
Regular Model Checking

Tomáš Vojnar

Faculty of Information Technology
Brno University of Technology

Regular Model Checking – p.1/30

Plan of the Lecture

• From finite-state to infinite-state model checking.

• The basic idea of regular model checking.

• Computing closures of transition relations in regular model checking.

• Regular tree model checking.

• Nondeterministic automata in regular (tree) model checking.

Regular Model Checking – p.2/30

From Finite-state to Infinite-state
Model Checking

Regular Model Checking – p.3/30

Model Checking

[Clarke, Emerson 81], [Quielle, Sifakis 81]

❖ An algorithmic approach of checking whether a model M of a system satisfies a certain

correctness specification ϕ when started from some initial state s:

M, s |= ϕ

❖ Typically based on a systematic exploration of the state space of M .

❖ Models of systems

• can be built in various specialised modelling languages (process algebras, Petri
nets, Promela, SMV, ...), or

• source descriptions of analysed systems (in C, Java, Verilog, VHDL, ...) can
directly be used.

❖ Correctness specifications:

• formulae in temporal logics (LTL, CTL, CTL∗, µ-calculus, ...),

• assertions in the source code (assert()), progress labels, ...

Regular Model Checking – p.4/30

Model Checking

❖ Advantages:

• highly automatable,

• can provide counterexamples (diagnostic/debugging information).

❖ The biggest problem is the state explosion problem .

• Efficient storage of state spaces (hierarchical storage of states, BDDs, ...).

• State space reductions (symmetries, partial-order reduction, ...).

• Abstraction, counterexample-guided abstraction refinement (CEGAR).

• Compositional methods, assume-guarantee reasoning.

❖ Supported by many tools, including industrial-strength tools (Spin, SMV, RuleBase,
Blast, JPF, Slam, ...).

❖ Traditional model checking concentrated on systems with large, but finite state spaces,
but many systems are infinite-state.

Regular Model Checking – p.5/30

Sources of Infinity

❖ Unbounded communication queues (channels), unbounded waiting queues.

❖ Unbounded push-down stacks: recursion.

❖ Unbounded counters, unbounded capacity of places in Petri nets.

❖ Continuous variables: time, temperature, ...

❖ Unbounded dynamic creation of threads, dynamic allocation of memory structures
(lists, trees, ...).

❖ Parameterisation: parametric bounds of queues, counters, ..., parametric numbers of
components or processes.

Regular Model Checking – p.6/30

Model Checking Infinite-State Systems

❖ Cut-offs: safe, finite bounds on the sources of infinity such that when a system is
verified up to these bounds, the results may be generalised.

❖ Abstraction:

• predicate abstraction: x ∈ {5, 6, 7, ...} ❀ x ≥ 5,

• abstractions for parameterised networks of processes: 0-1-∞ abstraction, ...

❖ Symbolic methods: finite representation of infinite sets of states using

• logics,

• grammars,

• automata, ...

❖ Automated induction, ...

Regular Model Checking – p.7/30

Decidability Issues

❖ Formal verification of infinite state systems is usually undecidable (sometimes not
even semi-decidable).

❖ There may be identified (sub)classes of systems for which various problems are
decidable:

• push-down systems—model checking LTL is even polynomial for a fixed formula,

• lossy channel systems—reachability, safety, inevitability, and (fair) termination are
decidable (though non-primitive recursive),

• various parameterised systems for which finite cut-offs exist,

• ...

❖ Otherwise, semi-algorithmic solutions are used:

• termination is not guaranteed,

• an indefinite answer may be returned, or

• an intervention of the user is needed.

Regular Model Checking – p.8/30

Regular Model Checking:

The Basic Idea

Regular Model Checking – p.9/30

Regular Model Checking

[Pnueli et al. 97], [Wolper, Boigelot 98], [Bouajjani, Nilsson, Jonsson, Touili 00]

❖ A generic framework for verification of infinite-state systems:

• a configuration ❀ a word w over a suitable alphabet Σ,

• a set of configurations ❀ a regular language:
– usually described by a finite-state automaton A,

– two distinguished sets of configurations:
◦ initial configurations Init and
◦ bad configurations Bad,

• an action (transition) ❀ a regular relation τ

– usually described by a finite-state transducer T ,

– sometimes, more general, regularity-preserving relations are used.
◦ Implemented, e.g., as specialised operations on automata.

❖ Safety verification ❀ check that τ∗(Init) ∩Bad = ∅,

• implies a need to compute τ∗(Init).

Regular Model Checking – p.10/30

Regular Model Checking: Applicability

• Communication protocols.
– FIFO channels systems / cyclic rewrite systems.

• Sequential programs with recursive procedure calls.
– Pushdown systems / prefix rewrite systems.

• Counter systems, Petri nets.
– Various unbounded/parameterised systems may be (automatically) translated

to counter systems.

• Programs with (unbounded) dynamic linked data structures: lists, cyclic lists,
shared lists. [Bouajjani, Habermehl, Vojnar, Moro 05]

• Parameterized networks of identical processes: mutual exclusion protocols, cache
coherence protocols, ..., pipelined microprocessors. [Charvát, Smrčka, Vojnar 14].

q1q2 · · · qi−1qiqi+1 · · · qj · · · qn 7→ q1q2 · · · qi−1q
′
iqi+1 · · · q

′
j · · · qn

• ...

Regular Model Checking – p.11/30

Regular Model Checking: Applicability

• Communication protocols.
– FIFO channels systems / cyclic rewrite systems.

• Sequential programs with recursive procedure calls.
– Pushdown systems / prefix rewrite systems.

• Counter systems, Petri nets.
– Various unbounded/parameterised systems may be (automatically) translated

to counter systems.

• Programs with (unbounded) dynamic linked data structures: lists, cyclic lists,
shared lists. [Bouajjani, Habermehl, Vojnar, Moro 05]

• Parameterized networks of identical processes: mutual exclusion protocols, cache
coherence protocols, ..., pipelined microprocessors. [Charvát, Smrčka, Vojnar 14].

q1q2 · · · qi−1qiqi+1 · · · qj · · · qn 7→ q1q2 · · · qi−1q
′
iqi+1 · · · q

′
j · · · qn

• ...

Regular Model Checking – p.11/30

Example: the Szymanski’s Protocol

❖ A typical example of a parameterized protocol: the mutual exclusion protocol for N
processes due to Szymanski—the pseudocode for process i (a bit idealised):

1: await ∀ j: j 6=i ⇒ ¬sj ;
2: wi, si := true, true;
3: if ∃ j: j 6= i ⇒ (pcj 6= 1 ∧ ¬wj)

then si := false; goto 4;
else wi := false; goto 5;

4: await ∃ j: j 6= i ⇒ (sj ∧¬wj)

then wi, si := false, true;
5: await ∀ j: j 6= i ⇒ ¬wj ;
6: await ∀ j: j < i ⇒ ¬sj ;
7: si := false; goto 1;

Too complex to be used as a running example...

Regular Model Checking – p.12/30

Example: A Simple Token Passing

❖ A simple protocol in a linear process network:

• a parametric number of processes,

• a process does or does not have a token,

• a process that has a token can pass it to the right.

❖ Initially, a token is in the left-most process.

P1 P2 P3 P4 PN

❖ Check that the token cannot disappear nor duplicate.

Regular Model Checking – p.13/30

Example: A Simple Token Passing

❖ A simple protocol in a linear process network:

• a parametric number of processes,

• a process does or does not have a token,

• a process that has a token can pass it to the right.

❖ Initially, a token is in the left-most process.

P1 P2 P3 P4 PN

❖ Check that the token cannot disappear nor duplicate.

Regular Model Checking – p.13/30

Example: A Simple Token Passing

❖ A simple protocol in a linear process network:

• a parametric number of processes,

• a process does or does not have a token,

• a process that has a token can pass it to the right.

❖ Initially, a token is in the left-most process.

P1 P2 P3 P4 PN

❖ Check that the token cannot disappear nor duplicate.

Regular Model Checking – p.13/30

Example: A Simple Token Passing

❖ A simple protocol in a linear process network:

• a parametric number of processes,

• a process does or does not have a token,

• a process that has a token can pass it to the right.

❖ Initially, a token is in the left-most process.

P1 P2 P3 P4 PN

❖ Check that the token cannot disappear nor duplicate.

Regular Model Checking – p.13/30

Example: A Simple Token Passing

❖ A simple protocol in a linear process network:

• a parametric number of processes,

• a process does or does not have a token,

• a process that has a token can pass it to the right.

❖ Initially, a token is in the left-most process.

P1 P2 P3 P4 PN

❖ Check that the token cannot disappear nor duplicate.

Regular Model Checking – p.13/30

Example: A Simple Token Passing

❖ An encoding of the simple token passing protocol for the needs of regular model
checking:

• the alphabet: Σ = {T ,N},

• all configurations: words from Σ∗,

• initial configurations: T N∗ (a regular language),

• bad configurations: N∗ + (T +N)∗ T N∗T (T +N)∗ (a regular language),

• transitions—in the form of a finite-state transducer:

T / N N / T

N / N
T / T

0 1 2

N / N
T / T

Regular Model Checking – p.14/30

Example: A Simple Token Passing

❖ An application of the transducer on a sample configuration:

T N N N
τ
→ N T N N

τ
→ N N T N

τ
→ N N N T

T / N N / T

N / N
T / T

0 1 2

N / N
T / T

Regular Model Checking – p.15/30

Example: A Simple Token Passing

❖ An application of the transducer on a sample configuration:

T N N N
τ
→ N T N N

τ
→ N N T N

τ
→ N N N T

T / N N / T

N / N
T / T

0 1 2

N / N
T / T

❖ An application of the transducer on all initial configurations:

T N∗ τ
→ N T N∗ τ

→ N N T N∗ τ
→ N N N T N∗ τ

→ ...

T / N
2 3

T
0 1input automaton

transducer

N0,2 1,3 output automaton

❖ A simple iterative computation of all reachable configurations will never converge to
the desired set N∗ T N∗.

Regular Model Checking – p.15/30

Example: A Simple Token Passing

❖ An application of the transducer on a sample configuration:

T N N N
τ
→ N T N N

τ
→ N N T N

τ
→ N N N T

T / N N / T

N / N
T / T

0 1 2

N / N
T / T

❖ An application of the transducer on all initial configurations:

T N∗ τ
→ N T N∗ τ

→ N N T N∗ τ
→ N N N T N∗ τ

→ ...

T / N
2 3

T
0 1input automaton

transducer

N0,2 1,3 output automaton

❖ A simple iterative computation of all reachable configurations will never converge to
the desired set N∗ T N∗.

• We need special (accelerated) ways for computing τ∗(Init).

Regular Model Checking – p.15/30

Regular Model Checking:

Computing Closures

Regular Model Checking – p.16/30

RMC: Computing Closures

The task: compute τ∗(Init).

❖ Problems to face:

• Non regularity / Non constructibility of τ∗(Init).

• Termination of the constructions.

• State explosion of the automata / transducers.

Regular Model Checking – p.17/30

RMC: Computing Closures

The task: compute τ∗(Init).

❖ Problems to face:

• Non regularity / Non constructibility of τ∗(Init).

• Termination of the constructions.

• State explosion of the automata / transducers.

❖ Solutions:

• Special purpose constructions: LCS, PDS, classes of arithmetical relations, ...

• General purpose constructions:
– extrapolation (widening) [Bouajjani, Touili], [Wolper, Boigelot, Legay],
– merging states wrt. the history of their creation, [Abdulla, Nilsson, Jonsson, d’Orso]

– abstract regular model checking, [Bouajjani, Habermehl, Vojnar]

– learning of automata, [Habermehl, Vojnar], [Vardhan, Sen, Viswanathan, Agha]

– ...

Regular Model Checking – p.17/30

Abstract Regular Model Checking

❖ Given a relation τ , and two automata I (initial states) and B (bad states), check:

τ∗(I) ∩B = ∅

1. Define a finite-range abstraction function α on automata.

2. Compute iteratively (α ◦ τ)∗(I).

3. If (α ◦ τ)∗(I) ∩B = ∅, then answer YES.

Regular Model Checking – p.18/30

Abstract Regular Model Checking

❖ Given a relation τ , and two automata I (initial states) and B (bad states), check:

τ∗(I) ∩B = ∅

1. Define a finite-range abstraction function α on automata.

2. Compute iteratively (α ◦ τ)∗(I).

3. If (α ◦ τ)∗(I) ∩B = ∅, then answer YES.

4. Otherwise, let θ be the computed symbolic path from I to B.

5. Check if θ includes a concrete counterexample.

• If yes, then answer NO.
• Otherwise, define a refinement of α which excludes θ and goto (2).

Regular Model Checking – p.18/30

Abstract Regular Model Checking

❖ Given a relation τ , and two automata I (initial states) and B (bad states), check:

τ∗(I) ∩B = ∅

=⇒ Counter-Example Guided Abstraction Refinement (CEGAR) loop

1. Define a finite-range abstraction function α on automata.

2. Compute iteratively (α ◦ τ)∗(I).

3. If (α ◦ τ)∗(I) ∩B = ∅, then answer YES.

4. Otherwise, let θ be the computed symbolic path from I to B.

5. Check if θ includes a concrete counterexample.

• If yes, then answer NO.
• Otherwise, define a refinement of α which excludes θ and goto (2).

Regular Model Checking – p.18/30

Abstractions Based on State Collapsing

❖ We abstract automata by collapsing their states that are equal wrt. some criterion.

⇒ L(A) ⊆ L(α(A))

Regular Model Checking – p.19/30

Abstractions Based on State Collapsing

❖ We abstract automata by collapsing their states that are equal wrt. some criterion.

⇒ L(A) ⊆ L(α(A))

❖ We consider several different equivalence relations on automata states, including:

• equivalence wrt. languages of words of a bounded length k:

q1 ≃k q2 iff L(A, q1)
≤k = L(A, q2)

≤k

where L(A, q)≤k is the set of words of length at most k accepted in A when
starting from q.

• equivalence wrt. a set of predicate languages P = {P1, ..., Pn}:

q1 ≃P q2 iff ∀1 ≤ i ≤ n : L(A, q1) ∩ Pi 6= ∅ ⇔ L(A, q2) ∩ Pi 6= ∅

Regular Model Checking – p.19/30

Abstractions Based on State Collapsing

❖ We abstract automata by collapsing their states that are equal wrt. some criterion.

⇒ L(A) ⊆ L(α(A))

❖ We consider several different equivalence relations on automata states, including:

• equivalence wrt. languages of words of a bounded length k:

q1 ≃k q2 iff L(A, q1)
≤k = L(A, q2)

≤k

where L(A, q)≤k is the set of words of length at most k accepted in A when
starting from q.

• equivalence wrt. a set of predicate languages P = {P1, ..., Pn}:

q1 ≃P q2 iff ∀1 ≤ i ≤ n : L(A, q1) ∩ Pi 6= ∅ ⇔ L(A, q2) ∩ Pi 6= ∅

❖ These equivalence relations are finite-index.

• Indeed, there are finitely many words of length up to some k as well as
finitely many subsets of P of predicates that may hold at a certain state.

⇒ The implied abstraction α has a finite image (defines a finite abstract domain).

⇒ Abstract fixpoint computations always terminate.
Regular Model Checking – p.19/30

Counterexample-Guided Refinement

M0

Mα
0

Mk-1

Mα
k-1

Mk

Mα
k

Mk+1

Mα
k+1

Mn

Bad

Xn
Xk+1

Xk

❖ For abstraction based on bounded length languages, increment the bound.

❖ For predicate automata abstraction, take P ′ = P ∪ {L(Xk, q) | q is a state in Xk}.

Regular Model Checking – p.20/30

Counterexample-Guided Refinement

M0

Mα
0

Mk-1

Mα
k-1

Mk

Mα
k

Mk+1

Mα
k+1

Mn

Bad

Xn
Xk+1

Xk

❖ For abstraction based on bounded length languages, increment the bound.

❖ For predicate automata abstraction, take P ′ = P ∪ {L(Xk, q) | q is a state in Xk}.

Theorem:
Let A and X be two finite automata, and let P be a finite set of
predicate languages such that ∀q ∈ QX . L(X, q) ∈ P .
Then, if L(A) ∩ L(X) = ∅, we have L

(

αP(A)
)

∩ L(X) = ∅ too.

Regular Model Checking – p.20/30

Predicate Automata Abstraction: Refinement

Theorem:
Let A and X be two finite automata, and let P be a finite set of
predicate languages such that ∀q ∈ QX . L(X, q) ∈ P .
Then, if L(A) ∩ L(X) = ∅, we have L

(

αP(A)
)

∩ L(X) = ∅ too.

❖ Proof sketch: Assume w 6∈ L(A) ∧ w ∈ L
(

αP(A)
)

∩ L(X) with a minimum number of
jumps needed to accept it in A – the last jump being q1 ❀ q2 from where w2 is accepted.

q1

q2

w2

w1

to be collapsed/labelled by qX

A:

qX

w2

w1

X:
w2 w2

q3

For w1w
′
2, an even smaller number of jumps is needed which is a contradiction.

Regular Model Checking – p.21/30

RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, Vojnar 05]

❖ Heap configurations encoded as words:

• Uninterrupted list segments of length n: sequences of n symbols →, divided by |.

• A null successor: ⊥.

• Variables: put a variable into the word on the place it points to.

• Two special sections of the word for null and undefined variables.

• Marker pairs (mfrom,mto) encode non-linear configurations: sharing and cicles.

Regular Model Checking – p.22/30

RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, Vojnar 05]

❖ Heap configurations encoded as words:

• Uninterrupted list segments of length n: sequences of n symbols →, divided by |.

• A null successor: ⊥.

• Variables: put a variable into the word on the place it points to.

• Two special sections of the word for null and undefined variables.

• Marker pairs (mfrom,mto) encode non-linear configurations: sharing and cicles.

❖ Program statements translated automatically to transducers.

Regular Model Checking – p.22/30

RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, Vojnar 05]

❖ Heap configurations encoded as words:

• Uninterrupted list segments of length n: sequences of n symbols →, divided by |.

• A null successor: ⊥.

• Variables: put a variable into the word on the place it points to.

• Two special sections of the word for null and undefined variables.

• Marker pairs (mfrom,mto) encode non-linear configurations: sharing and cicles.

❖ Program statements translated automatically to transducers.

❖ To stay with a finite number of markers:

• When they are not-needed, they are re-claimed by shifting the appropriate parts of
the words such that they merge.

• A transducer can encode a single step of the shifting, ARMC used to compute the
effect of iterating this step.

• Merging cannot be implemented as a regular relation (and hence a transducer)!

Regular Model Checking – p.22/30

List Reversion: An Example of a Run

1: x = null;

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null;

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null;

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null;

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null;

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l → →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null;

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

5 | | x | l → ⊥ | y →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

5 | | x | l → ⊥ | y →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

5 | | x | l → ⊥ | y →→→→→ ⊥ |

6 | | | xl → ⊥ | y →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

5 | | x | l → ⊥ | y →→→→→ ⊥ |

6 | | | xl → ⊥ | y →→→→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

1 | xy | | l →→→→→→ ⊥ |

2 | y | x | l →→→→→→ ⊥ |

3 | y | x | l →→→→→→ ⊥ |

4 | | x | l → y →→→→→ ⊥ |

5 | | x | l → ⊥ | y →→→→→ ⊥ |

6 | | | xl → ⊥ | y →→→→→ ⊥ |

2 | | | x → ⊥ | ly →→→→→ ⊥ |

etc.

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

4 | | | x →→→ ⊥ | l → y →→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

4 | | | x →→→ ⊥ | l→y →→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

4 | | | x →→→ ⊥ | l→y →→ ⊥ |

5 | | | xmt →→→ ⊥ | l→ mf | y →→ ⊥ |

❖ Marker pairs (mfrom,mto) allow us to encode:

• non-linear configurations: in particular, sharing and circles,

• when they are not-needed, they are re-claimed by shifting the appropriate parts of
the words (non-regular!).

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

4 | | | x →→→ ⊥ | l→y →→ ⊥ |

5 | | | xmt →→→ ⊥ | l→ mf | y →→ ⊥ |

5 | | | l → x →→→ ⊥ | y →→ ⊥ |

Regular Model Checking – p.23/30

List Reversion: An Example of a Run

1: x = null

2: while (l != null) { // i.e. if (l != null) goto 3; else goto 7;
3: y = l → next;

4: l → next = x;

5: x = l;

6: l = y; } // i.e. l = y; goto 2;
7: l = x;

3 | | | x →→→ ⊥ | ly →→→ ⊥ |

4 | | | x →→→ ⊥ | l → y →→ ⊥ |

5 | | | xmt →→→ ⊥ | l → mf | y →→ ⊥ |

5 | | | l → x →→→ ⊥ | y →→ ⊥ |

etc.

8 | | y | xl →→→→→→ ⊥

Regular Model Checking – p.23/30

List Reversion: Verification

❖ Initial configurations: Init = (1 | xy | | l →→∗ ⊥ |).

Regular Model Checking – p.24/30

List Reversion: Verification

❖ Initial configurations: Init = (1 | xy | | l →→∗ ⊥ |).

❖ ARMC can be used to overapproximate reachable configurations at any line:
including the postcondition τ∗(Init) = (8 | | y | xl →→∗ ⊥ |) and loop invariants.

Regular Model Checking – p.24/30

List Reversion: Verification

❖ Initial configurations: Init = (1 | xy | | l →→∗ ⊥ |).

❖ ARMC can be used to overapproximate reachable configurations at any line:
including the postcondition τ∗(Init) = (8 | | y | xl →→∗ ⊥ |) and loop invariants.

❖ Basic memory safety checked directly by the transducers of the program statements:

• no garbage is created,

• no null pointer dereferences,

• no undefined pointer dereferences.

Regular Model Checking – p.24/30

List Reversion: Verification

❖ Initial configurations: Init = (1 | xy | | l →→∗ ⊥ |).

❖ ARMC can be used to overapproximate reachable configurations at any line:
including the postcondition τ∗(Init) = (8 | | y | xl →→∗ ⊥ |) and loop invariants.

❖ Basic memory safety checked directly by the transducers of the program statements:

• no garbage is created,

• no null pointer dereferences,

• no undefined pointer dereferences.

❖ More complex properties that can be checked:

• The result is a single, unshared, acyclic list.

• The list is really reversed, no elements are lost/added.

• For that, one may use special markers injected into the initial configuration, e.g.:
bgn l →∗ fst → snd →∗ end → ⊥ leads to end l →∗ snd → fst →∗ bgn → ⊥

• Note that injection at random positions can be used, and the verification then
checks correctness for all possible positions of the markers.

• One can also add a test harness: additional code which generates the input data
structures and/or checks the output.

Regular Model Checking – p.24/30

Regular Tree Model Checking

Regular Model Checking – p.25/30

Regular Tree Model Checking

[Pnueli, Shahar 00], [Bouajjani, Touili 02], [Abdulla, d’Orso et al 02, 05]
[Bouajjani, Habermehl, Rogalewicz, Vojnar 05]

❖ A generalisation of RMC to systems with a tree-like topology of configurations:

• a configuration ❀ a tree (term) t over a suitable ranked alphabet Σ,

• a set of configurations ❀ a regular tree language
– usually described by a finite-state tree automaton A.

• an action (transition) ❀ a regular (regularity-preserving) tree relation τ

– usually described by a finite-state tree transducer T .

Regular Model Checking – p.26/30

Regular Tree Model Checking

❖ Safety verification ❀ check that τ∗(Init) ∩Bad = ∅,

• implies a need to compute τ∗(Init).

❖ Computing closures in RTMC—generalisations of:

• extrapolation (widening), [Bouajjani, Touili]

• merging of states wrt. the history of their creation, [Abdulla, d’Orso, Legay, Rezine]

• abstract regular tree model checking: [Bouajjani, Habermehl, Rogalewicz, Vojnar]

– finite-height abstraction,

– predicate tree automata abstraction.

Regular Model Checking – p.27/30

RTMC: Applicability

❖ Verification of parameterised networks with a tree-like topology:

• mutual exclusion, leader election, ...

❖ Verification of programs with complex dynamic linked data structures:

• programs with doubly-linked lists, lists of lists, trees, skip-lists, trees with linked
leaves ..., i.e., not only trees!,

• configurations encoded into trees:
– tree backbones and routing expressions, [Bouajjani, Habermehl, Rogalewicz, Vojnar ’06]

– tuples of (nested) tree automata linked via references from leaves to roots –
(boxed) forest automata: [Habermehl, Holík, Šimáček, Rogalewicz, Vojnar ’11]

◦ less general – finite number of “far” pointers
(e.g., not handles trees of linked leaves),

◦ more scalable,
◦ implemented in the Forester tool.

Regular Model Checking – p.28/30

Nondeterministic Automata in
Regular (Tree) Model Checking

Regular Model Checking – p.29/30

AR(T)MC and Nondeterministic Automata?

❖ AR(T)MC based on deterministic (tree) automata:

• easy minimisation leading to a unique canonical form,

• easy language inclusion testing,

• BUT determinisation costs time and makes automata grow.

❖ What about nondeterministic automata in AR(T)MC?

• Almost everything works like in the deterministic case (abstraction, transduction).

• No determinisation in the computation loop.

• But, there are tasks to solve:
– How to check language inclusion?

◦ antichains, simulations, congruences (the latter not tried yet),
– How to reduce the size of nondeterministic tree automata?

◦ (bi-)simulation (mediated) quotienting.

Regular Model Checking – p.30/30

	Plan of the Lecture
	
	Model Checking
	Model Checking
	Sources of Infinity
	Model Checking Infinite-State Systems
	Decidability Issues
	
	Regular Model Checking
	Regular Model Checking: Applicability
	Example: the Szymanski's Protocol
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	
	RMC: Computing Closures
	RMC: Computing Closures
	Abstract Regular Model Checking
	Abstract Regular Model Checking
	Abstractions Based on State Collapsing
	Abstractions Based on State Collapsing
	Abstractions Based on State Collapsing
	Counterexample-Guided Refinement
	Counterexample-Guided Refinement
	small Predicate Automata Abstraction: Refinement
	�ontsize {12pt}{13pt}selectfont RMC and Programs with 1-Selector-Linked Structures
	�ontsize {12pt}{13pt}selectfont RMC and Programs with 1-Selector-Linked Structures
	�ontsize {12pt}{13pt}selectfont RMC and Programs with 1-Selector-Linked Structures
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: Verification
	List Reversion: Verification
	List Reversion: Verification
	List Reversion: Verification
	
	Regular Tree Model Checking
	Regular Tree Model Checking
	RTMC: Applicability
	
	mbox {AR(T)MC and
Nondeterministic Automata?hspace *{-2mm}}

