
Fully Automated Shape Analysis
Based on Forest Automata†

P.A. Abdulla P. Habermehl L. Holı́k M. Hruška B. Jonsson
O. Lengál C.Q. Trinh A. Rogalewicz J. Šimáček T. Vojnar

Brno University of Technology, Czech Republic
LIAFA, Université Paris Diderot, France

Uppsala University, Sweden
Academia Sinica, Taiwan

Vienna UT 2015

†Publications: CAV’11, FMSD’12, CAV’13, ATVA’13, AI’15, SV-COMP’15.

Shape Analysis

Shape analysis:
▸ characterizes shapes of dynamic linked data structures,
▸ notoriously difficult: infinite sets of complex graphs.

Applications:
▸ memory safety: invalid dereferences, double free, memory leakage,
▸ checking pointer-related assertions in the code,
▸ shape invariants (checked automatically/manually), ...

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 2 / 27

Shape Analysis

Shape analysis:
▸ characterizes shapes of dynamic linked data structures,
▸ notoriously difficult: infinite sets of complex graphs.

Applications:
▸ memory safety: invalid dereferences, double free, memory leakage,
▸ checking pointer-related assertions in the code,
▸ shape invariants (checked automatically/manually), ...

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 2 / 27

Motivation

Many approaches to shape analysis have been proposed:
▸ logics (TVLA, PALE, separation logic, ...), automata, grammars,

graphs, ...

Limitations of the current approaches:
▸ often specialized (lists) or of a limited generality,
▸ require human help (loop invariants, inductive predicates),
▸ insufficient scalability.

Separation Logic:
, local reasoning: well scalable,
/ often fixed abstraction.

Abstract Regular Tree Model Checking (ARTMC):
, uses tree automata (TA): flexible and refinable abstraction,
/ monolithic encoding of the heap: limited scalability.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 3 / 27

Motivation

Many approaches to shape analysis have been proposed:
▸ logics (TVLA, PALE, separation logic, ...), automata, grammars,

graphs, ...

Limitations of the current approaches:
▸ often specialized (lists) or of a limited generality,
▸ require human help (loop invariants, inductive predicates),
▸ insufficient scalability.

Separation Logic:
, local reasoning: well scalable,
/ often fixed abstraction.

Abstract Regular Tree Model Checking (ARTMC):
, uses tree automata (TA): flexible and refinable abstraction,
/ monolithic encoding of the heap: limited scalability.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 3 / 27

Motivation

Many approaches to shape analysis have been proposed:
▸ logics (TVLA, PALE, separation logic, ...), automata, grammars,

graphs, ...

Limitations of the current approaches:
▸ often specialized (lists) or of a limited generality,
▸ require human help (loop invariants, inductive predicates),
▸ insufficient scalability.

Separation Logic:
, local reasoning: well scalable,
/ often fixed abstraction.

Abstract Regular Tree Model Checking (ARTMC):
, uses tree automata (TA): flexible and refinable abstraction,
/ monolithic encoding of the heap: limited scalability.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 3 / 27

Motivation

Many approaches to shape analysis have been proposed:
▸ logics (TVLA, PALE, separation logic, ...), automata, grammars,

graphs, ...

Limitations of the current approaches:
▸ often specialized (lists) or of a limited generality,
▸ require human help (loop invariants, inductive predicates),
▸ insufficient scalability.

Separation Logic:
, local reasoning: well scalable,
/ often fixed abstraction.

Abstract Regular Tree Model Checking (ARTMC):
, uses tree automata (TA): flexible and refinable abstraction,
/ monolithic encoding of the heap: limited scalability.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 3 / 27

The Forest Automata-based Approach

Our approach based on forest automata combines
, flexibility of ARTMC

with
, scalability of SL

by
▸ splitting heaps into tree components

and
▸ using tuples of tree automata to represent

tuples of sets of tree components of heaps.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 4 / 27

Canonical Heap Representation

Forest decomposition of a heap:

▸ Identify cut-points.
nodes referenced:

● by variables or
● multiple times

▸ Identify tree components.
▸ Split the tree components using explicit references to cut-points.

�

�
�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 5 / 27

Canonical Heap Representation

Forest decomposition of a heap:
▸ Identify cut-points.

nodes referenced:
● by variables or
● multiple times

▸ Identify tree components.
▸ Split the tree components using explicit references to cut-points.

1

�

�

3 2

�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 5 / 27

Canonical Heap Representation

Forest decomposition of a heap:
▸ Identify cut-points.

nodes referenced:
● by variables or
● multiple times

▸ Identify tree components.

▸ Split the tree components using explicit references to cut-points.

1

�

�

3 2

�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 5 / 27

Canonical Heap Representation

Forest decomposition of a heap:
▸ Identify cut-points.

nodes referenced:
● by variables or
● multiple times

▸ Identify tree components.
▸ Split the tree components using explicit references to cut-points.

1

�

�

3

2̄

2̄ 2

�

�

�

�

x:

y:

next ri
gh
t

ri
gh
t

left

left

next next ri
gh
t

ri
gh
t

left

left ri
gh
t

left

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 5 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.

▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

EXAMPLE

1

1 2

2

1

,

1

1 2

2

1

, . . .

1

1

,

1

1

, . . .

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .} ,{ 2,
′

2, . . .} , . . . ,{ n,
′

n, . . .})

▸ We assume working with rectangular classes, i.e., for a class C,
(,), (,) ∈ C ⇒ (,) ∈ C, otherwise C is split.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,{ 2,
′

2, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,{ n,
′

n, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(TA1 , TA2 , . . . , TAn)

▸ We assume working with rectangular classes, i.e., for a class C,
(,), (,) ∈ C ⇒ (,) ∈ C, otherwise C is split.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Canonical Heap Representation

A heap h ↦ a forest (1, 2, . . . , n).

A set of heaps H ↦ {(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

m), . . .}.
▸ Sort tuples of trees w.r.t. a DFS.
▸ Split H into classes of forests with the same number of trees,
(1, 2, . . . , n), (

′

1,
′

2, . . . ,
′

n)

Cartesian representation of classes of H:

{(1, 2, . . . , n), (
′

1,
′

2, . . . ,
′

n), . . .}

£

({ 1,
′

1, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

,{ 2,
′

2, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,{ n,
′

n, . . .}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

(TA1 , TA2 , . . . , TAn)

Forest Automaton

▸ We assume working with rectangular classes, i.e., for a class C,
(,), (,) ∈ C ⇒ (,) ∈ C, otherwise C is split.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 6 / 27

Maintaining Rectangularity and Canonicity
Maintaining rectangularity:

▸ A problem can appear when a TA is split since a new cut-point is
introduced (e.g., after an x := y.next) statement.

▸ Resolve by having a separate FA for each pair of states p and q

linked by a root transition p
f
Ð→ (...,q, ...) that is to be split.

• Any tree accepted from q combines with any context accepted from p.

Canonicity respecting FA:
▸ Take any tuple of trees from the component TAs, compose into

a heap, decompose in a canonical way, get the same tuple.
▸ Mininum number of TAs, in the right order.

Maintaining canonicity:
▸ In a single bottom-up pass propagate information about the order in

which root references can appear in the leaves.
• Reorder accordingly, split if several orders appear in a single TA.

▸ In a single bottom-up pass compute which root references appear
once and which multiple times in a single tree.

• Use to judge which roots are necessary, glue TAs if need be.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 7 / 27

Maintaining Rectangularity and Canonicity
Maintaining rectangularity:

▸ A problem can appear when a TA is split since a new cut-point is
introduced (e.g., after an x := y.next) statement.

▸ Resolve by having a separate FA for each pair of states p and q

linked by a root transition p
f
Ð→ (...,q, ...) that is to be split.

• Any tree accepted from q combines with any context accepted from p.

Canonicity respecting FA:
▸ Take any tuple of trees from the component TAs, compose into

a heap, decompose in a canonical way, get the same tuple.
▸ Mininum number of TAs, in the right order.

Maintaining canonicity:
▸ In a single bottom-up pass propagate information about the order in

which root references can appear in the leaves.
• Reorder accordingly, split if several orders appear in a single TA.

▸ In a single bottom-up pass compute which root references appear
once and which multiple times in a single tree.

• Use to judge which roots are necessary, glue TAs if need be.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 7 / 27

Maintaining Rectangularity and Canonicity
Maintaining rectangularity:

▸ A problem can appear when a TA is split since a new cut-point is
introduced (e.g., after an x := y.next) statement.

▸ Resolve by having a separate FA for each pair of states p and q

linked by a root transition p
f
Ð→ (...,q, ...) that is to be split.

• Any tree accepted from q combines with any context accepted from p.

Canonicity respecting FA:
▸ Take any tuple of trees from the component TAs, compose into

a heap, decompose in a canonical way, get the same tuple.
▸ Mininum number of TAs, in the right order.

Maintaining canonicity:
▸ In a single bottom-up pass propagate information about the order in

which root references can appear in the leaves.
• Reorder accordingly, split if several orders appear in a single TA.

▸ In a single bottom-up pass compute which root references appear
once and which multiple times in a single tree.

• Use to judge which roots are necessary, glue TAs if need be.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 7 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

check symbols on transitions

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Interpretation

Sets of graphs Sets of FAs

abstraction

concretization

concrete domain abstract domain

Statements
x := new T()

delete(x)

x := null

x := y

x := y.next

x.next := y

if/while (x == y)

Abstract Transformers

append a TA

remove a TA

modify transitions

check symbols on transitions
Followed by canonization:

ordering, splittin
g, merging

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 8 / 27

Abstract Transformers for Pointer Updates

y:=x.next

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

y:=x.next

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

y:=x.next

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

x.next:=z;

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

x.next:=z;

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

z:=x;

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Abstract Transformers for Pointer Updates

z:=x;

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 9 / 27

Widening

Abstraction on an FA (TA1, . . . ,TAn):

▸ Collapses states of component TAs leading to an FA
(TAα

1 , . . . ,TAα
n).

▸ Finite-height abstraction (from ARTMC),
• collapses states with languages whose prefixes match up to height k :

next next null next null

next

▸ Abstraction based on predicate languages refineable in a CEGAR
loop is under preparation (first working prototype exists).

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 10 / 27

Nondeterministic Tree Automata

For efficiency reasons, we never determinize TAs.

All operations done on NTAs, including:

▸ inclusion checking:
• used for detecting the fixpoint,
• inclusion on (normalized) FA can be checked component-wise,
• precise even for sets of FAs,
• based on antichains and simulations.

▸ size reduction: based on simulation equivalences.
• collapsing simulation-equivalent states.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 11 / 27

Inclusion Checking

Need to check inclusion between a new FA and a set of FAs
computed so far the given line of the program being analysed.

▸ Cannot be done componentwise!
▸ One would loose information about which trees can and which

cannot appear together.

Inclusion of sets of canonical FAs can be easily reduced to
inclusion of ordinary TAs.

▸ One can convert a tuple of TAs into a single TA by adding
a designated node on top of each tuple of trees.

▸ Subsequently, a set of such TAs can be united into a single TA since
there is no more a risk of loosing connection between the trees.

⇒

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 12 / 27

Inclusion Checking

Need to check inclusion between a new FA and a set of FAs
computed so far the given line of the program being analysed.

▸ Cannot be done componentwise!
▸ One would loose information about which trees can and which

cannot appear together.

Inclusion of sets of canonical FAs can be easily reduced to
inclusion of ordinary TAs.

▸ One can convert a tuple of TAs into a single TA by adding
a designated node on top of each tuple of trees.

▸ Subsequently, a set of such TAs can be united into a single TA since
there is no more a risk of loosing connection between the trees.

⇒

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 12 / 27

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees,
SLLs with head/tail pointers, trees with root pointers, ...

/ fails for more complex data structures:
▸ unbounded number of cut-points ; ∞ classes of H:

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 13 / 27

Summary

The so-far-presented:

, works well for singly linked lists (SLLs), trees,
SLLs with head/tail pointers, trees with root pointers, ...

/ fails for more complex data structures:
▸ unbounded number of cut-points ; ∞ classes of H:

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 13 / 27

Summary

(1, 2, . . . , n) ≈ (
′

1,
′

2, . . . ,
′

n)

. . .The so-far-presented:

, works well for singly linked lists (SLLs), trees,
SLLs with head/tail pointers, trees with root pointers, ...

/ fails for more complex data structures:
▸ unbounded number of cut-points ; ∞ classes of H:

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

• doubly linked lists (DLLs), circular lists, nested lists,
• trees with parent pointers,
• skip lists.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 13 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.

▸ Intuition: replace repeated subgraphs by a single symbol,
hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS

: L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

. . .x:

next next next next next

prev prev prev prev prev

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

1 2 3 4 5 . . .x:

next next next next next

prev prev prev prev prev

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

1 . . .x:
DLS DLS DLS DLS DLS

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

q1 q2 q3 q4 q5 . . .
DLS DLS DLS DLS DLS

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Hierarchical Forest Automata

Hierarchical Forest Automata:
▸ FAs are symbols (boxes) of FAs of a higher level.
▸ A hierarchy of FAs.
▸ Intuition: replace repeated subgraphs by a single symbol,

hiding some cut-points.

doubly linked segment

Example: a box DLS : L(DLS) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 2
in out

next

prev

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

q∗ qf
DLS

DLS

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 14 / 27

Learning of Boxes

The Challenge

How to find the “right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 15 / 27

Learning of Boxes

The Challenge

How to find the “right” boxes?

CAV’11 — database of boxes
CAV’13 — automatic discovery

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 15 / 27

Learning of Boxes

Compromise between

▸ reusability: use on different heaps of the same kind,
; use small boxes,

▸ ability to hide cut-points,
; do not use too small boxes.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,

▸ ability to hide cut-points,
; do not use too small boxes.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,

▸ ability to hide cut-points,
; do not use too small boxes.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,

▸ ability to hide cut-points,
; do not use too small boxes.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,

▸ ability to hide cut-points,
; do not use too small boxes.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1 2x:
next next next

tail tail tail

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1 2x:
next next next

tail tail tail

B1

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1 2x:
next next B1

tail tail

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1 2x:
next next B1

tail tail

B2

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1 2x:
next B2

tail

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1 2x:
next B2

tail

B3

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1x:
B3

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes

Compromise between
▸ reusability: use on different heaps of the same kind,

; use small boxes,
▸ ability to hide cut-points,

; do not use too small boxes.

1x:
B3

B1B2B3

list of any length ; ∞ hierarchy

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 16 / 27

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Build larger knots inductively:
▸ Compose knots sharing edges:

prevent ∞ nesting

▸ Enclose paths from inner nodes to leaves:
prevent ∞
interface nodes

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 17 / 27

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Build larger knots inductively:

▸ Compose knots sharing edges:
prevent ∞ nesting

▸ Enclose paths from inner nodes to leaves:
prevent ∞
interface nodes

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 17 / 27

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Build larger knots inductively:
▸ Compose knots sharing edges:

prevent ∞ nesting

▸ Enclose paths from inner nodes to leaves:
prevent ∞
interface nodes

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 17 / 27

Learning of Boxes: Knots

1 Smallest subgraphs meaningful to be folded:

2 Build larger knots inductively:
▸ Compose knots sharing edges:

prevent ∞ nesting

▸ Enclose paths from inner nodes to leaves:
prevent ∞
interface nodes

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 17 / 27

Learning of Boxes: Knots

3 Complexity: max number of
cutpoints in basic knots

▸ Find basic knots with 1,2, . . . cut-points.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 18 / 27

Learning of Boxes: Knots

complexity = 2

complexity = 5

3 Complexity: max number of
cutpoints in basic knots

▸ Find basic knots with 1,2, . . . cut-points.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 18 / 27

Learning of Boxes: Knots

complexity = 2

complexity = 5

3 Complexity: max number of
cutpoints in basic knots

▸ Find basic knots with 1,2, . . . cut-points.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 18 / 27

Widening Revisited

Learning and folding of boxes in the abstraction loop:

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 19 / 27

Widening Revisited

Learning and folding of boxes in the abstraction loop:

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 19 / 27

Widening Revisited

Learning and folding of boxes in the abstraction loop:

The Goal
Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

not on a cycle

1 Algorithm: Abstraction Loop
2 Unfold solo boxes
3 repeat
4 Abstract
5 Fold
6 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 19 / 27

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree with root ptrs of any height

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr
tre

e-
ro

ot
pt

r
DLS

D
LS

DLS

D
LS

DLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

tree-rootptr
tre

e-
ro

ot
pt

r

tree-rootptr

DLSDLS 1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning of Boxes: Example

circular-DLL-of
-trees-rootptr

1 Unfold solo boxes
2 repeat
3 Abstract
4 Fold
5 until fixpoint

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

14 2

p n
l t r

1

1

l t r

1

l t r

1

l t r 1

l t r
21 3

p n
l t r

2

32 4

p n
l t r

3

43 1

p n
l t r

4

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

14 2

p n
l tr

1

1

l
t

r
21 3

p n
l tr

2

2

l
t

r
32 4

p n
l tr

3

3

l
t

r
43 1

p n
l tr

4

4

l
t

r

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

14 2

p n
l tr

1

1

l
t

r
21 3

p n
l tr

2

2

l
t

r
32 4

p n
l tr

3

3

l
t

r
43 1

p n
l tr

4

4

l
t

r

al tr

a

a

l
t

r

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

4 2

p n

trp

1

1 3

p n
trp

2

2 4

p n
trp

3

3 1

p n
trp

4

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

4 2

p n

trp

1

1 3

p n
trp

2

2 4

p n
trp

3

3 1

p n
trp

4

c

n

b

b

p
c

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

2

dls
trp

1

3

dls
trp

2

4

dls
trp

3

1

dls
trp

4

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

dls
trp

1

dls
trp

dls
trp

1

dls
trp

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Learning, Folding, and Abstraction on FA

dls
trp

1

dls

trp
1

dls
trp

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 20 / 27

Experimental Results

Implemented in the Forester tool as a gcc plugin.

Comparison with Predator (a state-of-the-art tool for lists),
▸ winner of HeapManipulation and MemorySafety of SV-COMP’13:

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 21 / 27

Experimental Results

Implemented in the Forester tool as a gcc plugin.
Comparison with Predator (a state-of-the-art tool for lists),

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13:

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 21 / 27

Experimental Results

Implemented in the Forester tool as a gcc plugin.
Comparison with Predator (a state-of-the-art tool for lists),

▸ winner of HeapManipulation and MemorySafety of SV-COMP’13:

Table : Results of the experiments [s]
Example FA Predator
SLL (delete) 0.04 0.04
SLL (bubblesort) 0.04 0.03
SLL (mergesort) 0.15 0.10
SLL (insertsort) 0.05 0.04
SLL (reverse) 0.03 0.03
SLL+head 0.05 0.03
SLL of 0/1 SLLs 0.03 0.11
SLLLinux 0.03 0.03
SLL of CSLLs 0.73 0.12
SLL of 2CDLLsLinux 0.17 0.25
skip list2 0.42 T
skip list3 9.14 T

Example FA Predator
DLL (reverse) 0.06 0.03
DLL (insert) 0.07 0.05
DLL (insertsort1) 0.40 0.11
DLL (insertsort2) 0.12 0.05
DLL of CDLLs 1.25 0.22
DLL+subdata 0.09 T
CDLL 0.03 0.03
tree 0.14 Err
tree+parents 0.21 T
tree+stack 0.08 Err
tree (DSW) 0.40 Err
tree of CSLLs 0.42 Err

timeout false positive

Deutsch-
Schorr-Waite

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 21 / 27

Tracking Relations over Data Values

Verify data-related properties such as sortedness.

Sorted list

null

<< < <

Search tree

> <

<

<

<>

>

>

Verify data-dependent memory safety/shape invariance.

Skip−list

< < < < <

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 22 / 27

Tracking Relations over Data Values

Verify data-related properties such as sortedness.

Sorted list

null

<< < <

Search tree

> <

<

<

<>

>

>

Verify data-dependent memory safety/shape invariance.

Skip−list

< < < < <

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 22 / 27

Forest Automata with Data Constraints

TA rules extended with constraints
▸ local: between states of a single rule,
▸ global: between the LHS state and a root state of any TA

comparing
▸ two nodes: root-root (rr),
▸ a node and all nodes of a tree: root-all (ra).

q1
r ,l
Ð→ (q2,q3) ∶ {0 <ra 1,0 <rr 2,0 <ra TA2,0 >rr TA3}

q2 q3

q1

r,l >(rr)

TA1 TA2 TA3

<(ra)

>(rr)

<(ra)

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 23 / 27

Operations on FA with Data Constraints

Saturation:
▸ Adds data constraints implied by the existing ones.
▸ Improves precision of other operations.

Abstract transformers:
▸ local constraints change to global when splitting TA,
▸ global constraints change to local when merging TA,

or they are dropped when relating distant states.

Inclusion checking, simulation reduction, abstraction:
▸ Translation to ordinary FA

• by embedding constraints into alphabet symbols.
▸ Use of ordinary FA algorithms.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 24 / 27

Operations on FA with Data Constraints

Saturation:
▸ Adds data constraints implied by the existing ones.
▸ Improves precision of other operations.

Abstract transformers:
▸ local constraints change to global when splitting TA,
▸ global constraints change to local when merging TA,

or they are dropped when relating distant states.

Inclusion checking, simulation reduction, abstraction:
▸ Translation to ordinary FA

• by embedding constraints into alphabet symbols.
▸ Use of ordinary FA algorithms.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 24 / 27

Operations on FA with Data Constraints

Saturation:
▸ Adds data constraints implied by the existing ones.
▸ Improves precision of other operations.

Abstract transformers:
▸ local constraints change to global when splitting TA,
▸ global constraints change to local when merging TA,

or they are dropped when relating distant states.

Inclusion checking, simulation reduction, abstraction:
▸ Translation to ordinary FA

• by embedding constraints into alphabet symbols.
▸ Use of ordinary FA algorithms.

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 24 / 27

Experimental Results

Support for ordering relations implemented in an extension of Forester.

Example time
SLL insert 0.06
SLL delete 0.08
SLL reverse 0.07
SLL bubblesort 0.13
SLL insertsort 0.10

Example time
DLL insert 0.14
DLL delete 0.38
DLL reverse 0.16
DLL bubblesort 0.39
DLL insertsort 0.43

Example time
BST insert 6.87
BST delete 114.00
BST left rotate 7.35
BST right rotate 6.25

Example time
SL2 insert 9.65
SL2 delete 10.14
SL3 insert 56.99
SL3 delete 57.35

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 25 / 27

Conclusion

Shape analysis with forest automata:

Fully automated, quite flexible.

The Forester tool – a gcc plugin:
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

Successfully verified:
▸ (singly/doubly linked (circular)) lists (of (. . .) lists),
▸ trees (with additional pointers),
▸ skip lists,
▸ ordered data structures.

Not covered here:
▸ support for pointer arithmetic: lists with embedded heads, ...

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 26 / 27

Future Work

Cleaning and optimizing Forester.

Adding a full support of the gcc intermediate code.

Adding a CEGAR loop:
▸ red-black trees, . . .

Allowing Forester to run on incomplete code.

Recursive boxes:
▸ B+ trees, . . .

Concurrent data structures:
▸ lockless skip lists, . . .

(FIT BUT, LIAFA, Uppsala, AS) Shape Analysis with Forest Automata Vienna UT 2015 27 / 27

	Canonical Heap Representation
	Learning of Boxes

