̺4) add (get | indexOf)

Clause ̺1 states that the execution of contains() followed

by indexOf() should be atomic. Otherwise, the program may

confirm the existence of an object in the array but fail to obtain

its index as a concurrent thread can, e.g., remove the object.

Clause ̺2 represents a similar scenario where the index of an

object is obtained and then the index is used to modify the

object. Without atomicity, a concurrent change of the array

may shift the position of the object and cause malfunction.

Clause ̺3 deals with programs that verify whether a given

index is in a valid range (e.g., index < size()) and then

access the array. To ensure size() is still valid when ac-

cessing the array, the calls must execute atomically. Clause ̺4

represents a scenario where an object is added to the array

and then the program tries to obtain information about it by

querying the array. Without atomicity, the object may no

longer exist or its position in the array may have shifted.

Another relevant clause in the contract of ArrayList is:

(̺5) contains indexOf (set | remove)

However, the contract’s semantic already enforces this clause

since it results from the composition of clauses ̺1 and ̺2.

Still, it turns out that the above definition of contracts for

concurrency is sometimes quite restrictive and can classify

valid concurrent programs as unsafe. Hence, in Sections II-B

and II-C, we propose two extensions that improve the ex-

pressiveness of contracts: one extends them with parameters,

making it possible to consider the data flow between method

calls; and the other adds contextual information that restricts

the situations in which atomicity shall be enforced.

B. Extending Contracts with Parameters

Figure 1 illustrates a situation where basic contracts may

be too restrictive. It shows a procedure that replaces item a

in an array by item b. The procedure contains two atomicity

violations: (i) item a needs not exist anymore when indexOf is

called; and (ii) the index obtained may be outdated when set

is executed. A basic contract of Section II-A could cover this

situation by a clause (̺6) contains indexOf set. However,

the given sequence needs to be executed atomically only if

contains and indexOf have the same argument, and the

result of indexOf is used as the first argument of set.

To express in a contract how the flow of data influences the

dependencies between methods, we extend the contract spec-

ification by considering method call parameters and return

void replace(int a, int b) {

if (array.contains(a)) {

int idx=array.indexOf(a);

array.set(idx,b); } }

Fig. 1: Example of atomicity violation with data dependencies.

values, expressed as meta-variables. Then, if a contract should

be enforced only if the same object appears as an argument or

as the return value of multiple calls in the given call sequence,

we may express that by using the same meta-variable at the

position of all the concerned parameters and/or return values.

Clause ̺6 may then be refined as follows—in particular,

note the repeated use of meta-variables X/Y, requiring the

same objects o1/o2 to appear at the positions of X/Y, resp.:

(̺′
6
) contains(X) Y = indexOf(X) set(Y, _). Here, the

underscore is a free meta-variable that imposes no restrictions.

Example. With the above extension, it is possible to refine the

contract for java.util.ArrayList as follows:

(̺′1) contains(X) indexOf(X)

(̺′2) X = indexOf(_) (remove(X) | set(X, _) | get(X))

(̺′3) X = size() (remove(X) | set(X, _) | get(X))

(̺′4) add(X) (get(X) | indexOf(X))

This contract captures in detail the dependencies between

method calls, expressing the relations that are problematic,

excluding those that do not constitute atomicity violations.

C. Extending Contracts with Spoilers

Interleaving a sequence of calls listed in a contract clause

with some methods of the given API may lead to an atomicity

violation, while this is not the case for other methods. This is,

however, not reflected in the basic contracts. For example, the

clause contains indexOf states that this sequence of calls

must always be executed atomically (wrt methods of the given

module), regardless of which methods the other threads are

executing. Interleaving a thread executing this sequence with

another one is thus a contract violation regardless of whether

the other thread executes remove or get, not distinguishing

that the former is harmful while the latter not.

To cope with the above, we propose to augment contracts

with contextual information, allowing one to express in which

context the contract clauses shall be enforced. For that, each

clause of the basic contract (now called a target) will be cou-

pled with a set of spoilers that restrict its application. A spoiler

represents a set of sequences of methods that may violate its

target. Client programs must then ensure that each target is

executed atomically wrt its spoilers, whenever executed on

the same object. For the target clause contains indexOf,

a possible spoiler is remove, and the extended clause would

be: contains indexOf f remove.

Formally, as before, let R be the set of target clauses where

each target ̺ ∈ R is a regular expression over ΣM. Let S be the

set of spoilers where each spoiler σ ∈ S is a regular expression

over ΣM. We also define the alphabets ΣR ⊆ ΣM and ΣS ⊆ ΣM
for the methods used in the targets or spoilers, respectively.

A contract is then a relation C ⊆ R × S which defines for

each target the spoilers that may cause atomicity violations.

Note that one target may be violated by more than one

spoiler and also one spoiler may violate more than one target.

A contract is violated if any sequence represented by a target

̺ ∈ R executed on the same object o is fully interleaved with

an execution of the sequence representing its spoiler σ ∈ C(̺)

on the object o. A target sequence r is fully interleaved by

a spoiler sequence s if the execution of r starts before the

execution of s and the execution of s ends before that of r.1

Example. The basic contract for java.util.ArrayList with

spoilers extending it with contextual information is below:

(̺′′1) contains indexOf f remove

(̺′′2) indexOf (remove | set | get) f remove | add | set

(̺′′3) size (remove | set | get) f remove

(̺′′4) add indexOf f remove | set

This contract explicitly captures which interferences are harm-

ful and which interleavings shall be forbidden. All other

interleavings, not captured by spoilers, are considered safe.

Finally, the extension of contracts with spoilers can be

combined with the extension with parameters, allowing one

to define fine-grained atomicity requirements for the methods

of a module. This can be illustrated by the below clause:

contains(X) indexOf(X) f remove(_).

This clause requires sequences of contains and indexOf

to be executed atomically but only when executed over the

same object, when dealing with the same item X, and only

wrt concurrent execution of remove. This captures the fact that

any concurrent removal may lead to an atomicity violation, by

either removing object X or by altering its position in the array.

Note that add is not a spoiler since it does not interfere with

the position of X as elements are added to the end of the array.

III. Static Contract Validation

We now propose a static approach for verifying whether

a client program complies with the contract of a given module.

We consider contracts in the form defined in Section II-B but

restricted to star-free regular expressions.

Our approach is based on checking whether threads

launched by the client program always execute atomically any

sequence of calls expressed by contract clauses, and it has

the following phases: (1) Extract the behaviour of each of the

client program’s threads wrt the usage of the module under

analysis. (2) Determine which of the program’s methods are

atomically executed. We say that a method is atomically exe-

cuted if it explicitly applies a concurrency control mechanism

to enforce atomicity, or if the method is always called by other

atomically executed methods. (3) For each thread, verify that

its usage of the module respects the contract.

The next section covers Phase 1 by introducing an algo-

rithm that extracts the program’s behaviour wrt the module’s

1Partial interleavings of targets and spoilers are not considered to cause an
error. If they do, this can be handled by adding a new contract clause (target)
whose spoiler is the appropriate fraction of the original spoiler.

methods. Section III-B covers Phases 2 and 3 by proposing

an algorithm that verifies whether the extracted behaviour

complies to the contract.

A. Extracting the Behaviour of a Program

The behaviour of a program can be seen as the join of the

individual behaviours of all threads the program may launch.

To extract the usage of a module by a thread, we start by

extracting its control flow graph (CFG) [1] from the source

code. From the CFG of a thread t, it is then simple to construct

a context-free grammar Gt such that if there is an execution

path of t that runs a sequence of method calls, then that

sequence is a word of the language represented by Gt.

Context-free grammars were chosen to describe the structure

of CFGs since they can capture the call relations between

methods that cannot be captured by weaker classes of lan-

guages. Moreover, an advantage of using context-free gram-

mars (compared with other static analysis techniques) is that

we can use efficient parsing algorithms within the analysis.

Definition 1. The CFG of the client’s program thread t is en-

coded by the grammar Gt = (N,ΣM, P, I) where N is the set

of nodes of the CFG (non-terminals), ΣM is the set of the

identifiers of the public methods M of the module under

analysis (terminals), I is the initial non-terminal defined as the

entry method, and P is the set of productions defined below.

A CFG node is denoted by α : ~v� where α is the

non-terminal that represents the node and v its type. We

distinguish the following types of nodes: entry—the entry

node of a method, mod.h()—a call to method h() of the

module mod under analysis, g()—a call to method g() of the

client program, and return—the return point of a method. The

function succ : N → P(N) is used to obtain the successors of

a given node N in the CFG. The entry method for a thread is

determined by looking for extensions of the Thread class or

implementations of the Runnable interface. The set P of

productions is then defined by Rules 1–5 as follows (no other

productions belong to P):

for α : ~entry�, {F → α} ∪ {α→ β | β ∈ succ(α)} ⊂ P (1)

for α : ~mod.h()�, {α→ h β | β ∈ succ(α)} ⊂ P (2)

for α : ~g()�, {α→ G β | β ∈ succ(α)} ⊂ P (3)

for α : ~return�, {α→ ǫ} ⊂ P (4)

for α : ~otherwise�, {α→ β | β ∈ succ(α)} ⊂ P (5)

Intuitively, the grammar Gt represents the control flow of

the thread t, ignoring everything not related with the module’s

usage. Rule 1 adds a production that relates the non-terminal

F , representing a method f(), to the entry node of the CFG

of f(). Calls to the module under analysis are recorded in

Gt by Rule 2. Rule 3 handles calls to other methods of

the client program. The return point of a method adds an ǫ

production to the grammar (Rule 4). All other types of CFG

nodes are handled by making them reducible to the successor

non-terminals (Rule 5)

Notice that only the client program code is analyzed, given

the module contract clauses and its public methods.

void f () {
whi le (m. a ()) {

i f (cond)
m. b () ;

e l s e
m. c () ;

c o u n t ++;
}

m. d () ;
}

entry f()

m.a()

cond

m.b() m.c()

count++

m.d()

return f()

A

B

C

D E

F

G

H

F → A

A→ B

B→ a C

B→ a G

C → D

C → E

D→ b F

E → c F

F → B

G → d H

H → ǫ

Fig. 2: A program using a module m (left), its CFG (middle),

and its simplified grammar (right).

The generated grammar Gt may be ambiguous, i.e., offer

several different derivations of the same word. Each ambiguity

in the parsing of a sequence of calls represents different

contexts where these calls may be executed by the thread t. The

ambiguity is thus expected and needed so that the verification

of the contract can cover all possible occurrences of sequences

of calls in the client program. Since we do not consider the

values of data reachable at particular locations, the language

may contain sequences of calls that the program can never

execute, which may lead to false positives. However, the

approach is conservative and never produces false negatives.

Example. The example shown in Figure 2 exemplifies how

Definition 1 handles a flow control with loops. In this example

there is a single function f(), which is assumed to be the entry

point of the thread.

B. Contract Verification

The verification must ensure that all sequences of calls spec-

ified by a contract are executed atomically by the threads the

client program may launch. Algorithm 1 presents the pseudo-

code of our static approach for verifying this requirement.

The algorithm iterates over program threads (line 2). For

each thread t, it first generates, as described above, a grammar

Gt that captures the CFG of t (line 3). From Gt, a grammar

G′t describing all sub-words of the words generated by Gt

is obtained (line 4). The sub-words correspond to parts of

executions of the original program. The sub-words must be

considered since a contract clause typically corresponds to

a part of a run only. For example, if a thread executes a se-

quence m.a(); m.b(); m.c(); a contract can correspond to

b c only, which G′t allows us to recognize.

The algorithm subsequently iterates over contract clauses

̺ ∈ R (line 5) and handles them one-by-one. To see whether

a thread may generate a contract clause ̺, representing a call

sequence, it is enough to parse ̺ in G′t (line 6). This will

create a parsing tree for each location from which the thread

can execute the given sequence of calls. Function parse()

returns the set T of these parsing trees.

Each of the parsing trees in T is then inspected to determine

the atomicity of the given call sequence (line 7). In particular,

the parsing trees contain information about the location of

each of the calls of contract ̺ in the program. Then, by

moving upwards in the parsing tree, we can find the node that

represents the method under which the call sequence defined

by the contract is performed. This node is the lowest common

ancestor of the call sequence of ̺ in the parsing tree (line 8).

The algorithm then checks whether the lowest common

ancestor is always executed atomically (line 9) to make sure

that the whole sequence of calls is executed under the same

atomic context. Since it is the lowest common ancestor, we are

sure to require the minimal synchronization from the program.

A parsing tree contains information about the location in the

program where a contract violation may occur, and so we can

offer detailed instructions to the programmer on where this

violation occurs and how to fix it.

Since the grammar Gt may be ambiguous, it is necessary

to use a GLR (generalized LR) parsing algorithm to explore

all different derivation trees of a word [26]. In particular,

in our prototype implementation discussed later on, we use

a GLR parser proposed by Tomita in [39], which defines a non-

deterministic version of the LR(0) parsing algorithm.

An important point is that the number of parsing trees may

be infinite since loops in the CFG will yield corresponding

loops in the grammar. The parsing algorithm must therefore

detect and prune parsing branches that will lead to redundant

loops, ensuring a finite number of parsing trees is returned. To

achieve this, the parsing algorithm aborts whenever it detects

a loop that did not contribute to parsing a new terminal.

Example. The left part of Figure 3 shows a program that uses

a module m. The run() method is the entry point of a thread t.

In the middle of the figure, we show the CFGs generated by

the program code. On the top right, we show a simplified

version of the Gt grammar. Methods run(), f(), and g() are

represented by non-terminals R, F , and G, respectively. The

obtained grammar is ambiguous. Consider a contract clause

̺ = a b. The right part of the figure shows two distinct ways

to parse ̺. Both of the trees will be obtained by our algorithm

(line 6). The first tree (middle right) has F as the lowest

common ancestor of a b. As F corresponds to the method f(),

which is executed atomically (note the atomic keyword), we

conclude that this tree respects the contract. The second tree

(bottom right) has R as the lowest common ancestor of a b,

corresponding to the execution of the else branch of run().

This non-terminal (R) does not correspond to an atomically

executed method, the contract is thus not met, and a contract

violation is detected. (Another example can be found in [12].)

C. Analysis with Points-to

In object-oriented programming languages, a module is

defined as a class, so we should differentiate between different

instances of that class as they represent different objects. This

1 Require: P: client’s program, R: module contract;

2 for t ∈ threads(P) do

3 Gt ← build_grammar(t);

4 G′t ← subword_grammar(Gt);

5 for ̺ ∈ R do

6 T ← parse(G′t , ̺);

7 for τ ∈ T do

8 N ← lowest_common_ancestor(τ, ̺);

9 if ¬run_atomically(N) then return ERROR;

10 return OK;

Algorithm 1: Static contract verification algorithm.

void run () {
i f (cond)

f () ;
e l s e {

m. a () ;
g () ;

}
}

void a t om ic f () {
m. a () ;
g () ;

}

void a t om ic g () {
m. b () ;

}

entry

cond

f() m.a()

g()

return

R

entry

m.a()m.a()

g()

return

entry

m.b()

return

F G

R → a G
R → F

F → a G
G → b

a b

G

R

F

a b

G

R

Fig. 3: A program (left), its CFGs (middle), its ambiguous

simplified grammar (top right), and parsing trees of a b (right).

section explains how our analysis can be extended to handle

multiple instances of a module by using points-to information.

1 Require: P: client’s program, R: module contract;

2 for t ∈ threads(P) and a ∈ module_allocation_sites(t) do

3 Gta ← make_grammar(t, a);

4 G′ta ← subword_grammar(Gta);

5 for ̺ ∈ R do

6 T ← parse(G′ta , ̺);

7 for τ ∈ T do

8 N ← lowest_common_ancestor(τ, ̺);

9 if ¬run_atomically(N) then return ERROR ;

10 return OK;

Algorithm 2: Static contract validation with points-to.

To include points-to information, we generate a different

grammar for each allocation site of a module. Each allocation

site represents an instance of the module, and the algorithm

verifies the contract clauses for each allocation site and

each thread. The revised algorithm is shown in Algorithm 2.

It iterates over threads and module instances generating a

grammar Gta for a thread t and a module instance a. This

grammar can be seen as the behavior of the thread t wrt

the module instance a, ignoring every other instance of that

module. Definition 1 can be easily adaptedo generate the Gta

grammar (see Definition 2).

Definition 2. The grammar Gta = (N,ΣM, P, I) is built from

the CFG of a client’s program thread t and an object allocation

site a that represents an instance of the module. We define N,

ΣM, P, and I in the same way as Definition 1. All rules remain

unchanged, except for Rule 2, which becomes:

for α : ~mod.h()� and mod can only point to a (a)

{α→ h β | β ∈ succ(α)} ⊂ P

for α : ~mod.h()� and mod may point to a (b)

{α→ h β | β ∈ succ(α)} ∪ {α→ β | β ∈ succ(α)} ⊂ P

for α : ~mod.h()� and mod cannot point to a (c)

{α→ β | β ∈ succ(α)} ⊂ P

Here, we use the points-to information to generate the gram-

mar, and we should consider the places where a variable can

point-to. If it may point-to our instance a or another instance,

we consider both possibilities in Rule b of Definition 2.

D. Class Scope Mode

Our static analysis checks the entire program, taking into

account any sequence of calls spreaded across the whole

program (as long as they are consecutive calls to a module).

However, this may become infeasible for very large programs.

So, for these large programs, we propose a class scope mode

of our analysis, an operation mode that checks each class

individually, ignoring calls to other classes. This mode will

detect contract violations where the control flow does not

escape the class, which is reasonable since code locality

indicates stronger correlations between calls.

In the class scope mode, the grammar describing the be-

haviours is built for each class instead of each thread. Methods

of the class yield non-terminals F1, · · ·,Fn just as before. The

only change when creating this grammar is that we create the

productions I → F1 | · · · | Fn as the starting production of

the grammar. This means that we consider the execution of all

methods of the class under analysis.

E. Validation and Evaluation

To validate the above approach, we have implemented it in

a tool called Gluon (https://github.com/trxsys/gluon). We used

Gluon to analyze both some small benchmarking programs

with atomicity violations, which can be seen as contract

violations, as well as several real-world programs, including

Tomcat, Lucene, Derby, OpenJMS, and Cassandra.

The small programs were adapted from the literature [2],

[3], [4], [13], [24], [29], [41] where they are typically used to

evaluate atomicity violation detection methods. We redesigned

each of them as a main program using one or more modules,

and we wrote the necessary contracts for each module.

For the larger, real-word programs analyzed, we aimed at

discovering new, unknown, atomicity violations. For that, the

contracts should ideally be written by the module developers

https://github.com/trxsys/gluon

TABLE I: Validation results for static analysis.

Benchmark C
la

u
se

s

C
o

n
tr

a
ct

V
io

la
ti

o
n

s

F
a

ls
e

P
o

si
ti

v
es

P
o

te
n

ti
a

l
A

V

R
ea

l
A

V

S
L

O
C

T
im

e
(s

)

Allocate Vector [24] 1 1 0 0 1 183 0.120
Coord03 [2] 4 1 0 0 1 151 0.093
Coord04 [3] 2 1 0 0 1 35 0.039
Jigsaw [41] 1 1 0 0 1 100 0.044
Local [2] 2 1 0 0 1 24 0.033
Knight [29] 1 1 0 0 1 135 0.219
NASA [2] 1 1 0 0 1 89 0.035
Store [33] 1 1 0 0 1 621 0.090
StringBuffer [3] 1 1 0 0 1 27 0.032
UnderReporting [41] 1 1 0 0 1 20 0.029
VectorFail [33] 2 1 0 0 1 70 0.048
Account [41] 4 2 0 0 2 42 0.041
Arithmetic DB [29] 2 2 0 0 2 243 0.272
Connection [4] 2 2 0 0 2 74 0.058
Elevator [41] 2 2 0 0 2 268 0.333

OpenJMS 0.7 6 54 10 28 4 163K 148
Tomcat 6.0 9 157 16 47 3 239K 3070
Cassandra 2.0 1 60 24 15 2 192K 246
Derby 10.10 1 19 5 7 1 793K 522
Lucene 4.6 3 136 21 76 0 478K 151

alongside the code. However, this was not the case for the

considered programs. Given that these programs had a rather

large code base, we devised a way to create contracts in an

automated manner by using a very simplistic approach that

tries to infer the contract’s clauses from the synchronized

blocks present in the existing code base. The intuition behind

this approach is that most sequences of calls that should be

atomic are correctly used somewhere in the code. Having this

in mind, we look for sequences of calls done to a module

that are used atomically at least twice in the program as this

situation may indicate that these calls are correlated and should

be atomic everywhere. We used these sequences as clauses for

our contracts after manually filtering a few irrelevant ones.

Since the considered real-world programs use dynamic class

loading, it is impossible to obtain complete points-to informa-

tion, and so we took a pessimistic approach and assumed every

module instance could be referenced by any variable that is

type-compatible. We also used the class scope mode described

in Section III-D as it would be impractical to analyze such

large programs with the scope of the whole program. These

restrictions do not apply to the small programs analyzed.

Table I summarizes the results of our experiments. The table

contains both the micro and macro benchmarks (top/bottom

lines, resp.). The columns represent the number of clauses

of the contract (Clauses); the number of violations of those

clauses (Contract Violations); the number of false positives,

i.e., sequences of calls that, in fact, the program will never

execute (False Positives); the number of potential atomicity

violations, i.e., atomicity violations that could happen if the

object was concurrently accessed by multiple threads (Poten-

tial AV); the number of atomicity violations that can really

occur and compromise the correct execution of the program

(Real AV); the number lines of code of the benchmark (SLOC);

and the time it took for the analysis to complete (time).

For the microbenchmarks, Gluon was able to detect all

violations of the contracts by the client programs. The absence

of false negatives supports the soundness of the analysis. Since

some of our tests included additional contract clauses not

present in the original test programs, the results also indicate

that the approach is not too inclined towards generating false

positives. We created a corrected version of each microbench-

mark which was also verified, and the prototype confirmed the

compliance of the program with the module contract. Correct-

ing the programs was easy since Gluon pinpoints the methods

that must be made atomic and ensures the synchronization

required has the finest possible scope (due to the use of the

lowest common ancestor of the terminals in the parse tree).

Our tests with the macrobenchmarks have shown that

Gluon can be applied to larger-scale programs with good

results. Even with a simple automated contract generation,

we were able to detect 10 atomicity violations in real-world

programs. Six of these bugs were reported (Tomcat2, Derby3,

Cassandra4). Two of them were immediately confirmed2 as

bugs by the Tomcat software development team and fixed in

Tomcat 8.0.11, one was considered highly unlikely, and three

have a pending confirmation. The false positives incorrectly

reported by Gluon were all due to conservative points-to

information in case of dynamic class loading.

The performance results show that Gluon is directly usable

for small and medium-sized programs. For large programs,

the class scope mode has to be used, sacrificing precision

for performance, but still allowing one to capture interesting

atomicity violations as shown by our results with Tomcat.

The performance of Gluon strongly depends on the number

of branches the parser explores. Larger programs tend to

have more complex control flows and generate larger number

of parsing branches. The parsing phase of Gluon dominates

the execution time, which is proportional to the number of

explored parsing branches. Memory usage is not a problem

since the asymptotic space complexity is determined by the

size of the parsing table and the largest parsing tree. It is not

correlated with the number of parsing trees as our GLR parser

explores the parsing branches in-depth instead of in-breadth.

In-depth exploration is possible since we never have infinite

height parsing trees due to our detection of unproductive loops.

IV. Dynamic Contract Validation

We now propose a dynamic contract validation method for

contracts with contextual information (i.e., using both targets

and spoilers) as defined in Section II-C. Though not discussed

here, the method can be easily extended to support parameters

by considering separate instances of target/spoiler pairs for

different values of parameters (as done in our implementation).

Below, we first formalize a notion of multi-threaded pro-

gram traces used as the input of our analysis. Then we define

the happens-before relation that captures the ordering of events

2https://issues.apache.org/bugzilla/show_bug.cgi?id=56784
3https://issues.apache.org/jira/browse/DERBY-6679
4https://issues.apache.org/jira/browse/CASSANDRA-7757

https://issues.apache.org/bugzilla/show_bug.cgi?id=56784
https://issues.apache.org/jira/browse/DERBY-6679
https://issues.apache.org/jira/browse/CASSANDRA-7757
https://issues.apache.org/bugzilla/show_bug.cgi?id=56784
https://issues.apache.org/jira/browse/DERBY-6679
https://issues.apache.org/jira/browse/CASSANDRA-7757

in program traces. Next, we describe our method for detecting

contract violations. Finally, we provide results of experiments

with a prototype implementation of the approach.

A. Preliminaries

For the below, we fix a set of threads T, a set of targets R,

a set of spoilers S, a set of contracts C ⊆ R × S, and a set of

locks L. We consider program traces in the form of sequences

of events of the following types: a thread entering/exiting

a method, a thread acquiring/releasing a lock, and a thread

forking/joining another thread. Since each of the events can

appear multiple times in a trace, we assume the events to

be indexed by their position in the trace. However, we do

not take the indices into account when looking for matches

of the regular expressions of targets/spoilers in a trace. We

denote the set of all events that can be generated by a thread

t ∈ T as Et, and let E = ∪t∈TEt. Then, a trace is a sequence

τ = e1 . . . en ∈ E
+. We let ei ∈ τ denote that the event ei

is present in the trace τ. By start(t)/end(t), we denote the

first/last event generated by a thread t.

Given a trace τ = e1 . . . en ∈ E
+, we call its sub-sequence

r = ei1 ei2 . . . eik , 1 < k ≤ n, an instance of a target ̺ ∈ R iff

(1) r consists of well-paired method enter/exit events executed

by a thread t ∈ T, (2) when restricted to the enter events only,

r matches the regular expression of ̺ (if ̺ contains stars, the

longest possible matches are considered only), and (3) apart

from the events ei1 , ..., eik there is no event from the alphabet of

̺ executed by t between the indices i1 and ik in τ. Intuitively,

an instance of a target can interleave with events that are not its

part, but only if they are outside of its alphabet. For instance,

for a target ̺ = abc and a trace τ = aabdc, there is an instance

of ̺ between indices 2 and 5 but not between 1 and 5. We

denote by ei ∈ r that the event ei is present in the target

instance r. We let start(r) = ei1 and end(r) = eik denote the

first/last event of r, respectively. We let [̺]τ be the set of all

instances of a target ̺ ∈ R in a trace τ and [R]τ = ∪̺∈R[̺]τ

be the set of all instances of all targets from R in τ.

Likewise, we define the notion of an instance s of a spoiler

σ ∈ S in a trace τ, its beginning/end events start(s)/end(s),

respectively, the set [σ]τ of all instances of σ in τ, and the set

[S]τ = ∪σ∈S[σ]τ of all instances of all spoilers from S in τ.

A happens-before relation ≺hb over a trace τ = e1 . . . en ∈ E
+

is the smallest transitively-closed relation on the set {e1, ..., en}

of events in τ such that e j ≺hb ek holds whenever j < k and one

of the following holds: (i) Both events e j and ek are performed

by the same thread (program order). (ii) Both events e j and

ek acquire or release the same lock. (iii) One of the events e j

and ek is a fork/join of a thread u in a thread t and the other

is executed by u (fork-join synchronization). If two indices in

a trace are not related by a happens-before relation, then the

corresponding events are considered to be concurrent.

A contract (̺, σ) ∈ C is violated in a trace τ iff there is

a target instance r ∈ [̺]τ and a spoiler instance s ∈ [σ]τ s.t.

start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s). Intuitively, the con-

tract (̺, σ) is violated in τ if there are instances r/s of ̺/σ,

resp., where r may start before s and end after s, i.e., the target

instance can be fully interleaved with the spoiler instance.

B. On-the-Fly Dynamic Contract Validation

If the entire trace is available, dynamic contract validation is

easy. For all possibly conflicting instances of targets and spoil-

ers, one simply checks whether a target is fully interleaved

with a spoiler or not, i.e., ∀(̺, σ) ∈ C,∀r ∈ [̺]τ,∀s ∈ [σ]τ

checks if start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s) is satisfied.

If it is, an error is reported.

However, this approach is not very practical. It scales poorly

with the size of the trace, which can be huge. In some cases,

e.g., for reactive programs, the trace can even be infinite.

To address this problem, we propose an on-the-fly dynamic

contract validation algorithm which does not require the whole

trace to be available and yet guarantees that if a contract is

violated in the trace, this will be detected.

1) Trace Windows: A crucial concept for our on-the-fly

dynamic contract validation is the concept of a trace window,

providing a gradually moving, partial view of the trace.

Formally, a trace window υ is a subsequence of the trace τ.

While, in the extreme case, the trace window may actually

contain the entire trace, the goal is to keep it as small as

possible. Later, we show that there is a maximum number of

events that we need to keep in the window in order not to miss

any error and that this number grows only with the number of

targets and spoilers, not with the size of the trace.

We denote by [̺]υ the set of all instances of a target ̺ ∈ R

in a window υ and by [R]υ = ∪̺∈R[̺]υ the set of all instances

of all targets from R in υ. In the same manner, we define the

set [σ]υ of all instances of spoiler σ ∈ S in υ and the set

[S]υ = ∪σ∈S[σ]υ of all instances of all spoilers from S in υ.

We move events into the trace window υ as soon as

they occur. However, in order for the window not to grow

indefinitely, we also have to remove some events from it. We

define the υ → e operation which removes e from υ. We

also generalize this operation for instances of targets/spoilers.

The υ → r operation removes all events from r ∈ [R]υ from

υ provided they do not belong to another currently tracked

instance of a target or spoiler, i.e., ∀ei ∈ r : υ → ei ⇐⇒

(∀x ∈ [R]υ ∪ [S]υ, x , r : ei < x) ∧ (∀x ∈ [R]τ ∪ [S]τ, start(x) ∈

υ ∧ end(x) < υ : ei < x). Likewise, we define the υ → s

operation that removes all events from s ∈ [S]τ from υ. As we

show below, one can discard events corresponding to some of

the older spoiler and target instances when newer ones appear

in the window. The conditions allowing us to discard such

instances are safe in that at least one instance of a violation

of each target by each spoiler is always reported. However,

if there are multiple occurrences of the conflict, just one is

guaranteed to be preserved.

2) Discarding Spoilers: First, we aim at reducing the

number of spoiler instances in a trace window. We say that

discarding a spoiler instance s (i.e., removing this particular

instance from the current trace window and not considering

it in further contract violation detection) is safe iff whenever

a contract violation can be detected using s, it can be detected

without s too. The below lemma shows that, under some

natural assumptions, reflected in our analysis, an instance s1 of

a spoiler σ can be safely discarded from the window provided

the window contains a newer instance of the spoiler σ, i.e.,

an instance s2 that started later than s1.

In particular, we assume that events appear in the window υ

as soon as they appear in the trace τ. Moreover, we assume that

as soon as an instance r of a target ̺ appears in the window υ,

i.e., r ∈ [̺]υ becomes true, r is checked for contract violation

against all instances s of all spoilers σ ∈ C(̺) conflicting with

the given target ̺ that appear in the window υ, i.e., s ∈ [σ]υ.

Then the following holds.

Lemma 1. Let s1, s2 ∈ [σ]υ be instances of a spoiler σ ∈ S

present in a window υ of a trace τ. If s1 started before s2,

i.e., start(s1) ≺hb start(s2), it is safe to discard s1 from υ.

Proof of Lemma 1. By contradiction. Assume there is a trace

τ with a window υ and two spoiler instances s1, s2 ∈ [σ]υ

of a spoiler σ ∈ S where start(s1) ≺hb start(s2), and

it is not safe to discard s1 from υ. Then, there must be

a contract (̺, σ) ∈ C and an instance r ∈ [̺]τ of the

target ̺ in the trace τ s.t. s1 violates r, but s2 does not

violate r. This means that the following conditions must

hold: (1) start(s1) ⊀hb start(r) ∧ end(r) ⊀hb end(s1) since s1

violates r. (2) start(s2) ≺hb start(r)∨ end(r) ≺hb end(s2) since

s2 does not violate r.

Consider first that start(s2) ≺hb start(r) holds. Then, since

s1 and s2 are such that start(s1) ≺hb start(s2), we get

start(s1) ≺hb start(r). However, this contradicts the first

condition above, which requires that start(s1) ⊀hb start(r)

holds.

Hence, it must be the case that end(r) ≺hb end(s2) holds.

This means that r must appear in υ before s2 appears in there.

However, then, a contract violation is detected before s1 is

removed from the window, and once a contract violation has

already been detected, any further optimization is safe (in

fact, the analysis can be stopped once a contract violation is

detected).

�

Using Lemma 1 and the fact that spoiler instances in a single

thread are ordered wrt ≺hb, we can prove the below lemma that

limits the number of spoiler instances to be preserved.

Lemma 2. Let T = { t ∈ T | start(t) = el ⇒ l ≤ j } be the set

of threads that started before the end of a window υ = ei . . . e j.

For each thread t ∈ T and for each spoiler σ ∈ S, we need to

preserve just the last instance of σ in υ running within t.

Proof of Lemma 2. Take any thread t ∈ T and any spoiler

σ ∈ S. Since the definition of spoiler instances rules out

overlapping of spoiler instances within a particular thread, if

the set of instances of σ that appear in υ within t is not empty,

we can order these instances into a sequence s1, . . . , sn such

that start(si) ≺hb start(s j) for any 1 ≤ i < j ≤ n. Then, by

Lemma 1, it suffices to preserve just the last spoiler instance

sn in the sequence.

�

3) Discarding Targets: We now aim at reducing the number

of target instances, which turns out to be more challenging

than for spoilers. We say that discarding a target instance r is

safe wrt a spoiler instance s iff whenever a contract violation

between r and s can be detected, then a conflict between s and

some other target instance r′ can be detected too. Note that,

unlike in the case of spoilers, discarding a target instance is

defined as safe wrt a given spoiler instance and not in general.

First, Lemma 3 shows that, given instances r1 and r2 of

a target ̺ where r1 ends before r2 starts, r1 can be safely

discarded wrt any spoiler instance that (i) has not even started

before the end of the window or that (ii) started even before r1.

Lemma 3. Let υ = ei . . . e j be a window of a trace τ with two

instances r1, r2 ∈ [̺]υ of a target ̺ ∈ R such that end(r1) ≺hb

start(r2). It is safe to discard r1 wrt any instance s ∈ [σ]τ of

a spoiler σ ∈ S forming a contract with ̺, i.e., (̺, σ) ∈ C,

whenever either (i) s starts behind the window υ, meaning

that if start(s) = el, then j < l, or (ii) s starts before r1 starts,

i.e., start(s) ≺hb start(r1).

Proof of Lemma 3. By contradiction. Assume that there is a

trace τ with a window υ = ei . . . e j, two target instances r1, r2 ∈

[̺]υ of a target ̺ ∈ R such that end(r1) ≺hb start(r2), and it

is not safe to discard a spoiler instance s ∈ C(̺) despite it

is the case that either (i) s starts behind the window υ, i.e.,

if start(s) = el, then j < l, or (ii) s starts before r1, i.e.,

start(s) ≺hb start(r1).

Then, there must be some instance s ∈ [σ]τ of a conflicting

spoiler σ ∈ C(̺) that appears in the trace τ and that is violated

by r1 but not r2. For the spoiler instance s, the following condi-

tions must hold: (1) start(s) ⊀hb start(r1)∧ end(r1) ⊀hb end(s)

because s violates r1. (2) start(s) ≺hb start(r2) ∨ end(r2) ≺hb

end(s) because s does not violate r2.

Clearly, if it is the case that s starts before r1, i.e.,

start(s) ≺hb start(r1), we immediately have a contradiction

with Condition (1), which requires start(s) ⊀hb start(r1).

Hence, assume that s starts only after the end of the window.

Next, assume that end(r2) ≺hb end(s) holds. Since it is more-

over the case that end(r1) ≺hb start(r2) holds, and the program

order guarantees that start(r2) ≺hb end(r2), end(r1) ≺hb end(s)

holds too. However, this contradicts with Condition (1), which

requires that end(r1) ⊀hb end(s) holds.

Hence, it must be the case that start(s) ≺hb start(r2)

holds. However, this means that s must start in υ, which is

a contradiction.

�

Next, we consider the case when an instance s of a spoiler σ

is running at the end of the window υ, there are two instances

r1 and r2 of the same target ̺ conflicting with σ, r1 ends before

r2 starts, but s does not start before r1 and r2. Lemma 4 shows

that, in this case, discarding r1 is safe wrt s.

Lemma 4. Assume a window υ of a trace τ with two target in-

stances r1, r2 ∈ [̺]υ of a target ̺ ∈ R s.t. end(r1) ≺hb start(r2).

Let s ∈ [σ]τ be an instance of a spoiler σ ∈ S that forms

a contract with ̺, i.e., (̺, σ) ∈ C, it is running at the end

of υ, i.e., start(s) ∈ υ but end(s) < υ, and it has not started

before the given target instances, i.e., start(s) ⊀hb start(r2).

Then discarding r1 is safe wrt s.

Proof of Lemma 4. By contradiction. Assume that there is a

trace τ with a window υ, two target instances r1, r2 ∈ [̺]υ,

and an instance s ∈ [σ]τ of a spoiler σ ∈ C(̺) such that

start(s) ∈ υ, end(s) < υ, and start(s) ⊀hb start(r2). Further,

assume that end(r1) ≺hb start(r2), and yet discarding r1 from

υ is not safe wrt s.

It is not safe to remove r1 from υ wrt s iff r1 can be violated

by s while r2 cannot. Then, the following conditions must

hold: (1) start(s) ⊀hb start(r1) ∧ end(r1) ⊀hb end(s) because

s violates r1. (2) start(s) ≺hb start(r2) ∨ end(r2) ≺hb end(s)

because s does not violate r2.

First, assume that end(r2) ≺hb end(s) holds. Since

end(r1) ≺hb start(r2) holds, and the program order guarantees

that start(r2) ≺hb end(r2), we get end(r1) ≺hb end(s). However,

this contradicts with Condition (1) above, which requires that

end(r1) ⊀hb end(s) holds.

Hence, it must be the case that start(s) ≺hb start(r2) holds.

However, this contradicts with the assumption of the lemma

that start(s) ⊀hb start(r2).

�

Since we check each spoiler instance against all target

instances that are currently in the trace window as soon as the

spoiler instance gets into the window, we can prove the below

upper bound on the number of target instances to be preserved.

Intuitively, by Lemma 3, one instance is kept wrt all not yet

started and—on the other hand—old but still running spoiler

instances. Further, by Lemma 4, one instance per thread in

which a newer spoiler instance is running is to be preserved.

Lemma 5. Let T1 = { t ∈ T | start(t) = el ⇒ l ≤ j } be the

threads that started before the end of a window υ = ei . . . e j,

and let T2 = { t ∈ T1 | end(t) = el ⇒ l > j } be the threads

running at the end of υ. For each thread in T1 and each target

̺ ∈ R, we need to preserve at most |T2| + 1 instances of ̺.

Proof of Lemma 5. Take any thread t ∈ T1 and any target ̺ ∈

R. Due to immediate checks of conflicts between any target

instance in the window and any spoiler instance that appears

in the trace window, from the point of view of preserving

target instances, we care about their possible conflicts with

only those spoiler instances that have not yet terminated or

that have not even started yet.

The definition of target instances implies that we do not

have to consider overlapping target instances within particular

threads. Therefore, if the set of instances of ̺ that appear in υ

within the thread t is not empty, we can order these instances

into a sequence r1, . . . , rn such that end(ri) ≺hb start(r j) for

any 1 ≤ i < j ≤ n.

Further, the definition of spoiler instances implies that we do

not have to consider overlapping instances of spoilers running

within a single thread. Hence, there can be at most |T2| running

instances of spoilers from S at the end of υ: one instance

in each thread of T2. For each of them, Lemma 4 may be

applicable to a subsequence of the target instances r1, . . . , rm,

m ≤ n. These subsequences may differ just in the value of

m. Lemma 4 allows us to preserve just the last instance rm.

However, since the value of m can be different for each of the

subsequences, we may end up preserving |T2| target instances,

one for each spoiler instance running at the end of υ.

Next, if Lemma 4 is not applicable wrt some running spoiler

instance s to a suffix rm+1, . . . , rn, m ≥ 0, of the sequence of

target instances running within t in υ because start(s) ≺hb rm+1,

Lemma 3 allows us to preserve just rn. The same rn is to be

preserved for each running spoiler instance. Moreover, due to

Lemma 3, it is also enough to preserve rn with respect to all

spoiler instances that have not yet started. Hence, we get the

upper bound of |T2| + 1 target instances.
�

4) Vector Clocks and Further Optimizations: Next, as a fur-

ther optimization, we will first introduce an application of

vector clocks for efficiently tracking information about the

happens-before relation between the spoiler/target instances

that are (or were) in the current trace window. Essentially,

instead of remembering the entire sequence of events forming

a target/spoiler instance, we will remember the vector clocks of

their start and end only. Keeping just these two vector clocks

is sufficient as we need to know the happens-before relation

only between the starts and ends of conflicting target/spoiler

instances. Next, from Lemma 5, we know that we need to

track—in the worst-case—for each thread and for each target,

one instance of the target for each thread in which some poten-

tially conflicting spoiler instance is running (a consequence of

Lemma 4) plus one further instance for all other running or not

yet started spoiler instances (a consequence of Lemma 3). We

will propose an optimisation which will allow us to preserve,

for each thread t and each target ̺, the vector clocks of both

the beginning and end just for the last instance of ̺ in t only.

For the other instances required to be tracked by Lemma 4,

we will remember the vector clock of their end only.

In general, a vector clock VC : T → N contains a clock

value for each thread t ∈ T recorded at a certain point. In

particular, we maintain, for each t ∈ T, a vector clock Ct

whose entries Ct(u) record, for each u ∈ T, the clock value of

the last operation of u that happens before the current operation

of t. The t-component of this vector clock then represents the

clock of the thread t. It is incremented at each lock release or

fork operation. Next, we maintain a vector clock Ll for each

lock l ∈ L. These vector clocks are updated on synchronisation

operations that impose a happens-before order of operations

from different threads in a way described in [20].

Further, we assign to each event e ∈ τ executed by a thread

t ∈ T a vector clock VCe. This vector clock is set to the value

of Ct when e is encountered in the execution of the program.

It can then be determined whether an event et executed in the

thread t happens before an event eu executed in a thread u,

i.e., et ≺hb eu, by checking whether VCet
(t) ≤ VCeu

(t).

To allow for checking the conditions determining if a con-

tract was violated or not, it now suffices to record the vector

clocks of the start and end of the spoiler and target instances

that are to be kept in the window wrt Lemmas 1, 3, and 4.

Moreover, for the target instances r to be remembered

according to Lemma 4, i.e., those for which there is some

running spoiler instance s that can collide with r, we can

reduce the amount of stored information even further as

follows. Instead of storing the vector clocks of the beginning

and end of each target instance r of the above kind that appears

in some thread t, we proceed as follows: (1) We remember

in which threads u there are running spoiler instances s

satisfying the first condition of contract violation wrt r, i.e.,

start(s) ⊀hb start(r). (2) We remember the time when r ends

its execution, i.e., VCend(r)(t), which is needed to check the

second condition of contract violation, i.e., end(r) ⊀hb end(s),

once s ends. Both of these pieces of information can be

remembered by maintaning a mapping PV
̺,σ
t : T → N for

the thread t ∈ T, the target ̺ ∈ R whose instance r is, and the

spoiler σ ∈ S whose instance s is. Namely, for each thread u

containing a spoiler instance s satisfying the first condition of

contract violation, we may set PV
̺,σ
t (u) to VCend(r)(t), while

setting the other entries of PV
̺,σ
t to 0.5

Using the above, when a spoiler instance s finishes its exe-

cution in a thread t, it suffices to check PV
̺,σ
u (t) for each thread

u other than t (as we do not consider conflicts within a single

thread).6 If the value is not 0, we know that the first condition

of contract violation between s and the target instance r that

ran in the thread u that we remebered through PV
̺,σ
u only was

satisfied. Then, by checking PV
̺,σ
u (t) ≤ VCend(s)(u), we can

determine if a violation occurred or not.

5) Method Description: We now summarise our optimized

on-the-fly contract violation detection. Most of it is done

by Algorithm 3 at method exit events. Algorithm 3 handles

both conflicts between the latest, so far fully remembered

spoiler and target instances (lines 3, 11) as well as between

newly finished spoiler instances and older target instances

partially remembered via PV
̺,σ
t (lines 12–13). Algorithm 3

also discards older target/spoiler instances r′/s′ (lines 7, 9)

and maintains the PV
̺,σ
t mapping (line 6). The latter is done

by recording the above described data about an older target

instance r′ that can still collide with some running spoiler

instance s according to Lemma 4, which is tested on lines

4–6, before r′ is removed from the window.

5By setting PV
̺,σ
v (u) to VCend(r)(t), we remember both that the first

condition of contract violation has been satisfied between r and s and the time
when r ended. The time is remembered multiple times for possibly different
threads u, but we tolerate this for the sake of obtaining uniform data structures.
Since the space needed to store PV

̺,σ
t corresponds to that of a vector clock,

and we have a single PV
̺,σ
t instead of two vector clocks for each target

instance that needs to be remembered according to Lemma 4, we save up to
2 · |T2 | − 1 vector clocks where T2 is the set of currently running threads.

6The meaning of the threads is swapped here wrt the previous paragraph
in order to have the explanation in line with the code in Fig. 3.

Data: window υ, event e ∈ E generated by thread t ∈ T

1 if ∃̺ ∈ R, r ∈ [̺]υt : e = end(r) then // Target ended

2 for σ ∈ C(̺), u ∈ T : u , t do

3 if ∃s ∈ [σ]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

then r is violated by s ;

4 if ∃s ∈ [σ]τu : start(s) ∈ υ ∧ end(s) < υ then

5 if start(s) ≺hb start(r) then

6 if ∃r′ ∈ [̺]υt : r′ , r ∧ start(s) ⊀hb start(r′) then

PV
̺,σ
t (u) = VCend(r′)(t) ;

7 if ∃r′ ∈ [̺]υt : r′ , r then υ→ r′ ;

8 if σ ∈ S, s ∈ [σ]υt : end(s) = e then // Spoiler ended

9 if ∃s′ ∈ [σ]υt : s′ , s then υ→ s′ ;

10 for ̺ ∈ C(σ), u ∈ T : u , t do

11 if ∃r ∈ [̺]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

then r is violated by s ;

12 if PV
̺,σ
u (t) , 0 ∧ PV

̺,σ
u (t) ≤ VCend(s)(u) then

13 an instance of ̺ is violated by s;

Algorithm 3: Contract violation detection at method exit.

Apart from the above, at an entry to a method, we perform

recognition of target/spoiler instances. That is done using

finite automata for recognising sequences of events match-

ing the regular expressions representing the corresponding

targets/spoilers, respectively. New runs through the automata

may be initiated at each event, and, at the same time, an

attempt to extend all so-far unfinished runs is done (if such

a run cannot be extended via the current event and the event

belongs to the alphabet of the concerned automaton, the run

is discarded). When an exit from a method is encountered,

a check is performed to see whether some of the runs has

reached an accepting state (this will then be recognised via

the end(r)/end(s) predicates on lines 1/8 of Algorithm 3).

C. Implementation and Experiments

We implemented the above approach extended to distinguish

values of one parameter by tracking different target/spoiler

instances for its different values. We used the ANaConDA

framework [18] to monitor method calls and synchronization

events in running C/C++ programs. ANaConDA also pro-

vides us with heuristic noise injection [16] that can disturb

the common thread scheduling by inserting various delays

into the threads. This can increase the number of witnessed

interleavings and hence chances to see an interleaving from

which our analysis can deduce that a contract violation is

possible. We thus use two orthogonal methods to find rare

concurrency-related bugs: noise injection and extrapolation

based on the happens-before relation. In particular, we inject

noise before the last method of each target instance which

prolongs its execution and increases chances to encounter

a spoiler instance capable of interleaving the target instance

and causing a contract violation.

We tested our implementation on a set of small benchmarks

with known atomicity violations as well as two real-world

programs, Link Manager and Chromium-1. The small pro-

grams were taken from [2], [3], [41] and were also used in

Section III-E to evaluate the static validation method (we used

a C++ version as close as possible to the Java version).

TABLE II: Validation results for dynamic analysis.

Benchmark T
/S

p
a

ir
s

C
o

n
tr

a
ct

V
io

la
ti

o
n

s

F
a

ls
e

P
o

si
ti

v
es

P
o

te
n

ti
a

l
A

V

R
ea

l
A

V

S
L

O
C

T
im

e
(s

)

Coord03 [2] 8 380 0 0 380 116 1.01
Coord04 [3] 4 24 0 0 24 53 0.52
Local [2] 4 2 0 0 2 27 0.52
NASA [2] 1 100 0 0 100 96 0.60
Account [41] 1 176 0 0 176 54 0.53

Link Manager 2 1 0 0 1 1.5K 1.14
Chromium-1 2 2 0 0 2 7.5M 49.12

Link Manager is a component of a cloud-connected thermo-

stat used for managing parallel task processing (we were not

allowed to identify the company developing it). A manager

thread is issuing tasks to executor threads, which send results

of the assigned tasks back to the manager through a shared

queue. Our tool was used in the early stages of development

of this program, and it uncovered an order violation error that

happened when an executor sent the result of its task before

the manager initialised the queue used to transfer the data.

This caused the manager to wait forever for the task to be

finished. One of the contracts we checked required that the

queue cannot be used before it is initialised, i.e., no send or

receive can occur between the start of the manager and the

initialisation of the queue. The error occurred very rarely, so

normal tests were unable to detect it. Our tool, however, was

able to detect the error, and it was then promptly fixed.

Chromium-1 is a program from the RADBench bench-

mark [25], an older version of the Chrome browser (version

6.0.472.35) containing a known atomicity violation leading

to an assertion failure. As this error can be described using

a contract, we tried our tool to find the error. The experiment

was successful, showing that our tool can handle even large

programs. Interestingly, to find the error without the on-the-fly

approach, one would need to store a trace with more than 17

million method calls (about 1.6 GB of data) while the on-the-

fly method needed about 10 MB of data only.

Table II provides results of experiments with our dynamic

approach. The T/S Pairs column gives the number of tar-

get/spoiler pairs considered. The column Contract Violations

gives the number of instances of such pairs found violated.7

The column False Positives, included for compatibility with

Table I, contains zeros only as, unlike the static approach,

the dynamic one considers solely executable sequences of

method calls (indeed, they were seen to execute). The column

Potential AV contains numbers of detected contract violations

that need not stay real if the values of more than one parameter

per contract are taken into account (which is not yet supported

in our tool). The column contains zeros only showing that we

7Compared with the static approach, we look for contract violations in the
execution of a program, not its source code. As the code containing a contract
violation may be executed repeatedly, we can detect (and report) the same
contract violation many times. The static approach reports it only once.

sufficed with tracking a sole parameter in all our experiments.8

The column Real AV gives numbers of contract violations

guaranteed to be real as they used at most one parameter,

and our tool was thus able to distinguish the needed instances.

Finally, the columns SLOC and Time give the numbers of lines

of the considered programs and the analysis time.

The results show that our approach can be used to find real

errors in real-world programs. Moreover, it can be used to

detect not only atomicity violations, but also order violations

which are hard to be found using exiting techniques.

V. RelatedWork

Design by contract was introduced by Meyer [32] as a way

to write robust code, using contracts between programs and

objects, checked at runtime. In this context, a contract consists

of a pre- and post-condition of a method such that when the

call of a method satisfies its pre-condition, the post-condition

is guaranteed to be satisfied upon return from the method.

Cheon et al. [9] proposed a way of using contracts to specify

protocols for accessing objects in a sequential setting. The con-

tracts use regular expressions describing sequences of calls that

can be executed for a given object. Hurlin [23] extended [9]

with operators allowing one to specify which methods may

be executed concurrently. The work, however, does not show

how to validate such contracts, it only proposes a technique

for automatically generating programs from contracts that are

to be proven correct (e.g., by theorem proving) to show that

the contracts adhere to the protocols they specify.

In [6], [35], typestates are used to specify protocols for

accessing objects. A typestate can describe both the legal

sequences of method calls and the data these methods may

work with. In [6], the protocol must be defined by the user

and then validated using three static analyses. If these analyses

cannot establish correctness of the program, dynamic analysis

is used to find protocol violations. In [35], a dynamic analysis

is used to automatically infer protocols from program runs

and then static analysis is used to check the protocols. All

the protocols, however, do not consider concurrency-related

issues. Beckman et al. [4] showed how to use typestates in

concurrent scenarios. Their approach, however, requires the

user not only to define the protocols to be checked, but also

to annotate the code with additional information needed by the

static checker to check if the protocols are respected. Typestate

specifications are also much more complex compared with the

specifications based on contracts we propose in this paper.

The work [31] deals with JavaMOP specifications of desired

program properties that are validated dynamically at runtime.

Using the approach, one can specify that some sequence of

methods must be atomic, but the specific way of ensuring the

atomicity (e.g., the fact that some lock must be held) has to be

encoded by the user in the specification. On the other hand,

when our contracts are used for checking atomicity, the user

8We tried an experiment in which we tracked no parameter values at all.
Then, for Chromium-1, our tool reported 14 potential violations instead of the
2 real ones, showing that distinguishing target/spoiler instances is important.

just specifies the sequence of method calls and does not have

to care about the way the atomicity should be ensured.

Most works targeting errors in concurrent programs have

concentrated on detecting data races and deadlocks. These

errors are, however, of a different nature than those captured by

contracts, and hence methods and tools developed for detect-

ing them—including well-known ones, such as, Eraser [37],

RaceTrack [43], GoldiLocks [14], FastTrack [20], or Good-

Lock [22]—cannot be used for contract violation detection.

Significantly less works targeted detection of various kinds

of atomicity violation [19], [30], [41], including different

forms of high-level data races [2], [13], [15] or stale value

errors [3], [7], [13]. Detectors based on access patterns to

shared variables [29], [40], type systems [8], semantic invari-

ants [11], and dynamic analysis [19], [21], [42] have been

proposed for detecting this kind of errors. Despite atomicity

violation is closer to contract violation, contract violation is

still more general. This is, atomicity violations can be detected

as contract violations (possibly with a need to view accesses

to variables as method calls) but not vice versa. An example

of an error that can be captured via contract validation but not

atomicity validation is that of order violation. Such an error

happens in the Link Manager where a shared queue is used

before it is initialised. As the queue (variable) is accessed only

once in each of the threads and both accesses are guarded by

the same lock, it is neither an atomicity violation nor a data

race, and yet we were able to detect it.

ICFinder [28] is the closest tool to Gluon. It uses a static

analysis to automatically infer which pairs of calls to a module

are incorrect. This is achieved by identifying and applying

two common incorrect composition patterns: one capturing

stale value errors and the other one trying to infer correlations

between method calls by analyzing the CFG of the client’s

program. These patterns are extremely broad and yield many

false positives. The authors address this issue by filtering

the results from the static analysis with a dynamic analysis

that only considers violations defined in [40]. This analysis

assumes that the notion of atomic set was correctly inferred by

ICFinder. None of the atomicity violations detected by Gluon

in our larger benchmarks was captured by ICFinder since their

patterns failed to match the source of those violations.

In [17], a dynamic contract validation based on lock-sets

was proposed. However, it supports basic contracts only, it

can miss many violations, and it reports false positives. Our

approach is based on the happens-before relation [20], [34],

[42], encoded by vector clocks in a way specifically optimised

for efficient tracking of target and spoiler instances. It supports

contracts with spoilers, and it is able to detect more violations

without producing false positives.

VI. Conclusion and FutureWork

We have extended the previously established notion of

contracts for concurrency with arguments and spoilers, each

of the extensions allowing one to describe contracts more pre-

cisely. Then, we have proposed two methods to validate such

contracts—namely, a static and a dynamic one, each of them

offering complementary advantages. We have evaluated both

methods on a set of simple as well as real-world programs,

showing that both of them can be practically useful.

There are many possibilities for future work. For instance,

while it is conceptually easy to support contracts with both

arguments and spoilers in the dynamic approach, this can

be rather costly in practice due to many target and spoiler

instances to be tracked. Suitable optimisations are thus likely

needed. Next, static validation of contracts with contextual

information remains open. Further, it seems promising to

combine the static and dynamic approach—e.g., by letting the

static approach to drive the dynamic one to likely problematic

code. More involved ways of automatically deriving contract

candidates are also an interesting issue for further work.

References

[1] F. E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970.

[2] C. Artho, K. Havelund, and A. Biere. High-level data races. Software

Testing, Verification and Reliability, 13(4):207–227, Dec. 2003.

[3] C. Artho, K. Havelund, and A. Biere. Using block-local atomicity
to detect stale-value concurrency errors. Automated Technology for

Verification and Analysis, pages 150–164, 2004.

[4] N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage
of atomic blocks and typestate. SIGPLAN Not., 43(10):227–244, Oct.
2008.

[5] J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow analysis
of while-programs. ACM Transactions on Programming Languages and

Systems (TOPLAS), 7(1):37–61, 1985.

[6] E. Bodden and L. Hendren. The clara framework for hybrid typestate
analysis. International Journal on Software Tools for Technology

Transfer, 14(3):307–326, 2012.

[7] M. Burrows and K. Leino. Finding stale-value errors in concurrent
programs. Concurrency and Computation: Practice and Experience,
16(12):1161–1172, 2004.

[8] L. Caires and J. a. C. Seco. The type discipline of behavioral separation.
SIGPLAN Not., 48(1):275–286, Jan. 2013.

[9] Y. Cheon and A. Perumandla. Specifying and checking method call
sequences of java programs. Software Quality Control, 15(1):7–25, Mar.
2007.

[10] C. Cowan, H. Hinton, C. Pu, and J. Walpole. The cracker patch
choice: An analysis of post hoc security techniques. In Proceedings of

the 23rd National Information Systems Security Conference. USENIX
Association, 2000.

[11] R. Demeyer and W. Vanhoof. A framework for verifying the application-
level race-freeness of concurrent programs. In 22nd Workshop on Logic-

based Programming Environments (WLPE 2012), page 10, 2012.

[12] R. F. Dias, C. Ferreira, J. Fiedor, J. M. Lourenço, A. Smrčka, D. G.
Sousa, and T. Vojnar. Verifying concurrent programs using contracts.
Technical report, 2016. http://www.fit.vutbr.cz/~vojnar/Publications/
tr-contracts-16.pdf.

[13] R. J. Dias, V. Pessanha, and J. M. Lourenço. Precise detection of atom-
icity violations. In Hardware and Software: Verification and Testing,
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, Nov.
2012. HVC 2012 Best Paper Award.

[14] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-aware Java Runtime. In Proc. of PLDI’07, pages 245–255,
New York, NY, USA, 2007. ACM.

[15] E. Farchi, I. Segall, J. a. M. Lourenço, and D. Sousa. Using program
closures to make an application programming interface (api) implemen-
tation thread safe. In Proceedings of the 2012 Workshop on Parallel

and Distributed Systems: Testing, Analysis, and Debugging, PADTAD
2012, pages 18–24, New York, NY, USA, 2012. ACM.

[16] J. Fiedor, V. Hrubá, B. Křena, Z. Letko, S. Ur, and T. Vojnar. Advances
in noise-based testing. STVR, 24(7):1–38, 2014.

[17] J. Fiedor, Z. Letko, J. Lourenço, and T. Vojnar. Dynamic validation
of contracts in concurrent code. In Computer Aided Systems Theory–

EUROCAST 2015, number 9520, pages 555–564. Springer-Verlag, 2015.

http://www.fit.vutbr.cz/~vojnar/Publications/tr-contracts-16.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/tr-contracts-16.pdf

[18] J. Fiedor and T. Vojnar. ANaConDA: A Framework for Analysing Multi-
threaded C/C++ Programs on the Binary Level. In Proc. of RV’13,
volume 7687 of LNCS, pages 35–41. Springer-Verlag, 2013.

[19] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. SIGPLAN Not., 39(1):256–267, Jan. 2004.

[20] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic
race detection. In PLDI’09: Proceedings of the 2009 ACM SIGPLAN

conference on Programming language design and implementation, pages
121–133, New York, NY, USA, 2009. ACM.

[21] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs. SIGPLAN Not.,
43(6):293–303, 2008.

[22] K. Havelund. Using runtime analysis to guide model checking of java
programs. In Proceedings of the 7th International SPIN Workshop

on SPIN Model Checking and Software Verification, pages 245–264,
London, UK, 2000. Springer-Verlag.

[23] C. Hurlin. Specifying and checking protocols of multithreaded classes.
In Proceedings of the 2009 ACM symposium on Applied Computing,
SAC ’09, pages 587–592, New York, NY, USA, 2009. ACM.

[24] IBM’s Concurrency Testing Repository.

[25] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. Radbench: A concurrency
bug benchmark suite. In Proceedings of the 3rd USENIX Conference

on Hot Topic in Parallelism, HotPar’11, Berkeley, CA, USA, 2011.
USENIX Association.

[26] D. E. Knuth. On the translation of languages from left to right.
Information and control, 8(6):607–639, 1965.

[27] B. Krebs. A time to patch II: Mozilla, 2006. Last visited March 2016.

[28] P. Liu, J. Dolby, and C. Zhang. Finding incorrect compositions of
atomicity. In Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, pages 158–168. ACM, 2013.

[29] J. Lourenço, D. Sousa, B. Teixeira, and R. Dias. Detecting concurrency
anomalies in transactional memory programs. Computer Science and

Information Systems/ComSIS, 8(2):533–548, 2011.

[30] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants. In Proc. of ASPLOS’06,
pages 37–48, New York, NY, USA, 2006. ACM.

[31] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. ŞerbănuŢă,
and G. Roşu. RV-Monitor: Efficient Parametric Runtime Verification

with Simultaneous Properties, pages 285–300. Springer International
Publishing, Cham, 2014.

[32] B. Meyer. Applying "design by contract". Computer, 25(10):40–51,
Oct. 1992.

[33] V. Pessanha. Verificação prática de anomalias em programas de memória
transaccional (Practical verification of anomalies in transactional mem-
ory programs). Master’s thesis, Universidade Nova de Lisboa, 2011.

[34] E. Pozniansky and A. Schuster. Efficient On-the-fly Data Race Detection
in Multithreaded C++ Programs. In Proc. of PPoPP’03, pages 179–190,
New York, NY, USA, 2003. ACM.

[35] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking api
protocol conformance with mined multi-object specifications. In Pro-

ceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 925–935, Piscataway, NJ, USA, 2012. IEEE Press.

[36] E. Rescorla. Security holes... who cares? In Proceedings of the 12th

Conference on USENIX Security Symposium, pages 75–90, Berkeley,
CA, USA, 2003. USENIX Association.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-threaded Programs.
In Proc. of SOSP’97, pages 27–37, New York, NY, USA, 1997. ACM.

[38] D. G. Sousa, R. J. Dias, C. Ferreira, and J. M. Lourenço. Preventing
atomicity violations with contracts. arXiv preprint arXiv:1505.02951,
May 2015.

[39] M. Tomita. An efficient augmented-context-free parsing algorithm.
Comput. Linguist., 13(1-2):31–46, Jan. 1987.

[40] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In ACM SIGPLAN Notices,
volume 41, pages 334–345. ACM, 2006.

[41] C. Von Praun and T. Gross. Static detection of atomicity violations in
object-oriented programs. Journal of Object Technology, 3(6):103–122,
2004.

[42] J. Yi, C. Sadowski, and C. Flanagan. SideTrack: Generalizing Dynamic
Atomicity Analysis. In Proceedings of the 7th Workshop on Parallel

and Distributed Systems: Testing, Analysis, and Debugging, PADTAD
’09, pages 8:1–8:10, New York, NY, USA, 2009. ACM.

[43] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: efficient detection of
data race conditions via adaptive tracking. SIGOPS Oper. Syst. Rev.,
39(5):221–234, 2005.

	Introduction
	Contracts for Concurrency
	Basic Contracts
	Extending Contracts with Parameters
	Extending Contracts with Spoilers

	Static Contract Validation
	Extracting the Behaviour of a Program
	Contract Verification
	Analysis with Points-to
	Class Scope Mode
	Validation and Evaluation

	Dynamic Contract Validation
	Preliminaries
	On-the-Fly Dynamic Contract Validation
	Trace Windows
	Discarding Spoilers
	Discarding Targets
	Vector Clocks and Further Optimizations
	Method Description

	Implementation and Experiments

	Related Work
	Conclusion and Future Work
	References

