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Signature

Definition : Signature

A signature X is a finite set of function symbols each of them with
an arity greater or equal to 0.

We denote J; the set of symbols of arity .

{+:2,5:1,0:0}, {A:2,v:2,—-:1, T, L:0}

We also consider a countable set X of variable symbols.
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Terms

The set of terms over the signature > and X is the smallest set
T (X, X) such that:

- Yo CT (X, X),

S X CT(D,X),

- if feX,andifty,...,t, € T(X3,X), then
f(tl,...,tn) ET(E,X).

The set of ground terms (terms without variables, i.e. 7(X,0)) is
denoted T (X).

L, _'(x)' /\(\/(5’37 _'(y))a _'(x))
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Terms (2)

A term where each variable appears at most once is called linear.
A term without variable is called ground.

Depth h(?):
» h(a) =h(x) =0ifa € Xy, x € &,
> h(f(t1,...,t,)) = max{h(t1),...,h(t,)} + 1.
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Positions
A term t € T (3, X) can also be seen as a function from the set of
its positions Pos(t) into XU X.
The empty position (root) is denoted «.
Pos(t) is a subset of N* satisfying the following properties:
» Pos(t) is closed under prefix,
» for all p € Pos(t) such that t(p) € ¥,, (n > 1),
{pj € Pos(t) | j € N} = {pl,...,pn},
» every p € Pos(t) such that t(p) € ¥p U X is maximal in
Pos(t) for the prefix ordering.

The size of t is defined by ||t|| = |Pos(t)].

Subterm t|, at position p € Pos(t):
> t|. =t,
> f(tl, .. 7tn)’7jp = ti’p-

The replacement in ¢ of ¢|,, by s is denoted t|s],.
40 / 200



Positions (example)

t = /\(/\(.CI}, \/(513, _'(y) )7 _'(x))'
th =z, the = V(z,~(y)),
tl=(y)11 = AN (= (y), V(z,
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Contexts

Definition : Contexte

A context is a linear term.
The application of a context C' € T (3, {z1,...,z,}) to n terms

t1,...,tn, denoted C|t1,...,t,], is obtained by the replacement of
each x; by t;, for 1 < < n.
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Plan

TA: Definitions and Expressiveness
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Bottom-up Finite Tree Automata

(a +ba*b)*
a a
\bj
b

tree. run on a(a(b(b(a(e))))):
g0 — alqo) — ala(qo)) — ala(b(q1))) = ala(b(b(qo)))) —
a(a(b(b(a(go))))) — ala(b(blale)))))
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Bottom-up Finite Tree Automata

(a +ba*b)*
a a
\bj
b

word. run on aabba: qo % qo - g0 = g1 2 g0 % qo.

tree. run on a(a(b(b(a(e))))):
a(a(b(bla(e))))) — ala(b(b(a(qo))))) — ala(b(b(q)))) —
a(a(b(q1))) — ala(qo)) — algo) = qo

with € = qo, a(qo) — qo. a(q1) — q1, b(q0) — @1, b(q1) — qo.
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Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature X is a tuple A =
(Z,Q,QF, A) where Q is a finite set of states, Q" C Q is the sub-
set of final states and A is a set of transition rules of the form:

flq1,.--,qn) — qwith f € ¥, (n>0) and q1,...,Gn,q € Q.

The state ¢ is called the head of the rule.
The language of A in state q is recursively defined by

L(A,q) = {aEZO‘a—M]EA}
U ) FAaq),.. LA g))

f(Ql;,QTL)_)qu

with f(L1,...,Lyn) = {f(t1,...,tn) | t1 € L1,...,tn € Ly }.

We say that t € L(A, q) is accepted, or recognized, by A in state q.

The language of Ais L(A) := U L(A,¢") (regular language).

¢ ef
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Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to A is the smallest binary relation,
denoted ——, containing A and closed under application of contexts.

The reflexive and transitive closure of = Is denoted %x

For A= (Z,Q,Q", A), it holds that
L(A,q) = {t e T (%) ‘ t— q}

and hence

={teT(2 }t—>quf}
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Tree Automata: example 1

Y={AN:2,V:2,—:1, T, 1:0}

( [ 1 — qo T — a1 \\
-(q0) — @ -(q1) — qo
V(go,90) — q  V(g,q1) — @1
A: 27 9 9 7< ’ ’ >
to, a1}, a1} V(gi,90) = @1 V(@,q1) — @
A(qo,q0) — q@  ANQo,q1) — qo
\ L A(g1,90) — g0 Ag1,q1) — @ ,/

AT, VT, =(L)), =(T)) — AT, VT, (L)), ~(q1))
— ANA(q1, Vg1, (q0))), ~(q1)) — /\(/\(cn, (ql, (90))): q0)
AN (g1, Vg1, 1)), q0) — ANA(q1,q1)590) — ANat, qo) — qo
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Tree Automata: example 2

Y={A:2,V:2,-:1,T,1:0},
TA recognizing the ground instances of =(—(x)):

( ( 1L = q T — ¢ \
A= | leaakda)y 09 D0 W
\ V(@) = 4 Aaa) = a ))

Ground terms embedding the pattern —(—(z)): AU {—(¢r) —
df, \/(Qfa Q*) — dqf, \/(Q*a Qf) — gf, - - } (propagation of Qf)
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Runs

A run of a TA (2,Q,Q",A) on a term t € T(X) is a function
r: Pos(t) — @ such that for all p € Pos(t),

if t(p) = f € X, r(p) =qand r(pi) = q; for all 1 < i <n,

then f(q1,...,q.) — q € A.

The run r is accepting if r(e) € Q.
L(A) is the set of ground terms of 7 () for which there exists an
accepting run.
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Pumping Lemma

For all TA A, there exists k > 0 such that for all term t € L(.A) with
h(t) > k, there exists 2 contexts C, D € T(X,{x1}) with D # x;
and a term u € T(X) such that ¢t = C'[D[u]] and for all n > 0,

C|D"[u]] € L(A).

usage: to show that a language is not regular.

Let A= (%,Q,Q",A).
L(A) # 0 iff there exists t € L(.A) such that h(t) < |Q].



Epsilon-transitions

We extend the class TA into TAes with the addition of another type
of transition rules of the form ¢ = ¢’ (e-transition).
with the same expressiveness as TA.

Proposition : Suppression of e-transitions

For all TAe A., there exists a TA (without e-transition) A’ such
that L(A) = L(A;). The size of A is polynomial in the size of A..

pr.. We start with A, and we add f(q1,...,q,) — ¢ if there exists
flq1,-..,qn) — qand g = ¢ .
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Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature X is a tuple A =
(3,Q,Q™, A) where @ is a finite set of states, Q™" C (@ is the
subset of initial states and A is a set of transition rules of the form:

q— flq1,---,qn) with f €, (n>0)and q1,...,qn,9 € Q.

A ground term ¢ € T (X) is accepted by A in the state ¢ iff ¢ <= ¢

The language of A starting from the state ¢ is
L(A,q) :={teTX®)|q¢—=>t}

The language of A is L(A) := U L(Q,q).

qiEQinit

55 / 200



Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of
regular tree languages.
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Remark: Notations

In the next slides

TA = Bottom-Up Tree Automata
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Plan

Determinism and Boolean Closures
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Determinism

Definition : Determinism

A TA A is deterministic if for all f € >, for all states ¢1,...,qn
of A, there is at most one state ¢ of A such that A contains a

transition f(qi,...,qn) — q.

If A is deterministic, then for all £ € T(X), there exists at most
one state q of A such thatt € L(A,q). It is denoted A(t) or A(?).
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Completeness

Definition : Completeness

A TA A is complete if for all f € X, for all states ¢1,...,q, of A,
there is at least one state ¢ of A such that A contains a transition

flai, -, an) = q.

If A is complete, then for all ¢t € T (3), there exists at least one
state g of A such thatt € L(A,q).
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Completion

Proposition : Completion

For all TA A, there exists a complete TA A, such that L(A.) =
L(A). Moreover, if A is deterministic, then A. is deterministic.
The size of A. is polynomial in the size of A, its construction is

PTIME.



Completion

Proposition : Completion

For all TA A, there exists a complete TA A, such that L(A.) =
L(A). Moreover, if A is deterministic, then A. is deterministic.
The size of A. is polynomial in the size of A, its construction is

PTIME.
pr.. add a trash state ¢ .



Determinization

Proposition : Determinization

For all TA A, there exists a deterministic TA A,.; such that
L(Age:) = L(A). Moreover, if Ais complete, then A 4.; is complete.
The size of A .; is exponential in the size of A, its construction is
EXPTIME.

pr.. subset construction. Transitions:
fOS1,....8) = {q| 3 €S1...3q, €Sy fa1,---,qn — g € A}

for all S1,...,5, C Q.
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Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of

=(=(2))):
( 1l — gq T — q )
( -(q) — ¢ -(q) — ¢~ \
A= |2 {q,q- ¢}, {ar}, . —(g=) — ¢ =(gr) — q ¢
Vig,q9) — a Nag,q9) — ¢
\ \ \/(Qfaq*) —  qf v(Q*an) —  4f ))
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Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (3,Q,Q™% A) is deterministic if
Q™Y = 1 and for all state ¢ € @ and f € X, A contains at

most one rule with left member ¢ and symbol f.

The top-down tree automata are in general not determinizable .
Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.
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Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (3,Q,Q™% A) is deterministic if
Q™Y = 1 and for all state ¢ € @ and f € X, A contains at

most one rule with left member ¢ and symbol f.

The top-down tree automata are in general not determinizable .
Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

pr. L ={f(a,b), f(b,a)}.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata
U disjoint U
M Cartesian product
— determinization, completion,
invert final / non-final states (lower bound)

For the deterministic TA, the construction for the complementation
Is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata
U disjoint U linear
M Cartesian product
— determinization, completion,
invert final / non-final states (lower bound)

For the deterministic TA, the construction for the complementation
Is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata
U disjoint U linear
M Cartesian product quadratic
— determinization, completion,
invert final / non-final states (lower bound)

For the deterministic TA, the construction for the complementation
Is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata
U disjoint U linear
M Cartesian product quadratic
- determinization, completion, exponential
invert final / non-final states (lower bound)

For the deterministic TA, the construction for the complementation
Is polynomial.
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Plan

Decision Problems
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Cleaning

Definition : Clean

A state g of a TA A is called inhabited if there exists at least one
t € L(A,q). A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA A jeqn such that L(Agjean) =
L(A). The size of A_jeqn is smaller than the size of A, its construc-
tion is PTIME.

pr.: state marking algorithm, running time O(|Q| x ||A[)).
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State Marking Algorithm

We construct M C () containing all the inhabited states.
» start with M = ()

» for all f € X, of arity n > 0, and
all g1,...,qn, € M st there exists f(q1,-..,qn) — q in A,
add g to M (if it was not already).

We iterate the last step until a fixpoint M, is reached.

g € M, iff 3t € L(A, q).
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Membership Problem

Definition : Membership

INPUT: a TA Aover ¥, atermt € T(X).
QUESTION: ¢ € L(A)?

Proposition : Membership

The membership problem is decidable in polynomial time.
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Emptiness Problem

Definition : Emptiness

INPUT: a TA A over X..
QUESTION: L(A) =07

Proposition : Emptiness

The emptiness problem is decidable in linear time.
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Emptiness Problem

Definition : Emptiness

INPUT: a TA A over X..
QUESTION: L(A) =07

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:
quadratic: clean, check if the clean automaton contains a final

state.

linear: reduction to propositional HORN-SAT.

linear bis: optimization of the data structures for the cleaning
(exo).

The problem of the emptiness is PTIME-complete.
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Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA Aover 3, atermt € T (3, X).
QUESTION: does there exists o : vars(t) — T (X%) s.t. to € L(A)?

Proposition : Instance-Membership

1. The problem IM is decidable in polynomial time when ¢t is
linear.

2. The problem IM is NP-complet when A is deterministic.
3. The problem IM is EXPTIME-complete in general.
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Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA Ai,..., A, over 3.
QUESTION: L(A;) N mL( n) = 07

Proposition : Emptiness of Intersection
The problem of the emptiness of intersection is EXPTIME-complete.
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Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA Ai,..., A, over 3.
QUESTION: L(A;) N mL( n) = 07

Proposition : Emptiness of Intersection
The problem of the emptiness of intersection is EXPTIME-complete.

pr.. EXPTIME: n applications of the closure under N and
emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME

reduction of the problem of the existence of a successful run
(starting from an initial configuration) of an alternating Turing
machine (ATM) M = (I', S, sq, S¢, 9).

[Seidl 94], [Veanes 97]
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Problem of Universality

Definition : Universality

INPUT: a TA A over Y.
QUESTION: L(A) =T(%)

Proposition : Universality
The problem of universality is EXPTIME-complete.
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Problem of Universality

Definition : Universality

INPUT: a TA A over Y.
QUESTION: L(A) =T(%)

Proposition : Universality
The problem of universality is EXPTIME-complete.

pr.. EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

The problem of universality is decidable in polynomial time for the
deterministic (bottom-up) TA.

pr.. completion and cleaning.

87 /200



Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A; and A5 over Y.
QUESTION: L(A;) C L(As)

Definition : Equivalence

INPUT: two TA A; and A5 over Y.
QUESTION: L(A;) = L(As)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A; and A5 over Y.
QUESTION: L(A;) C L(As)

Definition : Equivalence

INPUT: two TA A; and A5 over Y.
QUESTION: L(A;) = L(As)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

L(Al) C L(.AQ) Iff L(Al) M L( ) 0.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A; and A5 over Y.
QUESTION: L(A;) C L(As)

Definition : Equivalence

INPUT: two TA A; and A5 over Y.
QUESTION: L(A;) = L(As)

Proposition : Inclusion, Equivalence
The problems of inclusion and equivalence are EXPTIME-complete.

L(Ay) C L(As) iff L(A1) N L(Ag) = 0.
EXPTIME-hardness: universality is 7(X) =

L(Az)?

Remark :
If A; and Ay are deterministic, it is O(||.A1 | x [|Az]]).
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Problem of Finiteness

Definition : Finiteness

INPUT: aTA A
QUESTION: is L(.A) finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.
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Minimization
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Theorem of Myhill-Nerode

A congruence = T(X ) is an equwalence relation such that
for all f € X, |f s1 = 11,

Ftiy .. tn).

Given L C T(X), the congruence =y, is defined by:

Spn = tn, then f(s1,...,8,) =

s =g, t if for all context C' € T (X, {z}), C[s] € Liff C[t] € L

Theorem : Myhill-Nerode
The three following propositions are equivalent:
1. L is regular

2. L is a union of equivalence classes for a congruence = of
finite index

3. =1, is a congruence of finite index
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Proof Theorem of Myhill-Nerode

1 = 2. A deterministic, def. s =4 t iff A(s) = A(t).

2 = 3. we show that if s =t then s =, £, hence the
index of =7, < index of = (since we have =C=;).
If s =t then CJs] = Ct] for all C'[] (induction on
('), hence C[s] € L iff C[t] € L, i.e. s=p t.
3 = 1. we construct Amin = (Qmin, Q‘:nin, Amin),

» (Qmin = equivalence classes of =7,

min [S] ‘ S € L}'

> Apin = {f([sl], o [sn]) — [f(sl, . ,Sn)]}
Clearly, Amin is deterministic, and for all s € T (),
Amin(s) = [s]r, i.e. s € L(Anin) iff s € L.
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Minimization

Corollary :

For all DTA A = (,Q,Q", A), there exists a unique DTA Anin
whose number of states is the index of =4y and such that

L(Amin) = L(A).
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Minimization
Let A= (2,Q,Q",A) be a DTA, we build a deterministic minimal

automaton A, as in the proof of 3 = 1 of the previous theorem
for L(A) (i.e. Qmin is the set of equivalence classes for =, 4)).

We build first an equivalence ~ on the states of Q):
> g~ q iff g, € Q" ouq,¢ €Q\Q".

> gy q iffgrg g et Ve,
vgl)"')Qi—17Qi—|—17"'7qn EQ (1 SZSn)r

A(f(Ql? ey @i—1,45 Qi1 - - - 7Qn)) ~k A(f(Qla s 7Qi—17q/7Qi—|—17 I

Let ~ be the fixpoint of this construction, ~ is =, 4), hence
Amln — (Z Qmm,Qmm, mm) Wlth .

>C2min:{ N‘QEQ}
]:nln { ‘ EQf
m|n—{f( %“ [ ] )_>[f(Q17""qn)}z}'

recognizes L(A). and it is smaller than A.
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