Regular Model Checking

Tomas Vojnar

Faculty of Information Technology
Brno University of Technology

Regular Model Checking — p.1/30

Plan of the Lecture

From finite-state to infinite-state model checking.

The basic idea of regular model checking.

Computing closures of transition relations in regular model checking.
Regular tree model checking.

Nondeterministic automata in regular (tree) model checking.

Regular Model Checking — p.2/30

From Finite-state to Infinite-state
Model Checking

Regular Model Checking — p.3/30

Model Checking

[Clarke, Emerson 81], [Quielle, Sifakis 81]

[] An algorithmic approach of checking whether a model M of a system satisfies a certain

correctness specification ¢ when started from some initial state s:
M,s = ¢
[] Typically based on a systematic exploration of the state space of M.

[J Models of systems

can be built in various specialised modelling languages (process algebras, Petri
nets, Promela, SMV, ...), or

source descriptions of analysed systems (in C, Java, Verilog, VHDL, ...) can
directly be used.

[] Correctness specifications:
formulae in temporal logics (LTL, CTL, CTL", u-calculus, ...),
assertions in the source code (assert()), progress labels, ...

Regular Model Checking — p.4/30

Model Checking

[] Advantages:
highly automatable,
can provide counterexamples (diagnostic/debugging information).

[] The biggest problem is the state explosion problem
Efficient storage of state spaces (hierarchical storage of states, BDDs, ...).
State space reductions (symmetries, partial-order reduction, ...).
Abstraction, counterexample-guided abstraction refinement (CEGAR).
Compositional methods, assume-guarantee reasoning.

[] Supported by many tools, including industrial-strength tools (Spin, SMV, RuleBase,
Blast, JPF, Slam, ...).

[] Traditional model checking concentrated on systems with large, but finite state spaces,
but many systems are infinite-state.

Regular Model Checking — p.5/30

Sources of Infinity

[J Unbounded communication queues (channels), unbounded waiting queues.
[] Unbounded push-down stacks: recursion.

[] Unbounded counters, unbounded capacity of places in Petri nets.

[] Continuous variables: time, temperature, ...

[J Unbounded dynamic creation of threads, dynamic allocation of memory structures
(lists, trees, ...).

[] Parameterisation: parametric bounds of queues, counters, ..., parametric numbers of
components or processes.

Regular Model Checking — p.6/30

Model Checking Infinite-State Systems

[Cut-offs: safe, finite bounds on the sources of infinity such that when a system is
verified up to these bounds, the results may be generalised.

[] Abstraction:
® predicate abstraction: x € {5,6,7,...} ~ x > 5,

® abstractions for parameterised networks of processes: 0-1-oco abstraction, ...
[] Symbolic methods: finite representation of infinite sets of states using

® logics,

® grammars,

¢ automata, ...

[] Automated induction, ...

Regular Model Checking — p.7/30

Decidabllity Issues

[] Formal verification of infinite state systems is usually undecidable (sometimes not
even semi-decidable).

[] There may be identified (sub)classes of systems for which various problems are
decidable:

push-down systems—model checking LTL is even polynomial for a fixed formula,

lossy channel systems—reachability, safety, inevitability, and (fair) termination are
decidable (though non-primitive recursive),

various parameterised systems for which finite cut-offs exist,

[] Otherwise, semi-algorithmic solutions are used:
termination is not guaranteed,
an indefinite answer may be returned, or

an intervention of the user is needed.

Regular Model Checking — p.8/30

Regular Model Checking:
The Basic ldea

Regular Model Checking — p.9/30

Regular Model Checking

[Pnueli et al. 97], [Wolper, Boigelot 98], [Bouajjani, Nilsson, Jonsson, Touili 00]

[] A generic framework for verification of infinite-state systems:
® a configuration ~» a word w over a suitable alphabet 3,

® a set of configurations ~» a regular language:
— usually described by a finite-state automaton A,

— two distinguished sets of configurations:
© initial configurations In:t and
© bad configurations Bad,

® an action (transition) ~» a regular relation
— usually described by a finite-state transducer T,

— sometimes, more general, regularity-preserving relations are used.
© Implemented, e.g., as specialised operations on automata.

[1 Safety verification ~» check that 7*(Init) N Bad = 0,

® implies a need to compute 7 (Init).

Regular Model Checking — p.10/30

Regular Model Checking: Applicability

Communication protocols.
FIFO channels systems / cyclic rewrite systems.

Sequential programs with recursive procedure calls.
Pushdown systems / prefix rewrite systems.

Counter systems, Petri nets.

Various unbounded/parameterised systems may be (automatically) translated
to counter systems.

Programs with (unbounded) dynamic linked data structures: lists, cyclic lists,
shared lists. [Bouajjani, Habermehl, Vojnar, Moro 05]

Parameterized networks of identical processes: mutual exclusion protocols, cache
coherence protocols, ..., pipelined microprocessors. [Charvat, Smréka, Vojnar 14].

/ /
9192 -+ qi—19iqi+1 - qj - qn 7> q1q2 - ¢i-1GGi+1 G5 0 Gn

Regular Model Checking — p.11/30

Regular Model Checking: Applicability

¢ Communication protocols.
— FIFO channels systems / cyclic rewrite systems.

® Sequential programs with recursive procedure calls.
— Pushdown systems / prefix rewrite systems.

® Counter systems, Petri nets.

— Various unbounded/parameterised systems may be (automatically) translated
to counter systems.

® Programs with (unbounded) dynamic linked data structures: lists, cyclic lists,
shared lists. [Bouajjani, Habermehl, Vojnar, Moro 05]

® Parameterized networks of identical processes: mutual exclusion protocols, cache
coherence protocols, ..., pipelined microprocessors. [Charvat, Smréka, Vojnar 14].

/ /
9192 -+ qi—19iqi+1 - qj - qn 7> q1q2 - ¢i-1GGi+1 G5 0 Gn

Regular Model Checking — p.11/30

Example: the Szymanski's Protocol

[A typical example of a parameterized protocol: the mutual exclusion protocol for N
processes due to Szymanski—the pseudocode for process : (a bit idealised):

1: await V j: j#i = —sj;

2. w;, S; = true, true,;
3:ifdjij#i = (pe; #1 N ~wj)
then s; := false; goto 4;
else w, := false; goto 5;
4:await 3 j: j #1 = (s; A—w;)

then w;, s, := false, true;
SrawaitV j: j #1 = —wj;
rawaitVv j: j <1 = -sj;
(. s; = false; goto 1;

o

Too complex to be used as a running example...

Regular Model Checking — p.12/30

Example: A Simple Token Passing

[] A simple protocol in a linear process network:
a parametric number of processes,
a process does or does not have a token,
a process that has a token can pass it to the right.

1 Initially, a token is in the left-most process.

cffe

Pl 2 3 I:)4

[] Check that the token cannot disappear nor duplicate.

(2@ _______________

Regular Model Checking — p.13/30

Example: A Simple Token Passing

[] A simple protocol in a linear process network:
a parametric number of processes,
a process does or does not have a token,
a process that has a token can pass it to the right.

1 Initially, a token is in the left-most process.

0 ¢

Pl 2 3 I:)4

[] Check that the token cannot disappear nor duplicate.

(2@ _______________

Regular Model Checking — p.13/30

Example: A Simple Token Passing

[] A simple protocol in a linear process network:
a parametric number of processes,
a process does or does not have a token,
a process that has a token can pass it to the right.

1 Initially, a token is in the left-most process.

offe

Pl 2 3 I:)4

[] Check that the token cannot disappear nor duplicate.

GP)Q _______________

Regular Model Checking — p.13/30

Example: A Simple Token Passing

[] A simple protocol in a linear process network:
a parametric number of processes,
a process does or does not have a token,
a process that has a token can pass it to the right.

1 Initially, a token is in the left-most process.

offe

Pl 2 3 I:)4

[] Check that the token cannot disappear nor duplicate.

(2@ _______________

Regular Model Checking — p.13/30

Example: A Simple Token Passing

[] A simple protocol in a linear process network:
a parametric number of processes,
a process does or does not have a token,
a process that has a token can pass it to the right.

1 Initially, a token is in the left-most process.

offe

Pl 2 3 I:)4

[] Check that the token cannot disappear nor duplicate.

(2@ _______________

Regular Model Checking — p.13/30

Example: A Simple Token Passing

[1 An encoding of the simple token passing protocol for the needs of regular model
checking:

¢ the alphabet: > = {7, N'},

¢ all configurations: words from 7,

® initial configurations: 7" N™* (a regular language),

® bad configurations: N* + (T'+ N)* T N*T (T + N)* (a regular language),
® transitions—in the form of a finite-state transducer:

/ /
T/T T/T

T/ o /T

Regular Model Checking — p.14/30

Example: A Simple Token Passing

/ /
TIT T/T

[1 An application of the transducer on a sample configuration: '
TNNN SNTNN 5NNTN 5SNNNT (O (D—~(2)

Regular Model Checking — p.15/30

Example: A Simple Token Passing

/ /

TIT /T
[1 An application of the transducer on a sample configuration: '
TNNN SNTNN 5SNNTN HSNNNT (O (D—~(2)

[1 An application of the transducer on all initial configurations:

TN* SNTN* SNNTN* SNNNTN* S ..

[1 A simple iterative computation of all reachable configurations will never converge to
the desired set N* 1" N™.

Regular Model Checking — p.15/30

Example: A Simple Token Passing

/ /

TIT /T
[1 An application of the transducer on a sample configuration: '
TNNN SNTNN 5SNNTN HSNNNT (O (D—~(2)

[1 An application of the transducer on all initial configurations:

TN* SNTN* SNNTN* SNNNTN* S ..

[1 A simple iterative computation of all reachable configurations will never converge to
the desired set N* 1" N™.

® We need special (accelerated) ways for computing 7" (Init).

Regular Model Checking — p.15/30

Regular Model Checking:
Computing Closures

Regular Model Checking — p.16/30

RMC: Computing Closures

The task: compute 7" (Init).

[] Problems to face:
® Non regularity / Non constructibility of 7* (Init).
® Termination of the constructions.
® State explosion of the automata / transducers.

Regular Model Checking — p.17/30

RMC: Computing Closures

The task: compute 7" (Init).

[] Problems to face:
Non regularity / Non constructibility of 7% (Init).
Termination of the constructions.
State explosion of the automata / transducers.

[] Solutions:

Special purpose constructions: LCS, PDS, classes of arithmetical relations, ...
General purpose constructions:
extrapolation (widening) [Bouajjani, Touili], [Wolper, Boigelot, Legay],

merging states wrt. the history of their creation, [Abdulla, Nilsson, Jonsson, d’Orso]
abstract regular model checking, [Bouajjani, Habermehl, Vojnar]

learning of automata, [Habermehl, Vojnar], [Vardhan, Sen, Viswanathan, Agha]

Regular Model Checking — p.17/30

Abstract Regular Model Checking

[] Given a relation 7, and two automata I (initial states) and B (bad states), check:

™ (I)NB =1

1. Define a finite-range abstraction function « on automata.
2. Compute iteratively (cvo7)" (7).
3. If(cwo7)" (/)N B =0, then answer YES.

Regular Model Checking — p.18/30

Abstract Regular Model Checking

[] Given a relation 7, and two automata I (initial states) and B (bad states), check:

™ (I)NB =1

1. Define a finite-range abstraction function « on automata.
2. Compute iteratively (cvo7)" (7).
3. If(cwo7)" (/)N B =0, then answer YES.

4. Otherwise, let 0 be the computed symbolic path from I to B.
5. Check if 6 includes a concrete counterexample.

If yes, then answer NO.
Otherwise, define a refinement of o which excludes 6 and goto (2).

Regular Model Checking — p.18/30

Abstract Regular Model Checking

[] Given a relation 7, and two automata I (initial states) and B (bad states), check:

™ (I)NB =1

—> Counter-Example Guided Abstraction Refinement (CEGAR) loop

1. Define a finite-range abstraction function o« on automata.
2. Compute iteratively (cvo7)" (7).
3. If (eo7)"(I)N B =1, then answer YES.

4. Otherwise, let 6 be the computed symbolic path from I to B.
Check if 8 includes a concrete counterexample.

* If yes, then answer NO.
® Otherwise, define a refinement of a which excludes 6 and goto (2).

Regular Model Checking — p.18/30

Abstractions Based on State Collapsing

[] We abstract automata by collapsing their states that are equal wrt. some criterion.
= L(A) C L(a(A4))

Regular Model Checking — p.19/30

Abstractions Based on State Collapsing

[] We abstract automata by collapsing their states that are equal wrt. some criterion.
= L(A) C L(a(A4))

[] We consider several different equivalence relations on automata states, including:
® equivalence wrt. languages of words of a bounded length k:
¢~k g2 iff L(A,q1)=" = L(A, g2)="

where L(A, q)=* is the set of words of length at most & accepted in A when
starting from gq.

® equivalence wrt. a set of predicate languages P = { P, ..., P, }:

g1 >~=p Q2 |ff VlSiSnZL(A,Q1)ﬂPf,;#@@L(A,QQ)ﬁPi#@

Regular Model Checking — p.19/30

Abstractions Based on State Collapsing

[] We abstract automata by collapsing their states that are equal wrt. some criterion.
= L(A) C L(a(A))
[] We consider several different equivalence relations on automata states, including:

® equivalence wrt. languages of words of a bounded length k:
q1 =k g2 Iff L(A7q1)§k — L(A,QQ)Sk

where L(A, q)=* is the set of words of length at most & accepted in A when
starting from gq.
® equivalence wrt. a set of predicate languages P = { P, ..., P, }:

qi1 >~p q2 Iff VlSiSnZL(A,(h)ﬂPf,;#@@L(A,QQ)ﬂPi#@

[] These equivalence relations are finite-index.

¢ Indeed, there are finitely many words of length up to some £ as well as
finitely many subsets of P of predicates that may hold at a certain state.

= The implied abstraction o has a finite image (defines a finite abstract domain).

= Abstract fixpoint computations always terminate.
Regular Model Checking — p.19/30

Counterexample-Guided Refinement

[] For abstraction based on bounded length languages, increment the bound.

[1 For predicate automata abstraction, take P" = P U {L(X}, q) | ¢ Is a state in X }.

Regular Model Checking — p.20/30

Counterexample-Guided Refinement

[] For abstraction based on bounded length languages, increment the bound.

(] For predicate automata abstraction, take P’ = P U {L(X},q) | ¢ is a state in X}, }.

Theorem:

Let A and X be two finite automata, and let P be a finite set of
predicate languages such that Vg € Qx. L(X, q) € P.

Then, if L(A) N L(X) = 0, we have L(ap(A)) N L(X) = 0 too.

Regular Model Checking — p.20/30

Predicate Automata Abstraction: Refinement

Theorem:

Let A and X be two finite automata, and let P be a finite set of
predicate languages such that Vg € Qx. L(X, q) € P.

Then, if L(A) N L(X) = 0, we have L(ap(A)) N L(X) = 0 too.

[Proof sketch: Assume w & L(A) Aw € L(ap(A)) N L(X) with a minimum number of
jumps needed to accept itin A — the last jump being ¢; ~ ¢> from where w- IS accepted.

"Q (\ {to be collapsed/iabelled by g
2 ~

{ q@)\/\»@ %

\\ // W2

For wi w4, an even smaller number of jumps is needed which is a contradiction.

Regular Model Checking — p.21/30

RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, Vojnar 05]

[] Heap configurations encoded as words:
® Uninterrupted list segments of length n: sequences of n symbols —, divided by |.

® A null successor: L.

® Variables: put a variable into the word on the place it points to.

® Two special sections of the word for null and undefined variables.

® Marker pairs (m f.0m,mto) €ncode non-linear configurations: sharing and cicles.

Regular Model Checking — p.22/30

RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, Vojnar 05]

[] Heap configurations encoded as words:
® Uninterrupted list segments of length n: sequences of n symbols —, divided by |.

® A null successor: L.
® Variables: put a variable into the word on the place it points to.

® Two special sections of the word for null and undefined variables.
® Marker pairs (m f.0m,mto) €ncode non-linear configurations: sharing and cicles.

[] Program statements translated automatically to transducers.

Regular Model Checking — p.22/30

RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, Vojnar 05]

[] Heap configurations encoded as words:
Uninterrupted list segments of length n: sequences of n symbols —, divided by |.
A null successor: L.
Variables: put a variable into the word on the place it points to.
Two special sections of the word for null and undefined variables.
Marker pairs (m f.0m,mt0) €ncode non-linear configurations: sharing and cicles.

[] Program statements translated automatically to transducers.

[] To stay with a finite number of markers:

When they are not-needed, they are re-claimed by shifting the appropriate parts of
the words such that they merge.

A transducer can encode a single step of the shifting, ARMC used to compute the
effect of iterating this step.

Merging cannot be implemented as a regular relation (and hence a transducer)!

Regular Model Checking — p.22/30

List Reversion: An Example of a Run

1. x = null;
2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3: y =l — next;

4 [— next = x;

o: r =1

6: l=vy;} /el =y;goto 2;

7. | =ux;

1 | zy | I e e e e S S N

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1. x = null;

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y =l — next;

4. [— next = x;

o: r =1

6: | =y;}/lie. |l =y;goto 2;

7. | =ux;

1 | zy | I e e e S S M

2 |y | =z | l->>s>—1 |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1. x = null;

2: while (I'=null) { //i1.e.if (I !=null) goto 3; else goto 7;
3: y =1 — next;

4. [— next = x;

5: xr =1

6: | =y;}/lie. | =y;goto 2;

7. | =ux;

1 | zy | I e e e S S M

2 |y | z | lo—oooa—a 1l |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1. x = null;

2: while (I'=null) { //i1.e.if (I !=null) goto 3; else goto 7;
3: y =1 — next;

4. [— next = x;

5: xr =1

6: | =y;}/lie. | =y;goto 2;

7. | =ux;

1 | zy | I e e e S S M

2 |y |z | lo—mooaa 1 |

3 | v | =z | l52>—>—>—1 |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1. x = null;

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y = | — next,;

4. [— next = x;

o: r =1

6: | =y;}/lie. | =y;goto 2;

7. | =ux;

1 | zy | I e e e e e S N

2 |y | =z | l>—>>52>—>1 |

3 | v | =z | Il—-->>2>—1 |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1:

r = null;

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3:

_~ W N =

N o R

y = | — next,;

[— next = x;

r =1

l=vy;} /el =y;goto 2;

[= x;

Y [>————— 1
Y T [————— 1
Y x [>————— 1
x [y —>—>——— L

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1:

r = null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3:

_~ W N =

N o R

y =l — next;

[— next = x;

r =

l=vy;} /el =y;goto 2;

[= x;

Y [>————— 1
Y T [————— 1
Y x [>————— 1
x |y —=>—=——— 1

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1:

r = null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3:

L B~ W N =

N o R

y =l — next;

[— next = x;

x =1
| =y;}/lie. | =y;goto 2;
[= x;

Y [>————— 1

Y T [————— 1

Y x [>————— 1
x |y —=>—=——— 1
x | — 1|y —>——>—— 1

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1:

r = null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3:

U B~ W N =

N o R

y =l — next;
[— next = x;

x =1
| =y;}/lie. | =y;goto 2;
[= x;
Y [>————— 1
Y T [>————— 1
Y x [>————— 1
x [y —>—>——— L
x > 1|y >—>—>—>— 1

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1:

r = null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3:

Sy O i W N =

N o R

y =l — next;
[— next = x;

x =1
l =vy;} /el =y;goto 2;
[= x;
Y [>————— 1
Y T [>————— 1
Y x [>————— 1
x [y —>—>——— L
x > 1|y —>—>—>—— 1
xl— 1|y —>—>—>—>— 1

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1:

r = null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3:

Sy O i W N =

N o R

y =l — next;
[— next = x;

r =1
| =y;}/lie. | =y;goto 2;
[= x;
Y [>————— 1
Y T [————— 1
Y x [>————— 1
x [y —>———— L
x |- 1|y —>—>—>—>— 1
zl— 1|y >—>——— 1

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1: x=null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y =l — next;

4. [— next = x;

o: r =1

6: | =y;}/lie. | =y;goto 2;

7. | =ux;

1 Ty [>————— 1

2 Y x [————— 1

3 Y x [>————— 1

4 x [y —>———— L

5 x |- 1|y —>—>—>—>— 1
6 zl— 1|y >—>——— 1
2 x— 1 |ly—>—>—>—>— 1

etc.

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1: x=null
2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;

3: y = | — next,;

4 [— next = x;

o: r =1

6: l=vy;} /el =y;goto 2;

7. | =ux;

3 | | | o= Ly —>—— 1L |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1: x=null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y = | — next,;

4. [— next = x;

o: r =1

6: | =y;}/lie. | =y;goto 2;

7. | =ux;

3 | | | oo L|ly—>—>— 1 |

4 | | | ==Ll | l—-y—-—L1 |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1. x = null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y =l — next;

4. [— next = x;

o: r =

6: I =y;}/lie. | =y;qgoto 2;

7. | =ux;

3 | | | o= Ly —>—— L |

4 | | | === L]l—y —>— L |

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1: x=null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3. y =l — next;

4. [— next = x;

o) r =

6: I =y;}/lie. | =y;qgoto 2;

7. | =ux;

3 | | | oo L|ly—>—>— L |

4 | | | === Ly —— 1 |

5 | | | omy >—— L[l ms|ly—>— 1L |

[] Marker pairs (m ¢rom,m+o) allow us to encode:
® non-linear configurations: in particular, sharing and circles,

®* when they are not-needed, they are re-claimed by shifting the appropriate parts of
the words (non-regular?).

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1: x=null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y =l — next;

4. [— next = x;

o: r =

6: I =y;}/lie. | =y;qgoto 2;

7. | =ux;

3 r——— 1 |ly—>—>— 1

4 r——— 1 |loy—>— 1

5 xmy ->—— L |l my |y —>— L
5 | vz —>—>—1|ly—>—1

Regular Model Checking — p.23/30

List Reversion: An Example of a Run

1: x=null

2: while (I'=null) { //i.e.if (I '= null) goto 3; else goto 7;
3: y =l — next;

4. [— next = x;

o: r =

6: I =y;}/lie. | =y;qgoto 2;

7. | =ux;

3 r——— 1 |ly—>—>— 1

4 r———>L|l—y—>—1

5 amy —>—— L[l —>ms|ly—>— L
5 | vz —>—>—1|ly—>—1

etc.
8 | I T e e A e e

Regular Model Checking — p.23/30

List Reversion: Verification

[Initial configurations: Init = (1 |zy | |l ——" L |).

Regular Model Checking — p.24/30

List Reversion: Verification

[Initial configurations: Init = (1 |zy | |l ——" L |).

[ARMC can be used to overapproximate reachable configurations at any line:
including the postcondition 7% (Init) = (8 | |y | «l ——" L |) and loop invariants.

Regular Model Checking — p.24/30

List Reversion: Verification

[Initial configurations: Init = (1 |zy | |l ——" L |).

[ARMC can be used to overapproximate reachable configurations at any line:
including the postcondition 7% (Init) = (8 | | y | «l —-—" L |) and loop invariants.

[] Basic memory safety checked directly by the transducers of the program statements:
® no garbage is created,
® no null pointer dereferences,

® no undefined pointer dereferences.

Regular Model Checking — p.24/30

List Reversion: Verification

[Initial configurations: Init = (1 |zy | |l ——" L |).

[ARMC can be used to overapproximate reachable configurations at any line:
including the postcondition 7% (Init) = (8 | | y | «l —-—" L |) and loop invariants.

[] Basic memory safety checked directly by the transducers of the program statements:
no garbage is created,
no null pointer dereferences,

no undefined pointer dereferences.

[] More complex properties that can be checked:
The result is a single, unshared, acyclic list.
The list is really reversed, no elements are lost/added.

For that, one may use special markers injected into the initial configuration, e.g.:
bgn | —~ — snd —* end — L leadsto endl —" snd — —* bgn — L

Note that injection at random positions can be used, and the verification then
checks correctness for all possible positions of the markers.

One can also add a test harness: additional code which generates the input data

structures and/or checks the output.
Regular Model Checking — p.24/30

Regular Tree Model Checking

Regular Model Checking — p.25/30

Regular Tree Model Checking

[Pnueli, Shahar 00], [Bouajjani, Touili 02], [Abdulla, d’Orso et al 02, 05]
[Bouajjani, Habermehl, Rogalewicz, Vojnar 05]

[] A generalisation of RMC to systems with a tree-like topology of configurations:
® aconfiguration ~ a tree (term) ¢ over a suitable ranked alphabet ¥,

® a set of configurations ~» a regular tree language
— usually described by a finite-state tree automaton A.

® an action (transition) ~» a regular (regularity-preserving) tree relation
— usually described by a finite-state tree transducer T'.

Regular Model Checking — p.26/30

Regular Tree Model Checking

[] Safety verification ~» check that 7*(Init) N Bad = 0,
® implies a need to compute 7" (Init).

[] Computing closures in RTMC—generalisations of:

® extrapolation (widening), [Bouajjani, Touili]
® merging of states wrt. the history of their creation, [Abdulla, d’Orso, Legay, Rezine]
® abstract regular tree model checking: [Bouajjani, Habermehl, Rogalewicz, Vojnar]

— finite-height abstraction,

— predicate tree automata abstraction.

Regular Model Checking — p.27/30

RTMC: Applicability

[Verification of parameterised networks with a tree-like topology:
® mutual exclusion, leader election, ...

[Verification of programs with complex dynamic linked data structures:

® programs with doubly-linked lists, lists of lists, trees, skip-lists, trees with linked
leaves ..., i.e., not only trees!,
® configurations encoded into trees:
— tree backbones and routing expressions, [Bouajjani, Habermehl, Rogalewicz, Vojnar '06]

— tuples of (nested) tree automata linked via references from leaves to roots —
(boxed) forest automata: [Habermehl, Holik, Simacek, Rogalewicz, Vojnar '11]

© less general — finite number of “far” pointers
(e.g., not handles trees of linked leaves),

© more scalable,

© implemented in the Forester tool.

Regular Model Checking — p.28/30

Nondeterministic Automata in
Regular (Tree) Model Checking

Regular Model Checking — p.29/30

AR(T)MC and Nondeterministic Automata?

[1 AR(T)MC based on deterministic (tree) automata:
® easy minimisation leading to a unique canonical form,
® easy language inclusion testing,
® BUT determinisation costs time and makes automata grow.

[] What about nondeterministic automata in AR(T)MC?
® Almost everything works like in the deterministic case (abstraction, transduction).
®* No determinisation in the computation loop.

e But, there are tasks to solve:

— How to check language inclusion?
© antichains, simulations, congruences (the latter not tried yet),

— How to reduce the size of nondeterministic tree automata?
© (bi-)simulation (mediated) quotienting.

Regular Model Checking — p.30/30

	Plan of the Lecture
	
	Model Checking
	Model Checking
	Sources of Infinity
	Model Checking Infinite-State Systems
	Decidability Issues
	
	Regular Model Checking
	Regular Model Checking: Applicability
	Example: the Szymanski's Protocol
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	Example: A Simple Token Passing
	
	RMC: Computing Closures
	RMC: Computing Closures
	Abstract Regular Model Checking
	Abstract Regular Model Checking
	Abstractions Based on State Collapsing
	Abstractions Based on State Collapsing
	Abstractions Based on State Collapsing
	Counterexample-Guided Refinement
	Counterexample-Guided Refinement
	small Predicate Automata Abstraction: Refinement
	�ontsize {12pt}{13pt}selectfont RMC and Programs with 1-Selector-Linked Structures
	�ontsize {12pt}{13pt}selectfont RMC and Programs with 1-Selector-Linked Structures
	�ontsize {12pt}{13pt}selectfont RMC and Programs with 1-Selector-Linked Structures
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: An Example of a Run
	List Reversion: Verification
	List Reversion: Verification
	List Reversion: Verification
	List Reversion: Verification
	
	Regular Tree Model Checking
	Regular Tree Model Checking
	RTMC: Applicability
	
	mbox {AR(T)MC and
Nondeterministic Automata?hspace *{-2mm}}

