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Introduction

m A procedure for checking entailments in a fragment of separation
logic with inductive predicates based on a reduction to checking
inclusion on tree automata.

m Separation logic (SL)
» among the most popular formalisms for reasoning about heaps,
» allows for local reasoning
e handling separately disjoint sub-heaps,
» used in many tools: Space Invader, Slayer, Xisa, Predator, S2, ...
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Separation Logic

m Considered basic formulae of SL:

@ = 3xy, ., X, . [MTAX
M = xx=x|x=nil| M1 Al
Y = emp|x+— (x,...,xp) | L1 %Xy
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Separation Logic

m Considered basic formulae of SL:

@ = 3xy, ., X, . [MTAX

M = xy=x|x=nil | Al pure part

Y = emp|x+—(x1,...,xp) | L1 x Xy  spatial part
m For example: XAy, u)*y~«{v,X)au = nil Av = nil

7O >0n
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Inductive Definitions

m A system P of inductive definitions is an indexed set
» { Pi(x) = V;Rij(x) Yeqr,omp n2 1.

m R;; are rules of a predicate P;:
» Rij(x)=3z. L« Py(y1)*...%x P (ym) A N
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m A system P of inductive definitions is an indexed set
» { Pi(x) = V;Rij(x) Yeqr,omp n2 1.
m R;; are rules of a predicate P;:

» Rij(x)=3z. L« Py(y1)*...%x P (ym) A N

m For example:
DLL(h,p,t,n) = h+— (n,p) A h=1t|3x. h— (x,p)«DLL(x, h, t, n)

" t
== O=O=C
TLL(r, /I, Ir) = '

r— (nilnil, Ir) A r=11]
Ix,y, z. r— (x,y,nil) x

I
TLL(x, ], z) * Y y
TLL(y,Z, /r) MM
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Restrictions

m One points-to predicate per rule:
» YES: R(x) = Jq. x — y* R(y),

x)
» NO: Ri(x) = Ty, z,q. x — (y,2) *y — (g,x) * Ra(y) * R3(q),
» NO: Ry(y,z) = emp A y=z.
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Restrictions

m One points-to predicate per rule:
» YES: R(

x)
» NO: Ri(x) = Ty, z,q. x — (y,2) *y — (g,x) * Ra(y) * R3(q),
» NO: Ry(y,z) = emp A y=z.

= 3dq. x — yx R(y),

m Equalities restricted to allocated variables:
» YES: Q(x,y) = Jq9. x—=q A x=y*R(q),
» NO: Q(x,y,z) = 3g. x—=q A y=zxR(q).

m Local edges only,

» mapping (up to direction) to edges of a spanning tree,

m Connected systems only.
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Lifting the Restrictions

m Non-local and/or disconnected systems: incompleteness.
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m Non-local and/or disconnected systems: incompleteness.

m Rules with more points-to predicates can be (automatically) split.
» Eg, Ri(x)=3y,z,gx— (y,z) xy — (g, x) x Ra(y) * R3(q) splits to:
e Rii(x) = Fy,z. x—= (y,2z) * Ria(x,y) * Ro(y) and
* Riz(x,y) = 3q.y = (g,x) * Rs(q).
» Can lead to non-local edges or a disconnected system.

m Empty rules can be inlined.
» Eg, for Qi(x,y) =3z.x— (2) * Q(y,2), Q(y,z) =emp Ay =z,
e Inlining gives Q(x,y) := x — y.
> Inlining can lead to forbidden equalities.

m General equalities can be removed:
» tracking explicitly different combinations of equalities,

> leads to an exponential blowup.
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Basic Idea of the Procedure

m We reduce checking of ¢ |= 1 to checking L(A,) C L(Ay) where:
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m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:
» TA A, /Ay recognize unfolding trees of inductive definitions of ¢/,
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h P

t
n
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Basic Idea of the Procedure

m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:

TA A, /Ay recognize unfolding trees of inductive definitions of /4,
Rotation closure: dealing with possibly different spanning trees.
Alphabet — tiles: small graphs of the neighbourhood of allocated nodes.
Local edges: tree edges — composition of neighbouring tiles.

Non-local edges: sequences of equalities passed through tiles.

v

v

v

v

v
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Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.

input ports
S

%[y

{322 (Yo ¥s ¥e)

zZ=X,
Nz=x,
NXz =Y,

allocated
node

~ output ports
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> A single allocated node.
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m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.
» A single vector of input ports:
e towards the root of the unfolding tree.
» Possibly multiple vectors of output ports:
e towards the leaves of the unfolding tree.
» Two kinds of edges:
® points-to edges: solid lines from the allocated node,
e cquality edges: dotted lines.
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m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.
» A single vector of input ports:
e towards the root of the unfolding tree.
Possibly multiple vectors of output ports:
e towards the leaves of the unfolding tree.
Two kinds of edges:
® points-to edges: solid lines from the allocated node,
e cquality edges: dotted lines.

\4

v

» Can be described by a simple SL formula.

input ports
S

L322 (VoY)

zZ=X,
Nz=x,
e NXp =Y,
allocated
node

~ output ports
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Tile Composition

m Local edges:

» correspond to edges of unfolding trees,

» composition of a single points-to and a single equality edge.
m Global edges:

» span multiple tree edges,
» composition of a single points-to and > 2 equality edges.

Iocal__fdge global edge

[xi Ty2] [X] vi %]
Xo [ V[ %o [T Y2l X Vo |
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Specialization

m Top-most tiles have no input ports.

» Parameters of top-most predicate calls are replaced by free variables.
» For that, a specialised version of the top-level predicate is created.

m For example:

» when DLL(a, b, ¢, d) is used on the top level,
e DLL(h,p,t,n) = 3x. h+ (x,p) *DLL(x, h,t,n) | h— (n,p)Ah=t,
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» Parameters of top-most predicate calls are replaced by free variables.

» For that, a specialised version of the top-level predicate is created.
m For example:

» when DLL(a, b, ¢, d) is used on the top level,
e DLL(h,p,t,n) = 3x. h+ (x,p) *DLL(x, h,t,n) | h— (n,p)Ah=t,

» the top call is transformed to DLL/(),
e DLL'() = 3Ix. ar (x,b)*DLL(x,a,c,d) | ar (d,b)Aa=c.
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Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
> Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.
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m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
» Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.

m For example:

TA
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Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:

» Each predicate P maps to a single TA state gp.

» Predicates with no parameters become final states (for bottom-up TA).

» Each predicate rule is translated to a TA rule.

m For example:

» DLL'() = 3x. ar (x, b)*DLL(x, a, c, d)
|a— (d,b)ha=c
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L T

Yo X0

dlzb

7
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Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
» Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.

m For example:

» DLL/() = 3x. a+> (x, b) xDLL(x, a, ¢, d) ~  gpLL — qDLL’
B
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| h— (x,p)Ah=t ~ — dbLL
L s A [ [ w
“'. 2
2., LD ol
1~
Yo X0
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Entailment Checking

m The described translation from inductive SL definitions to TA gives
an incomplete entailment checking procedure:

> L(Ap,) C L(Ap,) = P1 = P2
m An EXPTIME upper bound.

m To get a complete procedure, one has to tackle:

» Canonical tiling of the system of predicates.
» Possibly different spanning trees of the same structure.
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(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) =
dx. head — (x, prev) * DLL(x, head)
| head — (nil, prev)

DLLg(prev, head) =
dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

losif, Rogalewicz, Vojnar
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prev fhead
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(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) =
dx. head — (x, prev) * DLL(x, head)
| head — (nil, prev)

DLLg(prev, head) =

dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

m Order the vectors of input/output ports as follows:

head | prev

prev fhead

2

nil

Ports corresponding to forward local edges ordered wrt. selectors.
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for a slightly simplified DLL predicate:

DLLa(head, prev) = head [
Jx. head — (x, prev) = DLL(x, head) :
| head — (nil, prev)

DLLg(prev, head) =
dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

prev fhead
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nil

m Order the vectors of input/output ports as follows:

Ports corresponding to forward local edges ordered wrt. selectors.
Ports corresponding to backward local edges ordered wrt. selectors.
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(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) = head [
Jx. head — (x, prev) = DLL(x, head) :
| head — (nil, prev)

DLLg(prev, head) =
dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

prev fhead

2

nil

m Order the vectors of input/output ports as follows:

Ports corresponding to forward local edges ordered wrt. selectors.
Ports corresponding to backward local edges ordered wrt. selectors.
Ports corresponding to non-local edges,

e not ordered: leading to quasi-canonicity in this case.
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Different Spanning Trees

m Data structures can be represented using different spanning trees:

h P P

h—(¥o,p.y2)
Nh=x,

IFAES > 3z. 2 (Yo.Y1,Ye)

k 3z. 2 (Yo,¥1,Y2) NZ=%XNZ=XNX, =Y,

Nz =Xy -

Nz =x 4 -

Axp =Y, > ( Yo | Xi[Y2 Xo| Y4 \
te(yt) ||ty S

At=x, At=X,

At =x, At=x,
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Different Spanning Trees

m Data structures can be represented using different spanning trees:

h P P

h—(¥o,p.y2)
Nh=x,

k 3z. 2 (Yo,¥1,Y2)

A FAES > 3z. 2 (Yo.¥1,Y2)
3 NzZ=XNZ=XNX,=Y,

Nz =Xy -
Nz=x
Axp =Y, > ( Yo | Xi[Y2 Xo| Y4 \
te(yt) || ey
At=x, At=X,

t Nt=x, At=x,

m The different spanning trees are often equal up to rotation.
» A mapping which preserves neighbouring nodes of each node.
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Different Spanning Trees

m Data structures can be represented using different spanning trees:

h P P

h—(¥o,p.y2)
Nh=x,

IFAES > 3z. 2 (Yo.Y1,Ye)

k 3z. 2 (Yo,¥1,Y2)

Nz =X,
Nz =x
NXp =Y, >
t=(n,y;,t) |ty
At =X, At =X,
t Nt=x, At=x,

m The different spanning trees are often equal up to rotation.
» A mapping which preserves neighbouring nodes of each node.

m The above always holds for systems with local edges.
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Rotation Closure on TA

m Dealing with different spanning trees:

Generate a TA for one kind of spanning trees.
Close the TA under rotation.
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Rotation Closure on TA

m Dealing with different spanning trees:

Generate a TA for one kind of spanning trees.
Close the TA under rotation.

m Rotation closure is easy to implement on TA:
» T(p1,...,pm) — q changes to Tpew(p1,--.,9,...pm) — q™".

rev

» T(g1,---,9,-..,qn) = p changes to Then(qu,...,p"",...qn) = q"".

fin
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Completeness of the Entailment Check

m For local, connected inductive systems, the described procedure with
canonization and rotation closure is sound and complete, i.e.,
»> L"(AT’L) - [,(Arpz) = 771 ‘: /Pg.
m EXPTIME upper bound.

m Quasi-canonization and rotation closure improve completeness for
systems with non-local edges also.
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Implementation and Experimental Results

m Implemented in a tool called SLIDE:

http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/

m Tested successfully on a number of experiments:

I Entailment LHS = RHS [[ Answer T[ TAms| | [Ams| | [ALl ]
DLL(a, nil, ¢, nil) = DLL/e (a, nil, c, nil) True 2/4 2/4 5/8
DLLyey (a, nil, ¢, nil) |= DLL ;4 (a, nil, ¢, nil) True 2/4 4/8 12/18
DLL ;4 (a, nil, ¢, nil) |= DLL(a, nil, c, nil) True 4/8 2/4 5/8
3x, n, b. x — (n, b) * DLLyey(a, nil, b, x) * DLL(n, x, c, nil) |= DLL(a, nil, c, nil) True 3/5 2/4 5/8
DLL(a, nil, ¢, nil) |= 3x, n, b. x — (n, b) * DLLey(a, nil, b, x) * DLL(n, x, c, nil) False 2/4 3/5 9/13
Jy, a. x — (y, nil) * y — (a, x) = DLL(a, y, c, nil) = DLL(x, nil, c, nil) True 3/4 2/4 5/8
DLL(x, nil, ¢, nil) |= 3y, a. x — (nil, y) * y — (a, x) * DLL(a, y, c, nil) False 2/4 3/4 8/10
3x, b.DLL(x, b, ¢, nil) * DLLye, (a, nil, b, x) |= DLL(a, nil, c, nil) True 3/6 2/4 5/8
DLL(a, nil, c, nil) |= DLLq (a, nil, ¢, nil) True 2/4 2/4 5/8
TREEp(a, nil) |= TREES (a, nil) True 2/4 3/8 6/11
TREE;Y (a, nil) |= TREEpp(a, nil) True 3/8 2/4 5/10
TLLpp(a, nil, ¢, nil) = TLL;;/(a, nil, ¢, nil) True 4/8 4/8 13/22
TLL;e;;/(a, nil, ¢, nil) |= TLLy,(a, nil, ¢, nil) True 4/8 4/8 13/22
31, r,z. a~ (I, r,nil, nil) = TLL(/, ¢, z) * TLL(r, z, nil) |= TLL(a, c, nil) True 4/7 4/8 13/22
TLL(a, ¢, nil) = 3/, r,z. a— (I, r,nil, nil) x TLL(/, ¢, z) * TLL(r, z, nil) False 4/8 4/7 13/21
f .. . . .
m SLCOMP’14: 2nd (out of 3 participants) in the UDB devision.
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Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.
» Special procedures in analysers like Space Invader, Predator, or Infer.
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Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.

» Special procedures in analysers like Space Invader, Predator, or Infer.
m Trees:

» GRIT: based on translation to SMT, more restricted than our approach.
m User-defined predicates:

» Sleek, Cyclist — incomplete procedures.
m losif, Rogalewicz 2013: bounded tree width data structures:

» complete procedure based on translation from SL to MSO on graphs,
» multiply exponential.

m The proposed approach:

» Lists, trees, user-defined predicates.
» Complete on a rich class of structures, EXPTIME-complete.
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Future Work

m Better support of top-level formulae:
» disconnected systems, Boolean skeleton, ...

m Better implementation, more experiments.

m Integration of the procedure into some verification tool.
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