
VATA: A Library for Efficient Manipulation of
Non-Deterministic Tree Automata?

Ondřej Lengál1, Jiřı́ Šimáček1,2, and Tomáš Vojnar1

1 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic
2 VERIMAG, UJF/CNRS/INPG, Gières, France

Abstract. In this paper, we present VATA, a versatile and efficient open-source
tree automata library applicable, e.g., in formal verification. The library sup-
ports both explicit and semi-symbolic encoding of non-deterministic finite tree
automata and provides efficient implementation of standard operations on both.
The semi-symbolic encoding is intended for tree automata with large alphabets.
For storing their transition functions, a newly implemented MTBDD library is
used. In order to enable the widest possible range of applications of the library
even for the semi-symbolic encoding, we provide both bottom-up and top-down
semi-symbolic representations. The library implements several highly optimised
reduction algorithms based on downward and upward simulations as well as algo-
rithms for testing automata inclusion based on upward and downward antichains
and simulations. We compare the performance of the algorithms on a set of test
cases and we also compare the performance of VATA with our previous imple-
mentations of tree automata.

1 Introduction

Several current formal verification techniques are based on finite tree automata (TA).
Some of these techniques are: (abstract) regular tree model checking [3,5] applied, e.g.,
for verification of programs with complex dynamic data structures [6,11], implemen-
tation of decision procedures of several logics, such as MSO or WSkS [17], or verifi-
cation of programs manipulating heap structures with data [18]. The success of these
techniques often depends on the performance of the underlying implementation of TA.

Currently, there exist several available tree automata libraries, they are, however,
mostly written in OCaml (e.g., Timbuk/Taml [10]) or Java (e.g., LETHAL [9]) and they
do not always use the most advanced algorithms known to date. Therefore, they are not
suitable for tasks which require the available processing power be utilised as efficiently
as possible. An exception from these libraries is MONA [17] implementing decision
procedures over WS1S/WS2S, which contains a highly optimised TA package written
in C, but, alas, it supports only binary deterministic tree automata. At the same time, it
turns out that determinisation is often a very significant bottleneck of using TA, and a lot

? This work was supported by the Czech Science Foundation within projects No. P103/10/0306
and 102/09/H042, the Czech Ministry of Education within projects COST OC10009
and MSM 0021630528, and the EU/Czech IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070.

of effort has therefore been invested into developing efficient algorithms for handling
non-deterministic tree automata without a need to ever determinise them.

In order to allow researchers focus on developing verification techniques rather than
reimplementing and optimising a TA package, we provide VATA3, an easy-to-use open-
source library for efficient manipulation of non-deterministic TA. VATA supports many
of the operations commonly used in automata-based formal verification techniques over
two complementary encodings: explicit and semi-symbolic. The explicit encoding is
suitable for most applications that do not need to use alphabets with a large number
of symbols. However, some formal verification approaches make use of such alphabets,
e.g., the approach for verification of programs with complex dynamic data structures [5]
or decision procedures of the MSO or WSkS logics [17]. Therefore, in order to address
this issue, we also provide the semi-symbolic encoding of TA, which uses multi-terminal
binary decision diagrams [8] (MTBDDs), an extension of reduced ordered binary de-
cision diagrams [7] (BDDs), to store the transition function of a TA. In order to enable
the widest possible range of applications of the library even for the semi-symbolic en-
coding, we provide both bottom-up and top-down semi-symbolic representations.

At the present time, the main application of the structures and algorithms imple-
mented in VATA for handling explicitly encoded TA is the Forester tool for verification
of programs with complex dynamic data structures [11]. The semi-symbolic encoding
of TA has so far been used mainly for experiments with various newly proposed algo-
rithms for handling TA.

In this paper, we do not present all exact details of the algorithms implemented in
the library as they can be found in the referenced literature. Rather, we give an overview
of the algorithms available, while mentioning various interesting optimisations that we
used when implementing them. Based on experimental evidence, we argue that these
optimisations are crucial for the performance of the library.

2 Preliminaries

A ranked alphabet Σ is a finite set of symbols together with a ranking function # : Σ→
N. For a∈ Σ, the value #a is called the rank of a. For any n≥ 0, we denote by Σn the set
of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t over a ranked
alphabet Σ is a partial mapping t : N∗→ Σ that satisfies the following conditions: (1) the
domain of t, dom(t), is a finite prefix-closed subset of N∗ and (2) for each v∈ dom(t), if
#t(v) = n≥ 0, then {i | vi ∈ dom(t)}= {1, . . . ,n}. Each sequence v ∈ dom(t) is called a
node of t. For a node v, we define the ith child of v to be the node vi, and the ith subtree
of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈N∗. A leaf of t is a node v which
does not have any children, i.e., there is no i ∈N with vi ∈ dom(t). We denote by TΣ the
set of all trees over the alphabet Σ.

A (finite, non-deterministic) tree automaton (abbreviated sometimes as TA in the
following) is a quadruple A = (Q,Σ,∆,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and ∆ is a set of transition rules. Each
transition rule is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q,a ∈ Σ,

3 http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

2

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

and #a = n. We use equivalently (q1, . . . ,qn)
a−→ q and q a−→ (q1, . . . ,qn) to denote

that ((q1, . . . ,qn),a,q) ∈ ∆. The two notations correspond to the bottom-up and top-
down representation of tree automata, respectively. Note that we can afford to work
interchangeably with both of them since we work with non-deterministic tree automata,
which are known to have an equal expressive power in their bottom-up and top-down
representations. In the special case when n = 0, we speak about the so-called leaf rules,
which we sometimes abbreviate as a−→ q or q a−→.

Let A =(Q,Σ,∆,F) be a TA. A run of A over a tree t ∈ TΣ is a mapping π : dom(t)→
Q such that, for each node v ∈ dom(t) of rank #t(v) = n where q = π(v), if qi = π(vi)

for 1≤ i ≤ n, then ∆ has a rule (q1, . . . ,qn)
t(v)−→ q. We write t π

=⇒ q to denote that π is
a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t π

=⇒ q for some run
π. The language accepted by a state q is defined by LA(q) = {t | t =⇒ q}, while the
language of a set of states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When it is clear

which TA A we refer to, we only write L(q) or L(S). The language of A is defined as
L(A) = LA(F).

A downward simulation on TA A = (Q,Σ,∆,F) is a preorder relation �D⊆ Q×Q
such that if q �D p and (q1, . . . ,qn)

a−→ q, then there are states p1, . . . , pn such that
(p1, . . . , pn)

a−→ p and qi �D pi for each 1 ≤ i ≤ n. Given a TA A = (Q,Σ,∆,F) and
a downward simulation �D, an upward simulation �U⊆ Q×Q induced by �D is a re-
lation such that if q �U p and (q1, . . . ,qn)

a−→ q′ with qi = q for some 1 ≤ i ≤ n, then
there are states p1, . . . , pn, p′ such that (p1, . . . , pn)

a−→ p′ where pi = p, q′ �U p′, and
q j �D p j for each j such that 1≤ j 6= i≤ n.

3 Design of the Library

The library is designed in a modular way (see Fig. 1). The user can choose a module
encapsulating her preferred automata encoding and its corresponding operations. Vari-
ous encodings share the same general interface so it is easy to swap one encoding for
another, unless encoding-specific functions or operations are taken advantage of.

Thanks to the modular design of the library, it is easy to provide an own encoding of
tree (or word) automata and effectively exploit the remaining parts of the infrastructure,
such as parsers and serializers from/to different formats, the unit testing framework,
performance tests, etc.

The VATA library is implemented in C++ using the Boost C++ libraries. In order to
avoid expensive look-ups of entry points of virtual methods in the virtual-method table
of an object and to fully exploit compiler’s capabilities of code inlining and optimisation
of code according to static analysis, the library heavily exploits polymorphism using
C++ function templates instead of using virtual methods for core functions. We are
convinced that this is the main reason why the performance of the optimised code (the
-O3 flag of gcc) is up to 10 times better than the performance of the non-optimised code
(the -O0 flag of gcc).

3

Encoding

Core Operations

Explicit

Core Operations

MTBDD Bottom-Up

Core Operations

MTBDD Top-Down

Core Operations
<other>

Core Operations

Automata encodings

Parser1

Parser2

... Parsers

Serializer1

Serializer2

... Serializers

Program

Fig. 1. The architecture of the VATA library

3.1 Explicit Encoding

In the explicit representation of TA used in VATA, top-down transitions having the form
q a−→ (q1, . . . ,qn) are stored in a hierarchical data structure similar to a hash table.
More precisely, the top-level lookup table maps states to transition clusters. Each such
cluster is itself a lookup table that maps alphabet symbols to a set of pointers to tuples
of states. The set of pointers to tuples of states is represented using a red-black tree.
The tuples of states are stored in a designated hash table to further reduce the required
amount of space (by not storing the same tuples of states multiple times). An example
of the encoding is depicted in Fig. 2.

Hence, in order to insert the transition q a−→ (q1, . . . ,qn) into the transition table,
one proceeds using the following algorithm:

1. Find a transition cluster which corresponds to the state q in the top-level lookup
table. If such a cluster does not exist, create one.

2. In the given cluster, find a set of pointers to tuples of states reachable from q over
a. If the set does not exist, create one.

3. Obtain the pointer to the tuple (q1, . . . ,qn) from the tuple lookup table and insert it
into the set of pointers.

If one ignores the worst-case time complexity of the underlying data structures
(which, according to our experience, has usually a negligible real impact only), then
inserting a single transition into the transition table requires a constant number of steps
only. Yet the representation provides a more efficient encoding than a plain list of tran-
sitions because some transitions share the space required to store the parent states (e.g.,
state q in the transition q a−→ (q1, . . . ,qn)). Moreover, some transitions also share the
alphabet symbol and each tuple of states appearing in the set of transitions is stored only

4

AutomataA B C

Top-level
Lookup Tables

q1 q2 q3 q1 q2

Transition Clusters
a b c e b c e

Sets of
Pointers to Tuples

Tuples of States(q1,q1) (q1,q2) (q2,q2) (q3,q2)()

Fig. 2. An example of the VATA’s explicit encoding of transition functions of three automata A,
B, C. In particular, one can see that A contains a transition q1

c−→ (q1,q2): it suffices to follow
the corresponding arrows. Moreover, B also contains the same transition (and the corresponding
part of the transition table is shared with A). Finally, C has the same transitions as B.

once. Additionally, the encoding allows us to easily perform certain critical operations,
such as finding a set of transitions q a−→ (q1, . . . ,qn) for a given state q. This is useful,
e.g., during the elimination of (top-down) unreachable states or during the top-down
inclusion checking.

In some situations, one needs to manipulate many tree automata at the same time.
As an example, we can mention the method for verifying programs with dynamic linked
data structures introduced in [11] where (in theory) one needs to store one automaton
representing a content of the heap for each reachable state of the program. To improve
the performance of our library in such scenarios, we adapt the copy-on-write principle.
Every time one needs to create a copy of an automaton A to be subsequently modified, it
is enough to create a new automaton A′ which obtains a pointer to the transition table of
A (which requires constant time). Subsequently, as more transitions are inserted into A′

(or A), only the part of the shared transition table which gets modified is copied (Fig. 2
provides an illustration of this feature).

3.2 Semi-Symbolic Encoding

The semi-symbolic encoding uses multi-terminal binary decision diagrams (MTBDDs)
to encode transition functions of tree automata. MTBDDs are an extension of binary
decision diagrams (BDDs), a popular data structure for compact encoding and manipu-
lation with Boolean formulae. In contrast to BDDs that are used to represent a function

5

q

{(r,s),(r, t)}
{(s),(t),(u)}

/0
{(u,u,u)}

a) top-down

(q1, . . . ,qn)

{r,s} {s, t,u} /0 {u}

b) bottom-up

Fig. 3. The (a) top-down and (b) bottom-up semi-symbolic encodings of transition functions.
Paths in the MTBDD correspond to symbols.

b : Bn → B for some n ∈ N and B = {0,1}, MTBDDs extend the co-domain to an
arbitrary set S, i.e., they represent a function m : Bn→ S.

We support two representations of semi-symbolic automata: top-down and bottom-
up. The top-down representation (see Fig. 3a) maintains for each state q of a tree
automaton an MTBDD that maps the binary representation of each symbol f con-
catenated with the binary representation of its arity n onto a set of tuples of states

T = {(q1, . . . ,qn), . . .} such that for all (q1, . . . ,qn) ∈ T there exist the transition q
f−→

(q1, . . . ,qn) in the automaton. The arity is encoded in the MTBDD as a part of the sym-
bol in order to be able to distinguish between several instances of the same symbol with
different arity. The library thus supports a slight extension of tree automata in which
a symbol does not have a fixed arity.

The bottom-up representation (see Fig. 3b), on the other hand, maintains for each
tuple (q1, . . . ,qn) ∈ Q∗ an MTBDD that maps the binary representation of each symbol
f onto a set of states S = {q, . . .} such that, for all q ∈ S, it holds that the transition

(q1, . . . ,qn)
f−→ q is in the automaton. Note that the bottom-up representation does not

need to encode the arity of the symbol f into the MTBDD as it is given by the arity of
the tuple for which the MTBDD is maintained. It is easy to see that the two presented
encodings are mutually convertible (see [13] for the algorithm).

MTBDD Package. Our previous implementation of semi-symbolically represented
tree automata used a customisation of the CUDD [20] library for manipulating
MTBDDs. The experiments in [12] and profiling of the code showed that the over-
head of the customised library is too large. Moreover, the customisation of CUDD did
not provide an easy and transparent way of manipulating MTBDDs. These two facts
showed that VATA would greatly benefit from a major redesign of the MTBDD back-

6

end. Therefore, we created our own generic implementation of MTBDDs with a clean
and simple-to-use interface.

The new MTBDD package uses shared MTBDDs for each domain, which means
that all MTBDDs for the given domain are connected in a single directed acyclic graph
(DAG), and an MTBDD corresponds to a pointer to a node in the DAG. In order to
prevent memory leaks, each node of the MTBDD contains a reference counter of other
nodes or variables pointing to it. In case the counter reaches zero, the node is deleted
from the memory. Because of these implementation choices, copying an MTBDD can
be easily done by simply copying the pointer to the root node of the copied MTBDD
and incrementing its reference counter.

There are two types of nodes of the MTBDD: internal nodes and leaf nodes. A leaf
node contains a value from the domain of the MTBDD, while an internal node contains
a variable name and pointers to the low and high children of the node. In addition,
nodes of both types also contain the aforementioned reference counter. The nodes are
manipulated using pointers to them only, and the distinction between a leaf node and an
internal node is done according to the least significant bit of the pointer (the compiler
aligns these data structures to addresses which are multiples of 4, this bit can therefore
be neglected and when accessing the value of a node pointer simply masked out).

For our use, we implemented unary, binary, and ternary Apply operations, which
are operations that, given a unary, binary, or ternary function and one, two, or three
MTBDDs, respectively, generate a new MTBDD the leaves of which correspond to the
values of the given function applied to the provided MTBDDs. Note that the provided
function does not need to be a pure function but my also have a side-effect. Further, we
also provide VoidApply operations which are Apply operations that do not build a new
MTBDD but that have a side-effect only. For operations that do not need to build new
MTBDDs but rather, e.g., only collect data from the leaf nodes, using VoidApply saves
a considerable and unnecessary overhead. During the execution of an Apply operation,
both internal and leaf nodes are cached using hash tables.

The newly implemented MTBDD package does not support MTBDD reordering so
far, yet the library performs better when compared to our original implementation of
a semi-symbolic encoding that used customised CUDD.

4 Supported Operations

As we described in the previous section, the VATA library allows a user to choose one
of three available encodings: the explicit top-down, the semi-symbolic top-down, and
the semi-symbolic bottom-up. Depending on the choice, certain TA operations may or
may not be available. The following operations are supported by at least one of the
representations: union, intersection, elimination of (bottom-up, top-down) unreachable
states, inclusion checking (bottom-up, top-down), computation of (maximum) simula-
tion relations (downward, upward), and language preserving size reduction based on
simulation equivalence. In some cases, multiple implementations of an operation are
available, which is especially the case for language inclusion. This is because the differ-
ent implementations are based on different heuristics that may work better for different
applications as witnessed also by our experiments described in Section 5.

7

Below, we do not discuss the relatively straightforward implementation of the most
basic operations on TA and we comment on the more advanced operations only.

4.1 Removing Unreachable States

As the performance of many operations on automata depends on the size of the au-
tomaton (in the sense of the size of the state set and the size of the transition table), it
is often desirable to remove both bottom-up and top-down unreachable states. Indeed,
such states are useless: bottom-up unreachable states cannot be used to generate a finite
tree and although top-down unreachable states can generate a finite tree, this tree cannot
be a subtree of any tree accepted by the automaton.

Removing both bottom-up unreachable states for the bottom-up representation and
top-down unreachable states for the top-down representation can be easily done by
a single traversal through the automaton. Nevertheless, sometimes, e.g., when checking
language inclusion of the automata, it is useful to also remove states unreachable in the
opposite direction.

The procedure for removing top-down unreachable states from a tree automaton
represented in a bottom-up semi-symbolic way generates a directed graph (Q,E) where
Q is the state set of the input automaton and (q,r)∈E if ∃a∈Σ : q a−→ (q1, . . . ,qn),∃1≤
i≤ n : r = qi. When the graph is created, the states that are backward unreachable from
the final states are removed from the automaton in a simple traversal.

Removing bottom-up unreachable states for the top-down semi-symbolic represen-
tation is more complex. First, the automaton is traversed in the top-down manner while
creating an And-Or graph (N∀,N∃,E) where N∀ = Q, Q is the state set of the input
automaton and represents the And nodes of the graph, and N∃ ⊆ Q∗ represents the Or
nodes. The set of edges E contains the edge (q,(q1, . . . ,qn)) if there exists the transi-
tion q a−→ (q1, . . . ,qn) for some a ∈ Σ in the automaton, and the edge ((q1, . . . ,qn),q)
if ∃1≤ i≤ n : qi = q. The algorithm starts by marking the node labelled by () (which is
an Or node) and proceeds by marking the nodes of the graph using the following rules:
an Or node o is marked if there exists a marked node a such that (o,a) ∈ E, and an And
node a is marked if all nodes o such that (a,o) ∈ E are marked. When no new nodes
can be marked, the states of the automaton are reduced to only those that correspond to
marked And nodes in the graph.

4.2 Downward and Upward Simulation

Downward simulation relations can be computed over two tree automata representa-
tions in VATA: the explicit top-down and the semi-symbolic top-down encoding. The
explicit variant first translates a tree automaton into a labelled transition system (LTS)
as described in [1]. Then the simulation relation for this system is computed using an
implementation of the state-of-the-art algorithms for computing simulations on LTSs
[19,14] with some further optimisations mentioned in Section 4.6. Finally, the result is
projected back to the set of states of the original automaton.

The semi-symbolic variant uses a simpler simulation algorithm based on a general-
isation of [16] to trees.

8

Upward simulation can currently be computed over the explicit representation only.
The computation is again performed via a translation to an LTS (the details are in [1]),
and the relation is computed using the engine for computing simulation relations on
LTSs as above.

4.3 Simulation-based Size Reduction

In a typical setting, one often wants to use a representation of tree automata that is as
small as possible in order to reduce the memory consumption and/or speed up opera-
tions on the automata (especially the potentially costly ones, such as inclusion testing).
To achieve that, the classical approach is to use determinisation and minimisation. How-
ever, the minimal deterministic tree automata can still be much bigger than the original
non-deterministic ones. Therefore, VATA offers a possibility to reduce the size of tree
automata without determinisation by their quotienting w.r.t. an equivalence relation—
currently, only the downward simulation equivalence is supported.

The procedure works as follows: first, the downward simulation relation�D is com-
puted for the automaton. Then, the symmetric fragment of�D (which is an equivalence)
is extracted, and each state appearing within the transition function is replaced by a rep-
resentative of the corresponding equivalence class. A further reduction is then based
on the following observation: if an automaton contains a transition q a−→ (q1, . . . ,qn),
any additional transition q a−→ (r1, . . . ,rn) where ri �D qi can be omitted since it does
not contribute to the language of the result (recall that, for the downward simulation
preorder �D, it holds that q�D r =⇒ L(q)⊆ L(r)).

4.4 Bottom-up Inclusion

Bottom-up inclusion testing is implemented for the explicit top-down and the semi-
symbolic bottom-up representation in VATA. As its name suggests, the algorithm natu-
rally proceeds in the bottom-up way, therefore the top-down encoding is not very suit-
able here. In the case of the explicit representation, however, one can afford to build
a temporary bottom-up encoding since the overhead of such a translation is negligible
compared to the complexity of following operations.

Both the explicit and semi-symbolic version of the bottom-up inclusion algorithm
are based on the approach introduced in [4]. Here, the main principle used for checking
whether L(A)⊆ L(B) is to search for a tree which is accepted by A and not by B (thus
being a witness for L(A) 6⊆ L(B)). This is done by simultaneously traversing both
A and B from their leaf rules while generating pairs (pA ,PB) ∈ QA × 2QB where pA
represents a state into which A can get on some input tree and PB is the set of all states
into which B can get over the same tree. The inclusion then does clearly not hold iff it
is possible to generate a pair consisting of an accepting state of A and of exclusively
non-accepting states of B .

The algorithm collects the so far generated pairs (pA ,PB) in a set called Visited.
Another set called Next is used to store the generated pairs whose successors are still
to be explored. One can then observe that whenever one can reach a counterexample to
inclusion from (pA ,PB), one can also reach a counterexample from any (pA ,P′B ⊆ PB)

9

as P′B allows less runs than PB . Using this observation, both mentioned sets can be rep-
resented using antichains. In particular, one does not need to store and further explore
any two elements comparable w.r.t. (=,⊆), i.e., by equality on the first component and
inclusion on the other component.

Clearly, the running time of the above algorithm strongly depends on the total num-
ber of pairs (pA ,PB) taken from Next for further processing. Indeed, this is one of the
reasons why the antichain-based optimisations helps. According to our experience, the
number of pairs which needs to be processed can further be reduced when processing
the pairs stored in Next in a suitable order. Our experimental results have shown that
we can achieve a very good improvement by preferring those pairs (pA ,PB) which have
smaller (w.r.t. the size of the set) second component.

Yet another way that we found useful when improving the above algorithm is to
optimise the way the algorithm computes the successors of a pair from Next. The orig-
inal algorithm picks a pair (pA ,PB) from Next and puts it into Visited. Then, it finds
all transitions of the form (pA ,1, . . . , pA ,n)

a−→ p in A such that (pA ,i,PB,i) ∈ Visited
for all 1 ≤ i ≤ n and (pA , j,PB, j) = (pA ,PB) for some 1 ≤ j ≤ n. For each such transi-
tion, it finds all transitions of the form (q1, . . . ,qn)

a−→ q in B such that qi ∈ PB,i for all
1 ≤ i ≤ n. Here, the process of finding the needed B transitions is especially costly. In
order to speed it up, we cache for each alphabet symbol a, each position i, and each set
PB,i, the set of transitions {(q1, . . . ,qn)

a−→ q ∈ ∆B : qi ∈ PB,i} at the first time it is used
in the computation of successors. Then, whenever we need to find all transitions of the
form (q1, . . . ,qn)

a−→ q in B such that qi ∈ PB,i for all 1 ≤ i ≤ n, we find them simply
by intersecting the sets of transitions cached for each (PB,i, i,a).

Next, we propose another modification of the algorithm which aims to improve
the performance especially in those cases where finding a counterexample to inclusion
requires us to build representatives of trees with higher depths or in the cases where the
inclusion holds. Unlike the original approach which moves only one pair (pA ,PB) from
Next to Visited at the beginning of each iteration of the main loop, we add the newly
created pairs (pA ,PB) into Next and Visited at the same time (immediately after they
are generated). This, according to our experiments, allows Visited to converge faster
towards the fixpoint.

Finally, another optimisation of the algorithm presented in [4] appeared in [2]. This
optimisation maintains the sets Visited and Next as antichains w.r.t. (�U ,�∃∀U)4. Hence,
more pairs can be discarded from these sets. Moreover, for pairs that cannot be dis-
carded, one can at least reduce the sets on their right-hand side by removing states that
are simulated by some other state in these sets (this is based on the observation that any
tree accepted from an upward-simulation-smaller state is accepted from an upward-
simulation-bigger state too). Finally, one can also use upward simulations between
states of the two automata being compared. Then, one can discard any pair (pA ,PB)
such that there is some pB ∈ PB that upward-simulates pA because it is then clear that
no tree can be accepted from pA that could not be accepted from pB . All these opti-

4 One says that P�∃∀U Q holds iff ∀p∈ P ∃q∈Q : p�U q. Note also that the upward simulation
must be parameterised by the identity in this case [2].

10

misations are also available in VATA and can optionally be used—they are not used by
default since the computation of the upward simulation can be quite costly.

4.5 Top-down Inclusion

Top-down inclusion checking is supported by the explicit top-down and semi-symbolic
top-down representations in VATA. Note that when one tries to solve inclusion of TA
languages top-down in a naı̈ve way, using a plain subset-construction-like approach,
one immediately hits a problem due to the top-down successors of particular states are
tuples of states. Hence, after one step of the construction, one needs to check inclusion
on tuples of states, then tuples of tuples of states, etc. However, there is a way how to
get out of this trap as shown in [15,12]. Very roughly said, the main idea of the approach
resembles a conversion from the disjunctive normal form (DNF) to the conjunctive nor-
mal form (CNF) taking into account that top-down transitions of tree automata form a
kind of and-or graphs (the disjunctions are between top-down transitions and conjunc-
tions among the successors within particular transitions).

VATA contains an implementation of the top-down inclusion checking algorithm
of [12]. This algorithm uses several optimisations, e.g., caching of results of auxiliary
language inclusion queries between states of the automata whose languages are being
compared. More precisely, when checking whether L(A)⊆L(B) holds for two tree au-
tomata A and B , the algorithm stores a set of pairs (pA ,PB) ∈ QA ×2QB for which the
language inclusion L(pA)⊆ L(PB) has been shown not to hold. As a further optimisa-
tion, the set is stored as an antichain based on comparing the states w.r.t. the downward
simulation preorder. The use of the downward simulation is one of the main advantages
of this approach compared with the bottom-up inclusion checking since this preorder is
cheaper to compute and usually richer than the upward simulation. Indeed, [12] shows
that top-down inclusion checking is often—though not always—superior to bottom-up
inclusion checking.

Moreover, VATA has recently been extended by a new version of the top-down
inclusion checking algorithm that extends the original version by caching even the pairs
(pA ,PB)∈QA×2QB for which the language inclusion L(pA)⊆L(PB) has been shown
to hold. This extension is far from trivial since the caching must be done very carefully
in order to avoid a sort of circular reasoning when answering the various auxiliary
language inclusion queries. A precise description of this rather involved algorithm is
beyond the scope of this article, and so we refer an interested reader to [13]. As our
experiments show, the new kind of caching comes with some overhead, which does not
allow it to always win over the previous algorithm, but there are still many cases in
which it performs significantly better.

4.6 Computing Simulation over LTS

The explicit part of VATA uses a highly optimised LTS simulation algorithm proposed
in [19] and greatly improved in [14]. The main idea of the algorithm is to start with
an overapproximation of the simulation preorder (a possible initial approximation is
the relation Q×Q) which is then iteratively pruned whenever it is discovered that the
simulation relation cannot hold for certain pairs of states. For a better efficiency, the

11

algorithm represents the current approximation R of the simulation being computed
using a so-called partition-relation pair. The partition splits the set of states into subsets
(called blocks) whose elements are equivalent w.r.t. R, and a relation obtained by lifting
R to blocks.

In order to be able to deal with the partition-relation pair efficiently, the algorithm
needs to record for each block a matrix of counters of size |Q||Σ| where, for the given
LTS, Q is the set of states and Σ is the set of labels. The counters are used to count
how many transitions going from the given state via a given symbol a lead to states in
the given block (or blocks currently considered to be bigger w.r.t. the simulation). This
information is then used to optimise re-computation of the partition-relation pair when
pruning the current approximation of the simulation relation being computed (for details
see, e.g., [19]). Since the number of blocks can (and often does) reach the number of
states, the naı̈ve solution requires |Q|2|Σ| counters in the worst case. It turns out that
this is one of the main barriers which prevents the algorithm from scaling to systems
with large alphabets and/or large sets of states.

Working towards a remedy for the above problem, one can observe that the men-
tioned algorithm actually works in several phases. At the beginning, it creates an ini-
tial estimation of the partition-relation pair which typically contains large equivalence
classes. Then it initialises the counters for each element of the partition. Finally, it
starts the iterative partition splitting. During this last phase, the counters are only decre-
mented or copied to the newly created blocks. Moreover, the splitting of some block is
itself triggered by decrementing some set of counters to 0. In practice, late phases of
the iteration typically witness a lot of small equivalence classes having very sparsely
populated counters with 0 being the most abundant value.

This suggests that one could use sparse matrices containing only the non-zero ele-
ments. Unfortunately, according to our experience, this turns out to be the worst possi-
ble solution which strongly degrades the performance. The reason is that the algorithm
accesses the counters very frequently (it either increments them by one or decrements
them by one), hence any data structure with non-constant time access causes the com-
putation to stall. A somewhat better solution is to record the non-zero counters using
a hash table, but the memory requirements of such representation are not yet reasonable.

Instead, we are currently experimenting with storing the counters in blocks, using
a copy-on-write approach and a zeroed-block deallocation. In short, we divide the ma-
trix of counters into a list of blocks of some fixed size. Each block contains an additional
counter (a block-level counter) which sums up all the elements within the block. As
soon as a block contains a single non-zero counter only, it can safely be deallocated—
the content of the non-zero counter is then recorded in the block-level counter.

Our initial experiments show that, using the above approach, one can easily reduce
the memory consumption by the factor of 5 for very large instances of the problem
compared to the array-based representation used in [14]. The best value to be used as
the size of blocks of counters is still to be studied—after some initial experiments, we
are currently using blocks of size

√
|Q|.

12

Table 1. Experiments with inclusion for the explicit encoding
expldown expldown+s expldown-opt expldown-opt+s explup explup+s

Winner 36.35 % 4.15 % 32.20 % 3.15 % 24.14 % 0.00 %
Timeouts 32.51 % 18.27 % 32.51 % 18.27 % 0.00 % 0.00 %

Table 2. Experiments with the explicit encoding for cases when inclusion does not hold
expldown expldown+s expldown-opt expldown-opt+s explup explup+s

Winner 39.85 % 0.00 % 35.30 % 0.00 % 24.84 % 0.00 %
Timeouts 26.01 % 20.31 % 26.01 % 20.31 % 0.00 % 0.00 %

Table 3. Experiments with the explicit encoding for cases when inclusion holds
expldown expldown+s expldown-opt expldown-opt+s explup explup+s

Winner 0.00 % 47.28 % 0.00 % 35.87 % 16.85 % 0.00 %
Timeouts 90.80 % 0.00 % 90.80 % 0.00 % 0.00 % 0.00 %

5 Experimental Evaluation of VATA
In order to illustrate the level of optimisation that has been achieved in VATA and that
can be exploited in its applications (like the Forester tool [11]), we compared its perfor-
mance against Timbuk and the prototype library considered in [12], which—despite its
prototype status—already contained a quite efficient TA implementation.

The comparison of performance of VATA (using the explicit encoding) and Timbuk
was done for union and intersection of more than 3,000 pairs of TA. On average, VATA
was over 20,000 times faster on union and over 100,000 times faster on intersection.

When comparing VATA with the prototype library of [12], we concentrated on lan-
guage inclusion testing which is one of the most costly operations on non-deterministic
TA. In particular, we conducted a set of experiments evaluating the performance of the
VATA’s optimised TA language inclusion algorithms on pairs of TA obtained from ab-
stract regular tree model checking of the algorithm for rebalancing red-black trees after
insertion or deletion of a leaf node (which is the same test set that was used in [12]).

5.1 Experiments with the Explicit Encoding
For the explicit encoding, we measured for each inclusion method the fraction of cases
in which the method was the fastest among the evaluated methods on the set of al-
most 2000 tree automata pairs. The results of this experiment are given in Table 1.
The columns are labelled as follows: column expldown is for pure downward inclusion
checking, column expldown+s is for downward inclusion using downward simulation,
expldown-opt is a column for pure downward inclusion checking with the optimi-
sation proposed in Section 4.5, and column expldown-opt+s is downward inclusion
checking with simulation using the same optimisation. Columns explup and explup+s
give the results for pure upward inclusion checking and upward inclusion checking with
simulation respectively. The timeout was set to 30 s.

We also checked the performance of the algorithms for cases when inclusion either
does or does not hold in order to explore the ability of the algorithms to either find
a counterexample in the case when inclusion does not hold, or prove the inclusion in
case it does. These results are given in Table 2 and Table 3.

13

Table 4. Experiments with inclusion for the semi-symbolic encoding
symdown symdown+s symdown-opt symdown-opt+s symup

Winner 44.02 % 0.00 % 31.73 % 0.00 % 24.25 %
Timeouts 5.87 % 77.93 % 5.87 % 78.00 % 22.26 %

Table 5. Experiments with the semi-symbolic encoding for cases when inclusion does not hold
symdown symdown+s symdown-opt symdown-opt+s symup

Winner 45.03 % 0.00 % 33.06 % 0.00 % 21.91 %
Timeouts 2.48 % 80.03 % 2.48 % 80.09 % 23.39 %

Table 6. Experiments with the semi-symbolic encoding for cases when inclusion holds
symdown symdown+s symdown-opt symdown-opt+s symup

Winner 19.74 % 0.00 % 0.00 % 0.00 % 80.26 %
Timeouts 72.37 % 36.84 % 72.37 % 36.84 % 0.00 %

When compared to our previous implementation, VATA performed almost always
better. The average speed-up was even as high as 200 times for pure downward inclu-
sion checking. The old implementation was faster in about 2.5 % of the cases, and the
difference was not significant.

5.2 Experiments with the Semi-Symbolic Encoding

We performed a set of similar experiments for the semi-symbolic encoding, the results
of which are given in Table 4. The columns are labelled as follows: column symdown is
for pure downward inclusion checking, column symdown+s is for downward inclusion
using downward simulation, symdown-opt is a column for pure downward inclusion
checking with the optimisation proposed in Section 4.5 and column symdown-opt+s
is downward inclusion checking with simulation using the same optimisation. Column
symup gives the results for pure upward inclusion checking. The timeout was again set
to 30 s.

As in the experiments for the explicit encoding, we also checked the performance
of the algorithms for cases when inclusion either does or does not hold. These results
are given in Table 5 and Table 6.

When compared to our previous implementation, VATA again performs signifi-
cantly better, with the pure upward inclusion being on average over 300 times faster
and the pure downward inclusion being even over 3000 times faster.

6 Conclusion

This paper introduced and described a new efficient and open-source non-deterministic
tree automata library that supports both explicit and semi-symbolic encoding of the
tree automata transition function. The semi-symbolic encoding makes use of our own
MTBDD package instead of the previously used customisation of the CUDD library.

We wish to continue in this work by attempting to implement a simulation-aware
symbolic encoding of antichains using BDDs. Further, we wish to implement other op-
erations, such as determinisation (which, however, is generally desired to be avoided),

14

or complementation (which we so far do not know how to compute without first deter-
minising the automaton).

Finally, we hope that a public release of our library will attract more people to use it
and even better contribute to the code base. Indeed, we believe that the library is written
in a clean and understandable way that should make such contributions possible.

References
1. P. A. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, and T. Vojnar. Computing Simulations over

Tree Automata: Efficient Techniques for Reducing Tree Automata. In Proc. of TACAS’08,
LNCS 5148, Springer, 2008.

2. P. A. Abdulla, L. Holı́k, Y.-F. Chen, R. Mayr, and T. Vojnar. When Simulation Meets An-
tichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). In
Proc. of TACAS’10, LNCS 6015, Springer, 2010.

3. P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. In Proc.
of CAV’02, LNCS 2404, Springer, 2002.

4. A. Bouajjani, P. Habermehl, L. Holı́k, T. Touili, and T. Vojnar. Antichain-based Universality
and Inclusion Testing over Nondeterministic Finite Tree Automata. In Proc. of CIAA’08,
LNCS 5148, Springer, 2008.

5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking. ENTCS, 149, Elsevier, 2006.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS 4134, Springer,
2006.

7. R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans.
Computers, 1986.

8. E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral Transforms for Large
Boolean Functions with Applications to Technology Mapping. FMSD, 10, Springer, 1997.

9. P. Claves, D. Jansen, S.J. Holtrup, M. Mohr, A. Reis, M. Schatz, and I. Thesing. The
LETHAL Library, 2009. URL: http://lethal.sourceforge.net/.

10. T. Genet. Timbuk/Taml: A Tree Automata Library, 2003.
URL: http://www.irisa.fr/lande/genet/timbuk.

11. P. Habermehl, L. Holı́k, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for
Verification of Heap Manipulation. In Proc. of CAV’11, LNCS 6806, Springer, 2011

12. L. Holı́k, O. Lengál, J. Šimáček, T. Vojnar. Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata. To appear in Proc. of ATVA’11, LNCS 6996, Springer, 2011

13. L. Holı́k, O. Lengál, J. Šimáček, T. Vojnar. Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata. Tech. rep. FIT-TR-2011-04, FIT BUT, Czech Rep., 2011.

14. L. Holı́k, J. Šimáček. Optimizing an LTS-Simulation Algorithm. In: Proc of MEMICS’09,
Znojmo, CZ, FI MU, 2009, p. 93-101, ISBN 978-80-87342-04-6

15. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression Types for XML. ACM Trans.
Program. Lang. Syst., 27, 2005.

16. L. Ilie, G. Navarro, and S. Yu. On NFA Reductions. In Proc. of Theory is Forever, LNCS
3113, Springer, 2004.

17. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA Implementation Secrets. Interna-
tional Journal of Foundations of Computer Science, 13(4), 2002.

18. P. Madhusudan, G. Parlato, and X. Qiu. Decidable Logics Combining Heap Structures and
Data. SIGPLAN Not., 46, 2011.

19. F. Ranzato and F. Tapparo. A New Efficient Simulation Equivalence Algorithm. In Proc. of
LICS’07. IEEE CS, 2007.

20. F. Somenzi. CUDD: CU Decision Diagram Package Release 2.4.2, May 2011.

15

	VATA: A Library for Efficient Manipulation of Non-Deterministic Tree Automata*-0mm

