
MODELLING, PROTOTYPING, AND VERIFYING CONCURRENT AND DISTRIBUTED
APPLICATIONS USING OBJECT-ORIENTED PETRI NETS

Milan Češka, Vladimı́r Janoušek, Tomáš Vojnar
Department of Computer Science and Engineering, Brno University of Technology

Božetěchova 2, CZ-612 66 Brno
e-mail:

�
ceska, janousek, vojnar � @dcse.fee.vutbr.cz

object-orientation, Petri nets, distributed applications, rapid
prototyping, formal methods

ABSTRACT

This paper presents several research issues associated with
the PNtalk language that is based on a certain kind of object-
oriented Petri nets (OOPNs) and intended mainly for mod-
elling, prototyping, and verifying concurrent and distributed
applications. The paper reviews the main concepts of PNtalk
and OOPNs followed by a proposal of a system allowing
prototypes based on PNtalk to be run in a distributed way.
Furthermore, the first steps made towards state spaces-based
formal analysis and verification over PNtalk OOPNs are also
briefly mentioned in the paper.

1. INTRODUCTION

This paper reviews some of the research activities related
to the object-oriented Petri nets (OOPNs) associated with the
language and tool called PNtalk (Češka and Janoušek 1997;
Janoušek 1998), which have been developed mainly to sup-
port modelling, investigating, and prototyping concurrent and
distributed object-oriented software systems. PNtalk supports
intuitive modelling of all the key features of these systems,
including object-orientedness, message sending, parallelism,
and synchronisation. The main modelling features of PNtalk
and OOPNs are presented at the beginning of this paper.

The use of PNtalk should be supported by a tool suite con-
stituting the so-called PNtalk system. A prototype of such a
system supporting modelling and simulation of systems by
means of OOPNs was already implemented some time ago
(Češka et al. 1997). Here, we sketch the main principles of
a new architecture of the PNtalk system that should allow us
to run OOPN-based prototypes in a truly distributed way and
with the possibility of creating mobile PNtalk objects.

In the remaining part of this paper there are briefly pre-
sented some issues related to generating and using state
spaces of OOPNs for formal analysis and verification of the

considered systems. These issues are mostly related to the
fact that we have to deal with dynamically arising and disap-
pearing instances in state spaces of OOPNs (Vojnar 2001).

2. PNtalk AND THE ASSOCIATED OOPNs

The OOPN formalism associated with PNtalk is charac-
terized by a Smalltalk-based object-orientation enriched with
concurrency and polymorphic transition execution, which al-
lows for message sending, waiting for and accepting re-
sponses, creating new objects, and performing primitive com-
putations (Janoušek 1998).

An example illustrating the notation of PNtalk is shown
in Fig. . It is a fragment of a PNtalk class whose each object
represents a session of a user working with a certain graphic
object in the system of a cooperative editor for hierarchical
diagrams (Bastide et al. 1996; Kočı́ and Vojnar 2001). We
will return to this model in slightly more detail later.

The main principles of the structure and behaviour of
OOPNs are explained in the following. A deeper introduc-
tion to the OOPN formalism can be found in (Češka et al.
1997) and the formal definition of OOPNs in (Vojnar 2001).

2.1 The Structure of OOPNs

An object-oriented Petri net is defined on a collection
of elements comprising constants, variables, net elements
(i.e. places and transitions), class elements (i.e. object
nets, method nets, synchronous ports, and message selectors),
classes, object identifiers, and method net instance identifiers.
An OOPN has its initial class and initial object identifier, as
well. The so-called universe of an OOPN contains (nested)
tuples of constants, classes, and object identifiers.

Object nets consist of places and transitions. Each place
has some (possibly empty) initial marking. Each transition
has conditions and preconditions (i.e. inscribed testing and
input arcs), a guard, an action, and postconditions (i.e. in-
scribed output arcs). Method nets are similar to object nets



.

.
constructor user: usr graphic: g

dia := g expand: self for: usr. 

user

diagram

usr

dia
self

return

lockView: g

b := g lockView: self

g

lockView

(b,g)

truefalse

return

#yesx

self mustUpdate
self goUpdate

mustUpdate

#no

update

active

.
#yes

#yes

(dia,usr)

dia ~= nil 

dia = nil nil

usr g

list

list:=List new.

list

list

update

Session is_a PN

.
g

update.
return

self

(dia,usr)

(dia,usr)

usr g

tLock

(b,g) (b,g)

b = false. b = true.
list add: g. 
dia update.

dia
.
.

class

constructor

method net

predicate

object net

transition guard transition action initial action initial markingplace

input
arc

transition

output
arc

parameter place return place

Figure 1: A fragment of a class demonstrating the notion of PNtalk

but, additionally, each of them has a set of parameter places
and a return place. Method nets can access places of the ap-
propriate object nets, which allows running methods to mod-
ify the states of the objects which they are running in. Con-
structors are method nets intended for initializing objects.

Synchronous ports are special transitions which cannot
fire alone but only dynamically fused to some regular transi-
tions. These transitions “activate” the ports from their guards
via message sending. Every synchronous port embodies a set
of conditions, preconditions, and postconditions over places
of the appropriate object net, and further a guard, and a set of
parameters. Parameters of an activated port � can be bound to
constants or unified with variables defined on the level of the
transition or port that activated � .

A class is given by its object net, its sets of method nets
and synchronous ports, and a set of message selectors cor-
responding to its methods and ports. Object nets describe
what data particular objects encapsulate and what activity
they exhibit on their own. Method nets specify how objects
asynchronously respond to received messages. Synchronous

ports allow to remotely test and change states of objects in an
atomic way.

2.2 The Dynamic Behaviour of OOPNs

A state of an OOPN can be encoded as a marking, which
can be structured into a system of objects. Thus the dynamic
behaviour of OOPNs corresponds to an evolution of a system
of objects. An object of a certain class � is a system of net
instances that contains exactly one instance of the object net
of � and a set of currently running instances of method nets
from � . Every net instance entails its identifier and a mark-
ing of its places and transitions. A marking of a place is a
multiset of elements of the universe. A transition marking is
a set of records about method net instances invoked from the
appropriate transition.

For a given OOPN, its initial marking corresponds to a
single, initially marked object net instance from the initial
class. A change of a marking of an OOPN is a result of an
occurrence of some event. Such an OOPN event is given by
(1) its type, (2) the identifier of the net instance it takes place



in, (3) the transition it is statically represented by, and (4) the
binding tree containing the bindings of the variables used on
the level of the involved transition as well as within all the
synchronous ports (possibly indirectly) activated from that
transition. There are four kinds of events according to the
way of evaluating the action of the appropriate transition: A
– an atomic action involving trivial computations only, N – a
new object instantiation via the message new, F – an instan-
tiation of a Petri-net described method, and J – terminating a
method net instance. (An invocation of a constructor over a
class leads to a sequence built of an N, F, and J event.)

2.3 An Example of an OOPN

In Fig. there is presented a fragment of the class Ses-
sion from the system of a cooperative editor for hierarchical
diagrams (Bastide et al. 1996; Kočı́ and Vojnar 2001). Let us
now return to this class for a moment.

In the model of the locking mechanisms of a cooperative
editor from (Kočı́ and Vojnar 2001), if a user wants to view
or edit a diagram, the user first has to create a Session over
the diagram. The session may be created by means of the
constructor user:graphic: whose second parameter has
to be the graphic that is the root of the diagram to be opened
(in the hierarchy of diagrams managed by the editor). The
graphic must be owned for encapsulation by the user. The
ownership for encapsulation is checked via the method ex-
pand:for: invoked over the graphic. This method returns
either a reference to the appropriate diagram or nil. The
latter case causes the Session’s constructor to also return
nil leading to a subsequent deletion of the not successfully
created Session by the garbage collector.

When a diagram is changed, it sends a message update
to all the Sessions currently opened over this diagram. The
fact that update is a method allows the appropriate message
to be processed in an asynchronous way and makes it easier
to implement this mechanism in a distributed environment.
The method update ensures that there eventually appears a
token #yes in the place update which enables the transi-
tion update via the synchronous port mustUpdate. The
transition update calls the method goUpdate that imple-
ments the internal details of updating a diagram—the method
is not presented here. Note that more requests to update may
lead to a single physical update of the appropriate diagram.

3. TOWARDS A DISTRIBUTED PNtalk

The current version of the PNtalk system that is available
on the Internet since 1996 can hardly be considered anything
more than a demonstration of the concept of OOPNs. It is

based on the 1995 version of OOPNs (Janoušek 1995), and
so it does not reflect some of the new features of OOPNs as
introduced in (Janoušek 1998), which is especially the case
of synchronous ports. Moreover, the closedness and poor in-
teroperability of this PNtalk implementation does not allow
for experimenting with applications that are more than some
“school examples” (such as different variants of the system
of dining philosophers or very simple workflow systems).

Currently we are developing a new PNtalk system archi-
tecture that is intended for experiments with prototyping more
realistic applications. This new PNtalk has to support a seam-
less evolution of an application from a simple model to a pro-
totype running in real time and, possibly, to final implemen-
tation including some parts realized in PNtalk. This goal may
be achieved by using encapsulation of model components al-
lowing them to be developed independently of each other.
The employed encapsulation and object-orientation have to
be platform-independent as well as programming language-
and network distribution-independent. Although we prefer
implementations in the Smalltalk and Prolog languages, the
language independence of components, as well as the net-
work transparency, can be achieved by using some stan-
dards for inter-object communication as, e.g., CORBA. Then,
each CORBA-compliant component could be connected to an
OOPN-based prototype and vice versa.

The new PNtalk is not being designed in a form of a com-
pact, integrated environment supporting editing, compiling,
simulation, and debugging. It is a set of simple tools, instead.
These tools can be used either independently or combined in
order to pragmatically support all phases of a model or proto-
type development. In the early phases, using some integrated
environment could be advantageous. In this case, such an en-
vironment could be built upon the mentioned tools in a form
of a special software layer, as it will be mentioned later.

As the new PNtalk system implementation is not fished
yet, it has to be stressed that the PNtalk system itself has to be
evolvable. Its architecture proposal takes this into account—it
is based on the idea that complex systems evolve from simpler
ones. The simplest form of the new PNtalk system is based on
a number of universal components which themselves could
evolve:

An OOPN interpreter. This is a key component. It is in-
tended to be used in all phases of a model or proto-
type development. It could also participate in the final
implementation of a developed software system. The
key parts of the interpreter may also be used for state
space generation in verification tools. The interpreter
should have a form of a library available in several pro-
gramming languages. The very first versions are be-



ing implemented in Prolog and Smalltalk. Moreover, it
should be also available as a program which it is pos-
sible to communicate with via TCP/IP. This means that
the interpreter can become a part of an arbitrary soft-
ware system, even a distributed one. The OOPN inter-
preter can be viewed as a virtual machine whose be-
havior is defined by the image that it works with. The
image is a set of all the currently living objects in a bi-
nary form. It contains both compiled class definitions
and methods as well as states of all the objects in the
form of tokens distributed in Petri nets.

A compiler compiles the textual form of the PNtalk lan-
guage into a binary form acceptable by the interpreter.
It may work incrementally. In such a case, it embeds
(possibly in cooperation with some supporting tools)
the compiled code into an existing image. The com-
piler could be implemented as a library for some pro-
gramming languages as well as a standalone program.

A source code repository. In its simplest form, it could be a
file containing all the source code of the classes of the
objects contained in an image. More interestingly, it
could be a log file containing all changes to the sources
of an image, which resembles Smalltalk. In its even
more sophisticated form, it could be implemented as a
database accessible via TCP/IP. The compiler has to be
able to compile the source code of a method indepen-
dently of the employed realisation of the source code
repository.

An editor should allow us to create and modify OOPN
classes and methods both in a textual and a graphical
way. It interacts with the source code repository. It
could possibly interact with the compiler in order to
check the source code. The graphical version of the
editor has to be able to load the source code obtained
from the text editor and to semi-automatically add the
missing graphical information to the OOPN diagrams.
The source code repository should contain the textual
form of OOPN components definitions together with
the graphical information associated with the appropri-
ate diagrams if it is available.

A shell (debugger) allows a programmer to interact directly
with the OOPN interpreter via a TCP/IP connection.
It makes it possible to load an image or to add some
compiled code or saved object state to the active image.
The shell makes it also possible to save the current im-
age or its part to a file or to send it through a network
connection to a file or another interpreter. Moreover,
it allows a programmer to send a message to an object
living in the active image and to inspect the result. It

also allows him or her to list all processes, to stop exe-
cution of some process and to trace it or let it proceed.
The shell has to have both a command-line as well as a
graphical form. In both cases, it has to allow for tracing
processes and inspecting states of objects on the source
code level (textual or graphical). This means that it
should also interact with the source code repository.

Analysis and verification tools should be available in the
form of libraries for some programming languages as
well as in the form of a server accessible via TCP/IP.
The analysis and verification suite should comprise its
own shell making it possible to interactively specify
what is to be analysed or verified.

All these tools constitute the basic level of the PNtalk sys-
tem components. These components can interoperate with
other software systems. They also allow for a simple form of
communication over TCP/IP networks. On top of this basic
level components, a distributed PNtalk system could be built
in several steps:

A simple client-server PNtalk architecture. The client in-
tegrates the editor and shell (debugger) enriched with
the possibility of invoking the compiler remotely. It
connects via HTTP to a server that encapsulates reen-
trant interpreter, compiler, and analysis and verification
tools. All functionality of these tools is offered to each
authenticated user. This architecture can exploit pow-
erful computational servers on the network. It allows
multiple programmers to develop independent proto-
types that can communicate via TCP/IP.

A multiuser PNtalk. Several authenticated users or client
applications may interact with a shared PNtalk inter-
preter. Each user owns some objects and these objects
have access rights defined. We obtain a client-server
PNtalk that enables a tighter coupling of components
developed by various programmers. The shared PNtalk
interpreter is a modified version of the basic PNtalk in-
terpreter described above.

A distributed PNtalk. The PNtalk interpreter is modified in
such a way that objects can communicate with each
other regardless the interpreter they are living in. This
means that the image can be distributed among several
interpreters and the distribution is transparent to the ob-
jects. To support this mode of PNtalk operation, some
name server has to be introduced, allowing an object
identified by some oid to be located. The interpreter has
to decide where the receiver of the processed message
lives and to possibly delegate the message delivery to
some other interpreter. The distributed PNtalk can also
be accessed in a client-server manner in which case the



server is built upon a cluster of PNtalk interpreters, a
name server, a source code repository, a compiler, and
a verification server.

Note that the Multiuser PNtalk and the Distributed PNtalk
are mutually independent modifications of the basic PNtalk
interpreter. Nevertheless, they can be merged.

4. ANALYSIS AND VERIFICATION OVER OOPNs

In this section, we briefly mention the first steps made to-
wards exploiting formal analysis and verification methods in
the context of OOPNs (Vojnar 2001). Using formal analy-
sis and verification can be considered complementary to val-
idating systems by simulation because although we need not
be able to fully verify or analyse the behaviour of a system,
even partial analysis or verification can reveal errors differ-
ent from the ones found by simulation. Among the different
methods of performing formal analysis or verification, gen-
erating and exploring suitably represented state spaces–see,
e.g., (Valmari 1998)—appears to be the most straightforward
approach for the case of OOPNs.

4.4 Generating State Spaces of OOPNs

In state spaces of OOPNs, it appears necessary to be be-
ware of the so-called naming problem (Vojnar 2001). This
phenomenon corresponds to the undesirable possibility of
generating many states differing only in the identifiers of the
involved net instances. Two causes of the naming problem in
the domain of state spaces of OOPNs (and other formalisms
with dynamic instantiation) may be identified: (1) assigning
names to newly arising instances unnecessarily reflecting the
history of their creation and (2) dealing with concurrently ex-
isting, uniquely identified instances that play somehow sym-
metrical roles in the appropriate models (as a reflection of
some symmetries existing already on the level of the mod-
elled systems). Although the naming problem is not exclu-
sively specific to OOPNs (nor to formalisms with dynamic
structuring), it manifests itself in an especially severe way
here due to the first mentioned source specific to this area.

In (Vojnar 2001) there have been proposed and compared
two methods for dealing with the naming problem in the
context of OOPNs, namely sophisticated naming rules and
name abstraction. The idea of using sophisticated naming
rules is inspired by the approach to identifying processes in
Spin (Holzmann 1997), which has been generalized and mod-
ified to suit better the needs of object-orientation and Petri
nets. Name-abstraction, on the other hand, is a fully trans-
parent application of the concept of symmetrically reduced
state spaces—see, e.g., (Ip and Dill 1996; Junttila 1999)—to
solving the naming problem. When applying symmetries to

solving the naming problem in the context of state spaces of
OOPNs, it is necessary to take into account some special is-
sues, such as: garbage collection, encapsulation of method
net instances in objects, infinite numbers of the possibili-
ties how to identify a newly arising instance, or providing
a sufficiently broad notion of trivial operations over instance
identifiers. The most elaborated sophisticated naming rules
appear to be applicable when dealing with systems without
many system-level symmetries, especially when partial order
reduction is used. In the other cases (which do not seem to
be only exceptional when applying object orientation), using
name abstraction can be more advantageous.

Let us add that the naming problem should always be
solved together with the problem of removing unnecessary in-
stances from states. This is because that if we do not system-
atically remove such instances, the number of concurrently
existing instances may grow and the naming problem can
manifest itself stronger. Moreover, there can be generated
redundant, semantically equal states distinguished by the dif-
ferent garbage present in them even when we apply a very
good solution of the naming problem. Therefore it seems to
be advantageous to remove all unnecessary instances from
states as soon as possible. In the case of the PNtalk OOPNs,
we use an immediate garbage collecting mechanism to solve
the above problem. In order for this mechanism to work prop-
erly, it suffices to create OOPNs such that they do not store
references to obsolete instances.

4.5 Using State Spaces of OOPNs

In the area of formal analysis and verification of concur-
rent systems there have already been proposed many ways of
expressing properties of the systems under investigation to be
evaluated over state spaces of their models (Valmari 1998).
They include, e.g., using state space statistics, universal state
space query languages, property labels or directives, or tem-
poral logics. Most of the common ways of asking state space
analysis or verification questions can be accommodated for
dealing with OOPN-based models too (Vojnar 2001). Prop-
erties to be evaluated over state spaces of OOPNs should not
refer to the concrete identifiers of instances. This is because
the concrete names of instances do not normally have any
influence upon the behaviour of OOPN-based models, and,
moreover, it is hard (and sometimes impossible) to predict
what identifiers will be used for what instances in what states.

Some new useful kinds of system properties to be checked
may also be introduced in the area of systems that can be
suitably described by OOPNs—e.g., persistence of instances,
instance-oriented progress, etc. Generally, analysis or verifi-
cation questions to be answered over state spaces of OOPNs



can ignore or, on the other hand, respect the structuring of
running OOPNs into instances. Unfortunately, dealing with
instance-oriented analysis or verification queries may lead to
higher time and space requirements (Vojnar 2001). This ap-
plies especially in the cases when it is not sufficient to distin-
guish particular instances within a single state, and we have to
track their individual behaviour along some state space paths.

The particular specification and query techniques can be
applied in the domain of OOPN-based models such that an-
alytical or verification questions described by them could
be answered over (possibly name-abstracted) state spaces of
OOPNs by means of fairly standard algorithms. In some
cases, however, the standard algorithms have to be slightly
modified to a certain degree to be able to deal with models
structured into sets of net instances and objects, which can be
dynamically created and/or discarded (Vojnar 2001).

5. CONCLUSIONS

In the paper, we have presented several research issues
related to the PNtalk language and system and to the OOPNs
associated with them.

Firstly, we have outlined the main concepts of the new ar-
chitecture of the PNtalk system which should allow us to run
OOPN-based prototypes in a truly distributed way. Although
this architecture is still subject to development, some parts of
the new PNtalk system have already been experimentally im-
plemented (a new PNtalk interpreter, a simple client-server
variant of the PNtalk system). Now, the distributed architec-
ture of PNtalk is to be further refined, fully implemented, and
tested on a suitable case study—for this reason, we have de-
cide to use the cooperative editor case study (Bastide et al.
1996; Kočı́ and Vojnar 2001).

We have also presented the first steps which have been
done in the area of generating and using state spaces of
OOPNs for formal analysis and verification. A prototype of
a generator of state spaces of OOPNs (using name abstrac-
tion or, alternatively, sophisticated naming rules) and a pro-
cessor of a simple state space query language have already
been built. In the future, we intend to improve the current
state space tool, to augment it with an option of partial-order
reduction, and to try to enable export to some already exist-
ing state space tools (possibly slightly extended). We have
proposed a technique for automatic type analysis in OOPNs
(Křena and Vojnar 2001) as well.

Acknowledgement. This work was done within the project
CEZ:J22/98:262200012 “Research in Information and Con-
trol Systems” and within the project of the Grant Agency of
the Czech Republic No. 102/00/1017 “Modelling, Verifying,

and Prototyping Distributed Applications Using Petri Nets”.

REFERENCES

Janoušek, V. 1995. “PNtalk: Object Orientation in Petri nets”.
In: Proceedings of European Simulation Multiconference
ESM’95. Czech Technical University, Prague, pp. 196–200.

Bastide, R.; C.A. Lakos; and P. Palanque. 1996. A
Cooperative Petri Net Editor. A case study proposal
for the 2nd Workshop on Object-Oriented Programming
and Models of Concurrency, ICATPN’96, Osaka. URL:
http://wrcm.dsi.unimi.it/PetriLab/ws96.

Češka, M. and V. Janoušek. 1997. “A Formal Model for
Object-Oriented Petri Nets Modeling”. Advances in Systems
Science and Applications, An Official Journal of the Inter-
national Institute for General Systems Studies, Special Issue,
pp. 119–124.

Češka, M.; V. Janoušek; and T. Vojnar. 1997. “PNtalk –
A Computerized Tool for Object-Oriented Petri Nets Mod-
elling”. In: Computer Aided Systems Theory – EURO-
CAST’97 (Las Palmas de Gran Canaria, Spain). Springer-
Verlag, LNCS, vol. 1333, pp. 591–610.

Holzmann, G. 1997. “The Model Checker Spin”. IEEE
Transactions on Software Engineering, vol. 23(5).

Ip, C. and D. Dill. 1996. “Better Verification Through Sym-
metry”. Journal of Formal Methods in System Design, vol.
9(1/2), pp. 41–76.

Janoušek, V. 1998. “Modelling Objects by Petri Nets”. PhD
thesis. Dept. of Computer Science and Eng., FEECS, Brno
University of Technology, Czech Republic. (In Czech).

Junttila, T. 1999. “Detecting and Exploiting Data Type Sym-
metries of Algebraic System Nets during Reachability Analy-
sis”. Technical Report HUT-TCS-A57. Helsinki University of
Technology, Laboratory for Theoretical Computer Science,
Helsinki, Finland.

Kočı́, R. and T. Vojnar. 2001. “A PNtalk-based Model of a Co-
operative Editor”. In: Proceedings of MOSIS’01 (Hradec nad
Moravicı́, Czech Republic). MARQ Ostrava, pp. 165–172.

Křena, B. and T. Vojnar. 2001. “Type Analysis in Object-
Oriented Petri Nets”. In: Proceedings of ISM’01 (Hradec nad
Moravicı́, Czech Republic). MARQ Ostrava, pp. 173–180.

Valmari, A. 1998. “The State Explosion Problem”. In: Lec-
tures on Petri Nets I: Basic Models, edited by W. Reisig, G.
Rozenberg. Springer-Verlag, LNCS, vol. 1491, pp. 429–528.

Vojnar, T. 2001. “Towards Formal Analysis and Verification
over State Spaces of Object-Oriented Petri Nets”. PhD thesis.
Dept. of Computer Science and Eng., FEECS, Brno Univer-
sity of Technology, Czech Republic.


