Simulation Reduction of Finite Nondeterministic Word and Tree Automata

Tomáš Vojnar

FIT, Brno University of Technology, Czech Republic

Plan of the Lecture

- Mediated Simulation Reduction for Finite Word Automata
- Simulation-based Reduction of Finite Tree Automata
- Computing Simulations on Tree Automata and Labelled Transition Systems

Mediated Simulation Reduction for Finite Word Automata

How to reduce NFA?

- Computing minimal deterministic automata is not a good way:
 - requires determinisation costly, may run out of memory even before one can begin with the actual minimisation,
 - the result can still be bigger than the original nondeterministic automaton.

How to reduce NFA?

- Computing minimal deterministic automata is not a good way:
 - requires determinisation costly, may run out of memory even before one can begin with the actual minimisation,
 - the result can still be bigger than the original nondeterministic automaton.
- ❖ A well-known way of reducing the size of nondeterministic automata without determinizing them is quotienting w.r.t. forward/backward (bi)simulation equivalence.

Simulation-based NFA Reduction

- ❖ Forward simulation F for word automata:
 - \bullet qFr implies that
 - if $q \xrightarrow{a} q'$, then $r \xrightarrow{a} r'$ with q'Fr', and
 - $q \in \mathcal{F} \implies r \in \mathcal{F}$ where \mathcal{F} are the final states.
 - F implies inclusion of languages accepted from states.

Simulation-based NFA Reduction

- ❖ Forward simulation F for word automata:
 - qFr implies that
 - if $q \xrightarrow{a} q'$, then $r \xrightarrow{a} r'$ with q'Fr', and
 - $q \in \mathcal{F} \implies r \in \mathcal{F}$ where \mathcal{F} are the final states.
 - F implies inclusion of languages accepted from states.
- ❖ Backward simulation B for word automata:
 - qBr implies that
 - if $q' \xrightarrow{a} q$, then $r' \xrightarrow{a} r$ with q'Br', and
 - $q \in \mathcal{I} \implies r \in \mathcal{I}$ where \mathcal{I} are the initial states.
 - B implies inclusion of languages accepted at states.

Simulation-based NFA Reduction

- ❖ Forward simulation F for word automata:
 - qFr implies that
 - if $q \xrightarrow{a} q'$, then $r \xrightarrow{a} r'$ with q'Fr', and
 - $q \in \mathcal{F} \implies r \in \mathcal{F}$ where \mathcal{F} are the final states.
 - F implies inclusion of languages accepted from states.
- ❖ Backward simulation B for word automata:
 - qBr implies that
 - if $q' \xrightarrow{a} q$, then $r' \xrightarrow{a} r$ with q'Br', and
 - $m{-}$ $q \in \mathcal{I} \implies r \in \mathcal{I}$ where \mathcal{I} are the initial states.
 - B implies inclusion of languages accepted at states.
- ❖ A simulation S is a pre-order (reflexive and transitive). For quotienting, one needs a simulation equivalence, which can be obtained by taking the symmetric closure $S \cap S^{-1}$.

Bisimulation-based NFA Reduction

- One can also quotient wrt. forward/backward bisimulations.
 - Forward bisimulation F for word automata:
 - -qFr implies that
 - \circ if $q \xrightarrow{a} q'$, then $r \xrightarrow{a} r'$ with q'Fr',
 - \circ symmetrically, if $r \stackrel{a}{\longrightarrow} r'$, then $q \stackrel{a}{\longrightarrow} q'$ with q'Fr', and
 - \circ $q \in \mathcal{F} \Leftrightarrow r \in \mathcal{F}$.
 - Backward simulation B for word automata:
 - -qBr implies that
 - \circ if $q' \xrightarrow{a} q$, then $r' \xrightarrow{a} r$ with q'Br',
 - \circ symmetrically, if $r' \stackrel{a}{\longrightarrow} r$, then $q' \stackrel{a}{\longrightarrow} q$ with q'Br', and
 - \circ $q \in \mathcal{I} \Leftrightarrow r \in \mathcal{I}$.

Bisimulation-based NFA Reduction

- One can also quotient wrt. forward/backward bisimulations.
 - Forward bisimulation F for word automata:
 - -qFr implies that
 - \circ if $q \xrightarrow{a} q'$, then $r \xrightarrow{a} r'$ with q'Fr',
 - \circ symmetrically, if $r \xrightarrow{a} r'$, then $q \xrightarrow{a} q'$ with q'Fr', and
 - \circ $q \in \mathcal{F} \Leftrightarrow r \in \mathcal{F}$.
 - Backward simulation B for word automata:
 - -qBr implies that
 - \circ if $q' \stackrel{a}{\longrightarrow} q$, then $r' \stackrel{a}{\longrightarrow} r$ with q'Br',
 - \circ symmetrically, if $r' \stackrel{a}{\longrightarrow} r$, then $q' \stackrel{a}{\longrightarrow} q$ with q'Br', and
 - \circ $q \in \mathcal{I} \Leftrightarrow r \in \mathcal{I}$.
- Bisimulations are equivalences, so no need to make a symmetric closure.
- \clubsuit Rough time complexity for m transitions and n states:
 - computing simulation: $\mathcal{O}(m.n)$, computing bisimulation: $\mathcal{O}(m.log n)$.

Bisimulation-based NFA Reduction

- One can also quotient wrt. forward/backward bisimulations.
 - Forward bisimulation F for word automata:
 - -qFr implies that
 - \circ if $q \xrightarrow{a} q'$, then $r \xrightarrow{a} r'$ with q'Fr',
 - \circ symmetrically, if $r \xrightarrow{a} r'$, then $q \xrightarrow{a} q'$ with q'Fr', and
 - \circ $q \in \mathcal{F} \Leftrightarrow r \in \mathcal{F}$.
 - Backward simulation B for word automata:
 - qBr implies that
 - \circ if $q' \xrightarrow{a} q$, then $r' \xrightarrow{a} r$ with q'Br',
 - \circ symmetrically, if $r' \stackrel{a}{\longrightarrow} r$, then $q' \stackrel{a}{\longrightarrow} q$ with q'Br', and
 - $\circ q \in \mathcal{I} \Leftrightarrow r \in \mathcal{I}.$
- Bisimulations are equivalences, so no need to make a symmetric closure.
- ❖ Rough time complexity for m transitions and n states:
 - computing simulation: $\mathcal{O}(m.n)$, computing bisimulation: $\mathcal{O}(m.\log n)$.
- The use of forward and backward (bi)simulation can be efficiently combined in coarser (and hence better reducing) mediated equivalences.

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

[Abdulla, Bouajjani, Holík, Kaati, V. – TACAS'08, CIAA'08, MEMICS'08], later [L. Clemente for Büchi automata – ICALP'11]

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

Can we allow a jump if there is a mediator?

[Abdulla, Bouajjani, Holík, Kaati, V. – TACAS'08, CIAA'08, MEMICS'08], later [L. Clemente for Büchi automata – ICALP'11]

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

Can we allow a jump if there is a mediator? NO, in general, we cannot.

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

- Can we allow a jump if there is a mediator? NO, in general, we cannot.
- A fix: we take as the mediated preorder M the maximal transitive fragment of $B \circ F^{-1}$ that contains F^{-1} .

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

- Can we allow a jump if there is a mediator? NO, in general, we cannot.
- A fix: we take as the mediated preorder M the maximal transitive fragment of $B \circ F^{-1}$ that contains F^{-1} .

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

- Can we allow a jump if there is a mediator? NO, in general, we cannot.
- A fix: we take as the mediated preorder M the maximal transitive fragment of $B \circ F^{-1}$ that contains F^{-1} .

- Quotienting corresponds to merging some states,
 - which is the same as allowing "jumps" (ϵ -transitions) between the states.
- A mediated preorder allows a jump from a state q to a state r only if there exists a mediator state s such that qBs and rFs:

- Can we allow a jump if there is a mediator? NO, in general, we cannot.
- \clubsuit A fix: we take as the mediated preorder M the maximal transitive fragment of $B \circ F^{-1}$ that contains F^{-1} .
- We can merge states according to the mediated equivalence $\sim_M = M \cap M^{-1}$.

Mediated Simulation Reduction for Finite Tree Automata

- ***** A bottom-up tree automaton: $A = (Q, \Sigma, F, \Delta)$ where
 - Q is a finite set of states,
 - $F \subseteq Q$ is a set of final states,
 - Σ a ranked alphabet with a rank function $\#: \Sigma \to \mathbb{N}$,
 - Δ is a set of tree transition rules of the form as in the following example:

- ***** A bottom-up tree automaton: $A = (Q, \Sigma, F, \Delta)$ where
 - Q is a finite set of states,
 - $F \subseteq Q$ is a set of final states,
 - Σ a ranked alphabet with a rank function $\#: \Sigma \to \mathbb{N}$,
 - ullet Δ is a set of tree transition rules of the form as in the following example:

- ***** A bottom-up tree automaton: $A = (Q, \Sigma, F, \Delta)$ where
 - Q is a finite set of states,
 - $F \subseteq Q$ is a set of final states,
 - Σ a ranked alphabet with a rank function $\#: \Sigma \to \mathbb{N}$,
 - ullet Δ is a set of tree transition rules of the form as in the following example:

- ***** A bottom-up tree automaton: $A = (Q, \Sigma, F, \Delta)$ where
 - Q is a finite set of states,
 - $F \subseteq Q$ is a set of final states,
 - Σ a ranked alphabet with a rank function $\#: \Sigma \to \mathbb{N}$,
 - ullet Δ is a set of tree transition rules of the form as in the following example:

Downward Simulation

 $D \subseteq Q \times Q$ is a downward simulation

if q D r implies that

whenever $(q_1, \ldots, q_n) \stackrel{f}{\longrightarrow} q$,

then also $(r_1, \ldots, r_n) \stackrel{f}{\longrightarrow} r$ with $q_i D r_i$ for all $1 \leq i \leq n$.

Downward Simulation

 $D \subseteq Q \times Q$ is a downward simulation

if q D r implies that

whenever
$$(q_1, \ldots, q_n) \stackrel{f}{\longrightarrow} q$$
,

then also $(r_1, \ldots, r_n) \stackrel{f}{\longrightarrow} r$ with $q_i D r_i$ for all $1 \leq i \leq n$.

Upward Simulation

- ❖ Let D be a downward simulation.
- $\clubsuit U_D \subseteq Q \times Q$ is an upward simulation induced by D if $q \ U_D \ r$ implies that

whenever $(q_1,\ldots,q_n)\stackrel{f}{\longrightarrow} q'$ where $q_i=q$,

then also $(r_1, \ldots, r_n) \stackrel{f}{\longrightarrow} r'$ where $r_i = r$, $q' U_D r'$, and $q_j D r_j$ for all $1 \le i \ne j \le n$,

moreover, $q \in F \implies r \in F$.

Upward Simulation

- ❖ Let *D* be a downward simulation.
- $U_D\subseteq Q imes Q$ is an upward simulation induced by D if $q\ U_D\ r$ implies that $\text{whenever } (q_1,\ldots,q_n)\stackrel{f}{\longrightarrow} q' \text{ where } q_i=q,$ then also $(r_1,\ldots,r_n)\stackrel{f}{\longrightarrow} r'$ where $r_i=r,\ q'\ U_D\ r',\ \text{and } q_jDr_j \text{ for all } 1\leq i\neq j\leq n,$ moreover, $q\in F\implies r\in F.$

• A mediated preorder $D \oplus U$ is the maximal transitive fragment of $D \circ U_D^{-1}$ containing D.

- \clubsuit A mediated preorder $D \oplus U$ is the maximal transitive fragment of $D \circ U_D^{-1}$ containing D.
- In fact, one can combine:
 - an inducing downward relation: simulation (DS), bisimulation (DB), identity (Id).
 - an induced upward relation: simulation (US), bisimulation (UB), identity.

- \clubsuit A mediated preorder $D \oplus U$ is the maximal transitive fragment of $D \circ U_D^{-1}$ containing D.
- In fact, one can combine:
 - an inducing downward relation: simulation (DS), bisimulation (DB), identity (Id).
 - an induced upward relation: simulation (US), bisimulation (UB), identity.

- **\clubsuit** A mediated preorder $D \oplus U$ is the maximal transitive fragment of $D \circ U_D^{-1}$ containing D.
- In fact, one can combine:
 - an inducing downward relation: simulation (DS), bisimulation (DB), identity (Id).
 - an induced upward relation: simulation (US), bisimulation (UB), identity.

Experiments with Mediated Reduction on TA

TA		DS		$\mathit{Id} \oplus \mathit{US}$		$DB \oplus \mathit{US}$		$DS \oplus US$	
origin	size	reduction	time	reduction	time	reduction	time	reduction	time
RTMC	909	52 %	3.6 s	72 %	3.1 s	82%	3.4 s	89%	35.1 s
ARTMC	2029	10%	27.0 s	37 %	26.0 s	33%	29.0 s	93%	39.0 s
RTMC	2403	26%	31.0 s	0%	25.0 s	0%	34.0 s	82%	37.1 s
TA		DB		$\mathit{Id} \oplus \mathit{UB}$		$DB \oplus UB$		$DS \oplus UB$	
origin	size	reduction	time	reduction	time	reduction	time	reduction	time
RTMC	909	14%	0.6 s	72 %	0.4 s	82 %	0.8 s	83%	4.1 s
ARTMC	2029	10%	1.7 s	14%	1.4 s	19%	3.1 s	44%	29.0 s
RTMC	2403	0%	0.3 s	0%	0.6 s	0%	0.7 s	27 %	31.0 s

Computing Simulations on Tree Automata and Labelled Transition Systems

Computing Downward Simulations

Via a translation from NTA to LTS:

TA:
$$(q_1, \ldots, q_n) \xrightarrow{a} q$$

❖ Theorem: q D r iff $\boxed{q} \preccurlyeq \boxed{r}$.

Computing Upward Simulations

Via a translation from NTA to LTS:

TA:
$$(q_1, \dots, q_n) \xrightarrow{a} q$$

LTS:
$$\forall i$$
 $q_i \xrightarrow{\lambda} (q_1, \dots, q_n) \xrightarrow{a} q \xrightarrow{a} q$

- **�** Theorem: $q U_D r \text{ iff } \boxed{q} \preccurlyeq^I \boxed{r}$.
 - \leq^I is the maximal upward simulation included in the relation I defined as follows:
 - $(q, r) \in I$ for all $q, r \in Q$ and

$$-\left(\boxed{(q_1,\ldots,\Box_i,\ldots,q_n)\overset{a}{\longrightarrow}q},\boxed{(r_1,\ldots,\Box_i,\ldots,r_n)\overset{a}{\longrightarrow}r}\right)\in I \text{ iff } q_j \ D \ r_j \text{ for all } 1\leq j\neq i\leq n.$$

Complexity

- There exist many algorithms for computing simulations on Kripke structures/LTSs.
- \clubsuit Fix a TA $A=(Q,\Sigma,\Delta,F)$ and let n=|Q|, $m=|\Delta|$, $\ell=|\Sigma|$, and r be the rank of Σ .
- We use a modification of the fast algorithm for computing simulations on Kripke structures by Ranzato and Tapparo (2007) for LTS: $\mathcal{O}(|Lab| \cdot |P_{sim}| \cdot |S| + |P_{sim}| \cdot |\rightarrow|)$.
 - Maximal downward simulations: $\mathcal{O}((r+\ell) \cdot m^2)$.
 - Maximal downward simulations: $\mathcal{O}(\ell \cdot r^2 \cdot m^2 + T(D))$.
- For bisimulations, one can use an LTS modification of the Paige and Tarjan (1987) partition refinement algorithm that runs in time $\mathcal{O}(|Lab| \cdot |\to| \cdot \log |S|)$.
 - Maximal downward bisimulations: $\mathcal{O}(r^3 \cdot m \cdot \log n)$.
 - Maximal upward bisimulations: $\mathcal{O}(m \cdot \log(n + \ell) + T(D))$.
- **Specialised algorithms for downward bisimulation and upward simulation induced by identity by Högberg, Maletti, and May (2007):** $\mathcal{O}(r^2 \cdot m \cdot \log n)$ and $\mathcal{O}(r \cdot m \cdot \log n)$.

Computing Simulations on LTS

```
Input: an LTS T = (S, \Sigma, \{\delta_a \mid a \in \Sigma\}), partition-relation pair \langle P_I, Rel_I \rangle
    Output: partition-relation pair \langle P, Rel \rangle
     /* initialization */
 1 \langle P, Rel \rangle \leftarrow \langle P_I, Rel_I \rangle
                                                                                /* \leftarrow \langle P_{I \cap Out}, Rel_{I \cap Out} \rangle */
                                                                                                 /* a \in \operatorname{in}(B) */
 2 foreach B \in P and a \in \Sigma do
                                                                                                /* v \in \delta_a^{-1}(S) */
         for each v \in S do
 3
              Count_a(v, B) = |\delta_a(v) \cap \bigcup Rel(B)|;
                                                                       /* \leftarrow \delta_a^{-1}(S) \setminus \delta_a^{-1}(\bigcup Rel(B)) */
         Remove_a(B) \leftarrow S \setminus \delta_a^{-1}(||Rel(B)||)
    /* computation */
 6 while exists B \in P and a \in \Sigma such that Remove_a(B) \neq \emptyset do
         Remove \leftarrow Remove_a(B);
         Remove_a(B) \leftarrow \emptyset;
         \langle P_{\mathsf{prev}}, Rel_{\mathsf{prev}} \rangle \leftarrow \langle P, Rel \rangle;
         P \leftarrow Split(P, Remove);
10
         Rel \leftarrow \{(C, D) \in P \times P \mid (C_{prev}, D_{prev}) \in Rel_{prev}\};
11
                                                                                                  /*\ b \in \operatorname{in}(C)\ */
         for each C \in P and b \in \Sigma do
12
              Remove_b(C) \leftarrow Remove_b(C_{prev});
13
                                                                                                /* v \in \delta_b^{-1}(S) */
             for each v \in S do
14
                  Count_b(v, C) \leftarrow Count_b(v, C_{prev});
15
         for each C \in P such that C \cap \delta_a^{-1}(B) \neq \emptyset do
16
             for each D \in P such that D \subseteq Remove do
17
                  if (C,D) \in Rel then
18
                       Rel \leftarrow Rel \setminus \{(C,D)\};
19
                       for each b \in \Sigma and v \in \delta_b^{-1}(D) do
                                                                                     /* b \in \operatorname{in}(D) \cap \operatorname{in}(C) */
20
                            Count_b(v, C) \leftarrow Count_b(v, C) - 1;
21
                           if Count_b(v,C)=0 then
22
                                Remove_b(C) \leftarrow Remove_b(C) \cup \{v\};
23
```