
Tree automata techniques
for the verification of infinite state-systems

Summer School VTSA 2011

Florent Jacquemard

INRIA Saclay & LSV (UMR CNRS/ENS Cachan)

florent.jacquemard@inria.fr

http://www.lsv.ens-cachan.fr/~jacquema

TATA book http://tata.gforge.inria.fr

(chapters 1, 3, 7, 8)

Tree

Automata

Techniques and

Applications

Hubert Comon Max Dauchet Rémi Gilleron

Florent Jacquemard Denis Lugiez Christof Löding

Sophie Tison Marc Tommasi

2 / 200

Part I

Automata on Finite Ranked Trees

Terms in first order logic

35 / 200

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

36 / 200

Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with
an arity greater or equal to 0.

We denote Σi the set of symbols of arity i.

Example :

{+ : 2, s : 1, 0 : 0}, {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}.

We also consider a countable set X of variable symbols.

37 / 200

Terms

Definition : Term

The set of terms over the signature Σ and X is the smallest set
T (Σ,X) such that:

- Σ0 ⊆ T (Σ,X),

- X ⊆ T (Σ,X),

- if f ∈ Σn and if t1, . . . , tn ∈ T (Σ,X), then
f(t1, . . . , tn) ∈ T (Σ,X).

The set of ground terms (terms without variables, i.e. T (Σ, ∅)) is
denoted T (Σ).

Example :

x, ¬(x), ∧
(

∨(x,¬(y)),¬(x)
)

.

38 / 200

Terms (2)

A term where each variable appears at most once is called linear.
A term without variable is called ground.

Depth h(t):

◮ h(a) = h(x) = 0 if a ∈ Σ0, x ∈ X ,

◮ h
(

f(t1, . . . , tn)
)

= max{h(t1), . . . , h(tn)}+ 1.

39 / 200

Positions
A term t ∈ T (Σ,X) can also be seen as a function from the set of
its positions Pos(t) into Σ ∪ X .
The empty position (root) is denoted ε.

Pos(t) is a subset of N∗ satisfying the following properties:

◮ Pos(t) is closed under prefix,

◮ for all p ∈ Pos(t) such that t(p) ∈ Σn (n ≥ 1),
{

pj ∈ Pos(t)
∣

∣ j ∈ N
}

= {p1, ..., pn},

◮ every p ∈ Pos(t) such that t(p) ∈ Σ0 ∪ X is maximal in
Pos(t) for the prefix ordering.

The size of t is defined by ‖t‖ = |Pos(t)|.

Subterm t|p at position p ∈ Pos(t):

◮ t|ε = t,

◮ f(t1, . . . , tn)|ip = ti|p.

The replacement in t of t|p by s is denoted t[s]p.
40 / 200

Positions (example)

Example :

t = ∧(∧(x,∨(x,¬(y))),¬(x)),
t|11 = x, t|12 = ∨(x,¬(y)), t|2 = ¬(x),
t[¬(y)]11 = ∧(∧(¬(y),∨(x,¬(y))),¬(x)).

41 / 200

Contexts

Definition : Contexte

A context is a linear term.

The application of a context C ∈ T (Σ, {x1, . . . , xn}) to n terms
t1, . . . , tn, denoted C[t1, . . . , tn], is obtained by the replacement of
each xi by ti, for 1 ≤ i ≤ n.

42 / 200

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

43 / 200

Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a

q0 −→
a

q0 −→
b

q1 −→
b

q0 −→
a

q0.

tree. run on a(a(b(b(a(ε))))):
q0 → a(q0)→ a(a(q0))→ a(a(b(q1)))→ a(a(b(b(q0))))→
a(a(b(b(a(q0)))))→ a(a(b(b(a(ε)))))

with q0 := ε, q0 := a(q0), q1 := a(q1), q1 := b(q0), q0 := b(q1).

44 / 200

Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a

q0 −→
a

q0 −→
b

q1 −→
b

q0 −→
a

q0.

tree. run on a(a(b(b(a(ε))))):
a(a(b(b(a(ε))))) → a(a(b(b(a(q0)))))→ a(a(b(b(q0))))→
a(a(b(q1)))→ a(a(q0))→ a(q0)→ q0

with ε→ q0, a(q0)→ q0, a(q1)→ q1, b(q0)→ q1, b(q1)→ q0.

45 / 200

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple A =
(Σ, Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q is the sub-
set of final states and ∆ is a set of transition rules of the form:
f(q1, . . . , qn)→ q with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

The state q is called the head of the rule.
The language of A in state q is recursively defined by

L(A, q) =
{

a ∈ Σ0

∣

∣ a→ q ∈ ∆
}

∪
⋃

f(q1,...,qn)→q∈∆

f
(

L(A, q1), . . . , L(A, qn)
)

with f(L1, . . . , Ln) :=
{

f(t1, . . . , tn)
∣

∣ t1 ∈ L1, . . . , tn ∈ Ln

}

.

We say that t ∈ L(A, q) is accepted, or recognized, by A in state q.

The language of A is L(A) :=
⋃

qf∈Qf

L(A, qf) (regular language).

46 / 200

Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to ∆ is the smallest binary relation,
denoted −−→∆ , containing∆ and closed under application of contexts.

The reflexive and transitive closure of −−→∆ is denoted −−→∗∆ .

For A = (Σ, Q,Qf ,∆), it holds that

L(A, q) =
{

t ∈ T (Σ)
∣

∣ t −−→∗
∆

q
}

and hence
L(A) =

{

t ∈ T (Σ)
∣

∣ t −−→∗
∆

q ∈ Qf
}

47 / 200

Tree Automata: example 1

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},

A =

















Σ, {q0, q1}, {q1},































⊥ → q0 ⊤ → q1
¬(q0) → q1 ¬(q1) → q0

∨(q0, q0) → q0 ∨(q0, q1) → q1
∨(q1, q0) → q1 ∨(q1, q1) → q1
∧(q0, q0) → q0 ∧(q0, q1) → q0
∧(q1, q0) → q0 ∧(q1, q1) → q1















































∧(∧(⊤,∨(⊤,¬(⊥))),¬(⊤)) −−→
A
∧(∧(⊤,∨(⊤,¬(⊥))),¬(q1))

−−→
A

∧(∧(q1,∨(q1,¬(q0))),¬(q1)) −−→A ∧(∧(q1,∨(q1,¬(q0))), q0)
−−→
A

∧(∧(q1,∨(q1, q1)), q0) −−→A ∧(∧(q1, q1), q0) −−→A ∧(q1, q0) −−→A q0

48 / 200

Tree Automata: example 2

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},
TA recognizing the ground instances of ¬(¬(x)):

A =









Σ, {q, q¬, qf}, {qf},















⊥ → q ⊤ → q

¬(q) → q ¬(q) → q¬
¬(q¬) → qf
∨(q, q) → q ∧(q, q) → q























Example :

Ground terms embedding the pattern ¬(¬(x)): A ∪ {¬(qf) →
qf ,∨(qf , q∗)→ qf ,∨(q∗, qf)→ qf , . . .} (propagation of qf).

49 / 200

Runs

Definition : Run

A run of a TA (Σ, Q,Qf ,∆) on a term t ∈ T (Σ) is a function
r : Pos(t)→ Q such that for all p ∈ Pos(t),
if t(p) = f ∈ Σn, r(p) = q and r(pi) = qi for all 1 ≤ i ≤ n,
then f(q1, . . . , qn)→ q ∈ ∆.

The run r is accepting if r(ε) ∈ Qf .
L(A) is the set of ground terms of T (Σ) for which there exists an
accepting run.

51 / 200

Epsilon-transitions

We extend the class TA into TAε with the addition of another type
of transition rules of the form q −→ε q′ (ε-transition).
with the same expressiveness as TA.

Proposition : Suppression of ε-transitions

For all TAε Aε, there exists a TA (without ε-transition) A′ such
that L(A) = L(Aε). The size of A is polynomial in the size of Aε.

pr.: We start with Aε and we add f(q1, . . . , qn)→ q′ if there exists
f(q1, . . . , qn)→ q and q −→ε q′.

54 / 200

Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple A =
(Σ, Q,Qinit,∆) where Q is a finite set of states, Qinit ⊆ Q is the
subset of initial states and ∆ is a set of transition rules of the form:
q → f(q1, . . . , qn) with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

A ground term t ∈ T (Σ) is accepted by A in the state q iff q −−→∗
∆

t.

The language of A starting from the state q is
L(A, q) :=

{

t ∈ T (Σ)
∣

∣ q −−→∗
∆

t
}

.

The language of A is L(A) :=
⋃

qi∈Qinit

L(Q, qi).

55 / 200

Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of
regular tree languages.

56 / 200

Remark: Notations

In the next slides

TA = Bottom-Up Tree Automata

57 / 200

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

58 / 200

Determinism

Definition : Determinism

A TA A is deterministic if for all f ∈ Σn, for all states q1, . . . , qn
of A, there is at most one state q of A such that A contains a
transition f(q1, . . . , qn)→ q.

If A is deterministic, then for all t ∈ T (Σ), there exists at most
one state q of A such that t ∈ L(A, q). It is denoted A(t) or ∆(t).

59 / 200

Completeness

Definition : Completeness

A TA A is complete if for all f ∈ Σn, for all states q1, . . . , qn of A,
there is at least one state q of A such that A contains a transition
f(q1, . . . , qn)→ q.

If A is complete, then for all t ∈ T (Σ), there exists at least one
state q of A such that t ∈ L(A, q).

60 / 200

Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.

61 / 200

Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.

pr.: add a trash state q⊥.

62 / 200

Determinization

Proposition : Determinization

For all TA A, there exists a deterministic TA Adet such that
L(Adet) = L(A). Moreover, ifA is complete, thenAdet is complete.
The size of Adet is exponential in the size of A, its construction is
EXPTIME.

pr.: subset construction. Transitions:

f(S1, . . . , Sn)→ {q | ∃q1 ∈ S1 . . . ∃qn ∈ Sn f(q1, . . . , qn → q ∈ ∆}

for all S1, . . . , Sn ⊆ Q.

63 / 200

Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of
¬(¬(x))):

A =













Σ, {q, q¬, qf}, {qf},























⊥ → q ⊤ → q

¬(q) → q ¬(q) → q¬
¬(q¬) → qf ¬(qf) → qf
∨(q, q) → q ∧(q, q) → q

∨(qf , q∗) → qf ∨(q∗, qf) → qf



































64 / 200

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

65 / 200

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

pr.: L =
{

f(a, b), f(b, a)
}

.

66 / 200

Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

67 / 200

Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

68 / 200

Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

69 / 200

Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states

exponential
(lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.

70 / 200

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

71 / 200

Cleaning

Definition : Clean

A state q of a TA A is called inhabited if there exists at least one
t ∈ L(A, q). A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA Aclean such that L(Aclean) =
L(A). The size of Aclean is smaller than the size of A, its construc-
tion is PTIME.

pr.: state marking algorithm, running time O
(

|Q| × ‖∆‖
)

.

72 / 200

State Marking Algorithm

We construct M ⊆ Q containing all the inhabited states.

◮ start with M = ∅

◮ for all f ∈ Σ, of arity n ≥ 0, and
all q1, . . . , qn ∈M st there exists f(q1, . . . , qn)→ q in ∆,
add q to M (if it was not already).

We iterate the last step until a fixpoint M∗ is reached.

Lemma :

q ∈M∗ iff ∃t ∈ L(A, q).

73 / 200

Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

75 / 200

Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:
quadratic: clean, check if the clean automaton contains a final
state.
linear: reduction to propositional HORN-SAT.
linear bis: optimization of the data structures for the cleaning
(exo).

Remark :

The problem of the emptiness is PTIME-complete.

76 / 200

Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA A over Σ, a term t ∈ T (Σ,X).
QUESTION: does there exists σ : vars(t) → T (Σ) s.t. tσ ∈ L(A)?

Proposition : Instance-Membership

1. The problem IM is decidable in polynomial time when t is
linear.

2. The problem IM is NP-complet when A is deterministic.

3. The problem IM is EXPTIME-complete in general.

77 / 200

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

78 / 200

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under ∩ and
emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME
reduction of the problem of the existence of a successful run
(starting from an initial configuration) of an alternating Turing
machine (ATM) M = (Γ, S, s0, Sf , δ).
[Seidl 94], [Veanes 97]

79 / 200

Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.

86 / 200

Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :

The problem of universality is decidable in polynomial time for the
deterministic (bottom-up) TA.

pr.: completion and cleaning.

87 / 200

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

88 / 200

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.

89 / 200

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.
EXPTIME-hardness: universality is T (Σ) = L(A2)?

Remark :

If A1 and A2 are deterministic, it is O
(

‖A1‖ × ‖A2‖
)

.

90 / 200

Problem of Finiteness

Definition : Finiteness

INPUT: a TA A
QUESTION: is L(A) finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.

91 / 200

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

92 / 200

Theorem of Myhill-Nerode

Definition :

A congruence ≡ on T (Σ) is an equivalence relation such that
for all f ∈ Σn, if s1 ≡ t1,. . . , sn ≡ tn, then f(s1, . . . , sn) ≡
f(t1, . . . , tn).

Given L ⊆ T (Σ), the congruence ≡L is defined by:

s ≡L t if for all context C ∈ T
(

Σ, {x}
)

, C[s] ∈ L iff C[t] ∈ L.

Theorem : Myhill-Nerode

The three following propositions are equivalent:

1. L is regular

2. L is a union of equivalence classes for a congruence ≡ of
finite index

3. ≡L is a congruence of finite index

93 / 200

Proof Theorem of Myhill-Nerode

1 ⇒ 2. A deterministic, def. s ≡A t iff A(s) = A(t).

2 ⇒ 3. we show that if s ≡ t then s ≡L t, hence the
index of ≡L ≤ index of ≡ (since we have ≡⊆≡L).
If s ≡ t then C[s] ≡ C[t] for all C[] (induction on
C), hence C[s] ∈ L iff C[t] ∈ L, i.e. s ≡L t.

3 ⇒ 1. we construct Amin = (Qmin, Q
f
min,∆min),

◮ Qmin = equivalence classes of ≡L,
◮ Qf

min = {[s]
∣

∣ s ∈ L},
◮ ∆min = {f

(

[s1], . . . , [sn]
)

→
[

f(s1, . . . , sn)
]

}

Clearly, Amin is deterministic, and for all s ∈ T (Σ),
Amin(s) = [s]L, i.e. s ∈ L(Amin) iff s ∈ L.

94 / 200

Minimization

Corollary :

For all DTA A = (Σ, Q,Qf ,∆), there exists a unique DTA Amin

whose number of states is the index of ≡L(A) and such that
L(Amin) = L(A).

95 / 200

Minimization
Let A = (Σ, Q,Qf ,∆) be a DTA, we build a deterministic minimal
automaton Amin as in the proof of 3 ⇒ 1 of the previous theorem
for L(A) (i.e. Qmin is the set of equivalence classes for ≡L(A)).

We build first an equivalence ≈ on the states of Q:

◮ q ≈0 q
′ iff q, q′ ∈ Qf ou q, q′ ∈ Q \Qf .

◮ q ≈k+1 q
′ iff q ≈k q′ et ∀f ∈ Σn,

∀q1, . . . , qi−1, qi+1, . . . , qn ∈ Q (1 ≤ i ≤ n),

∆
(

f(q1, . . . , qi−1, q, qi+1, . . . , qn)
)

≈k ∆
(

f(q1, . . . , qi−1, q
′, qi+1, . . . ,

Let ≈ be the fixpoint of this construction, ≈ is ≡L(A), hence

Amin = (Σ, Qmin, Q
f
min,∆min) with :

◮ Qmin = {[q]≈
∣

∣ q ∈ Q},

◮ Qf
min = {[qf]≈

∣

∣ qf ∈ Qf},

◮ ∆min =
{

f
(

[q1]≈, . . . , [qn]≈
)

→
[

f(q1, . . . , qn)
]

≈

}

.

recognizes L(A). and it is smaller than A.
96 / 200

