Deciding Entailments in Inductive Separation Logic
with Tree Automata

Radu losif Adam Rogalewicz Tomas Vojnar

VERIMAG, Université Joseph Fourier/CNRS, Grenoble, France
FIT, Brno University of Technology, Czech Republic

Vienna University of Technology

June 2015

Introduction

m A procedure for checking entailments in a fragment of separation
logic with inductive predicates based on a reduction to checking
inclusion on tree automata.

m Separation logic (SL)
» among the most popular formalisms for reasoning about heaps,
» allows for local reasoning
e handling separately disjoint sub-heaps,
» used in many tools: Space Invader, Slayer, Xisa, Predator, S2, ...

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 2 /19

Introduction

m A procedure for checking entailments in a fragment of separation
logic with inductive predicates based on a reduction to checking
inclusion on tree automata.

m Separation logic (SL)
» among the most popular formalisms for reasoning about heaps,
» allows for local reasoning
e handling separately disjoint sub-heaps,
» used in many tools: Space Invader, Slayer, Xisa, Predator, S2, ...

m Reasoning about heaps and dynamic linked data structures
» crucial for many program analysis tasks,
» notoriously difficult
e dealing with infinite sets of complex graphs,
» still under heavy research.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 2 /19

Introduction

m A procedure for checking entailments in a fragment of separation
logic with inductive predicates based on a reduction to checking
inclusion on tree automata.

m Separation logic (SL)
» among the most popular formalisms for reasoning about heaps,
» allows for local reasoning
e handling separately disjoint sub-heaps,
» used in many tools: Space Invader, Slayer, Xisa, Predator, S2, ...

m Reasoning about heaps and dynamic linked data structures
» crucial for many program analysis tasks,
» notoriously difficult
e dealing with infinite sets of complex graphs,
» still under heavy research.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 2 /19

Separation Logic

m Considered basic formulae of SL:

@ = 3xy, ., X, . [MTAX
M = xx=x|x=nil| M1 Al
Y = emp|x+— (x,...,xp) | L1 %Xy

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata

pure part
spatial part

June 2015

3/19

Separation Logic

m Considered basic formulae of SL:

@ = 3xy, ., X, . [MTAX

M = xy=x|x=nil | Al pure part

Y = emp|x+—(x1,...,xp) | L1 x Xy spatial part
m For example: XAy, u)*y~«{v,X)au = nil Av = nil

7O >0n

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

3/19

Inductive Definitions

m A system P of inductive definitions is an indexed set
» { Pi(x) = V;Rij(x) Yeqr,omp n2 1.

m R;; are rules of a predicate P;:
» Rij(x)=3z. L« Py(y1)*...%x P (ym) A N

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 4 /19

Inductive Definitions

m A system P of inductive definitions is an indexed set
» { Pi(x) = V;Rij(x) Yeqr,omp n2 1.

m R;; are rules of a predicate P;:
» Rij(x)=3z. L« Py(y1)*...%x P (ym) A N

m For example:
DLL(h,p,t,n) = h+— (n,p) A h=1t|3x. h— (x,p)«DLL(x, h, t, n)

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 4 /19

Inductive Definitions

m A system P of inductive definitions is an indexed set
» { Pi(x) = V;Rij(x) Yeqr,omp n2 1.
m R;; are rules of a predicate P;:

» Rij(x)=3z. L« Py(y1)*...%x P (ym) A N

m For example:
DLL(h,p,t,n) = h+— (n,p) A h=1t|3x. h— (x,p)«DLL(x, h, t, n)

" t
== O=O=C
TLL(r, /I, Ir) = '

r— (nilnil, Ir) A r=11]
Ix,y, z. r— (x,y,nil) x

I
TLL(x,], z) * Y y
TLL(y,Z, /r) MM
losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 4 /19

Restrictions

m One points-to predicate per rule:
» YES: R(x) = Jq. x — y* R(y),

x)
» NO: Ri(x) = Ty, z,q. x — (y,2) *y — (g,x) * Ra(y) * R3(q),
» NO: Ry(y,z) = emp A y=z.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 5/19

Restrictions

m One points-to predicate per rule:
» YES: R(x) = Jq. x — y* R(y),
» NO: Ri(x) = Ty, z,q. x — (y,2) *y — (g,x) * Ra(y) * R3(q),
» NO: Ry(y,z) = emp A y=z.
m Equalities restricted to allocated variables:
» YES: Q(x,y) = Jq9. x—=q A x=y*R(q),
» NO: Q(x,y,z) = 3g. x—=q A y=zxR(q).

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 5/19

Restrictions

m One points-to predicate per rule:
» YES: R(x) = Jq. x — y* R(y),
» NO: Ri(x) = Ty, z,q. x — (y,2) *y — (g,x) * Ra(y) * R3(q),
» NO: Ry(y,z) = emp A y=z.
m Equalities restricted to allocated variables:
» YES: Q(x,y) = Jq9. x—=q A x=y*R(q),
» NO: Q(x,y,z) = 3g. x—=q A y=zxR(q).

m Local edges only,

» mapping (up to direction) to edges of a spanning tree,

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 5/19

Restrictions

m One points-to predicate per rule:
» YES: R(

x)
» NO: Ri(x) = Ty, z,q. x — (y,2) *y — (g,x) * Ra(y) * R3(q),
» NO: Ry(y,z) = emp A y=z.

= 3dq. x — yx R(y),

m Equalities restricted to allocated variables:
» YES: Q(x,y) = Jq9. x—=q A x=y*R(q),
» NO: Q(x,y,z) = 3g. x—=q A y=zxR(q).

m Local edges only,

» mapping (up to direction) to edges of a spanning tree,

m Connected systems only.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

5/19

Lifting the Restrictions

m Non-local and/or disconnected systems: incompleteness.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 6 /19

Lifting the Restrictions

m Non-local and/or disconnected systems: incompleteness.

m Rules with more points-to predicates can be (automatically) split.
» Eg, Ri(x)=3y,z,gx— (y,z) xy — (g, x) x Ra(y) * R3(q) splits to:
e Rii(x) = Fy,z. x—= (y,2z) * Ria(x,y) * Ro(y) and
® Rio(x,y) = 3q.y = (q,x) * R3(q).
» Can lead to non-local edges or a disconnected system.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 6 /19

Lifting the Restrictions

m Non-local and/or disconnected systems: incompleteness.

m Rules with more points-to predicates can be (automatically) split.
» Eg, Ri(x)=3y,z,gx— (y,z) xy — (g, x) x Ra(y) * R3(q) splits to:
e Rii(x) = Fy,z. x—= (y,2z) * Ria(x,y) * Ro(y) and
® Rio(x,y) = 3q.y = (q,x) * R3(q).
» Can lead to non-local edges or a disconnected system.

m Empty rules can be inlined.
» Eg, for Qi(x,y) =3z.x— (2) * Q(y,2), Q(y,z) =emp Ay =z,
e Inlining gives Q(x,y) := x — y.
> Inlining can lead to forbidden equalities.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 6 /19

Lifting the Restrictions

m Non-local and/or disconnected systems: incompleteness.

m Rules with more points-to predicates can be (automatically) split.
» Eg, Ri(x)=3y,z,gx— (y,z) xy — (g, x) x Ra(y) * R3(q) splits to:
e Rii(x) = Fy,z. x—= (y,2z) * Ria(x,y) * Ro(y) and
* Riz(x,y) = 3q.y = (g,x) * Rs(q).
» Can lead to non-local edges or a disconnected system.

m Empty rules can be inlined.
» Eg, for Qi(x,y) =3z.x— (2) * Q(y,2), Q(y,z) =emp Ay =z,
e Inlining gives Q(x,y) := x — y.
> Inlining can lead to forbidden equalities.

m General equalities can be removed:
» tracking explicitly different combinations of equalities,

> leads to an exponential blowup.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 6 /19

Basic Idea of the Procedure

m We reduce checking of ¢ |= 1 to checking L(A,) C L(Ay) where:

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 7 /19

Basic Idea of the Procedure

m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:
» TA A, /Ay recognize unfolding trees of inductive definitions of ¢/,

TDLL(h,p,t,n) = hw— (n,p,t) AN h=t | 3z. h— (z,p,t) * TDLL(z, h, t,n)

h P

t
n

losif, Rogalewicz, Vojnar

p
hi—(yo,p.y2)
ANh=x,
Doly%] > 32. 2~ (Yo¥1Y2)
k ¢ 3z Z/\H (YorY1,Y) Nz=XNZ=XNX, =Y,
H Z=X, -
hz=x)
NXy =Y, > (\
te(nyn) ||ty hi—(YoP.y2)
A= Nt=x ANh=X,
At=x, Nt=x,
n P
(CNRS, BUT) Deciding SL with Tree Automata June 2015

7/19

Basic Idea of the Procedure

m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:
» TA A, /Ay recognize unfolding trees of inductive definitions of ¢/,
» Rotation closure: dealing with possibly different spanning trees.

TDLL(h,p,t,n) = hw— (n,p,t) AN h=t | 3z. h— (z,p,t) * TDLL(z, h, t,n)
p

h

%o [Vi] > 3z. 2 (Yo,Y1,Y2)

' 3z. z— (Yo,¥1,Y2) Nz=XNAZ=XNXs =Y,

Nz =X, - .
Nz =x,

NX, =Y, (\

Y2 X1 Yo
te(ny) || B B (yop,Y2)
At=x, At=x, Ah=x,
t At=x, Nt=x,
n n P

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 7 /19

Basic Idea of the Procedure

m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:
» TA A, /Ay recognize unfolding trees of inductive definitions of ¢/,
» Rotation closure: dealing with possibly different spanning trees.
» Alphabet — tiles: small graphs of the neighbourhood of allocated nodes.

TDLL(h,p,t,n) = hw— (n,p,t) AN h=t | 3z. h— (z,p,t) * TDLL(z, h, t,n)
p

h

%o [Vi] > 3z. 2 (Yo,Y1,Y2)

' 3z. z— (Yo,¥1,Y2) Nz=XNAZ=XNXs =Y,

Nz =X, -
Nz =x,

NX, =Y, (\

Y2 X1 Yo
te(ny) || B B (yop,Y2)
At=x, At=x, Ah=x,
t At=x, Nt=x,
n n P

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 7 /19

Basic Idea of the Procedure

m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:
» TA A, /Ay recognize unfolding trees of inductive definitions of ¢/,
» Rotation closure: dealing with possibly different spanning trees.
» Alphabet — tiles: small graphs of the neighbourhood of allocated nodes.
» Local edges: tree edges — composition of neighbouring tiles.

TDLL(h,p,t,n) = h+— (n,p,t) AN h=t | 3z. h— (z,p,t) * TDLL(z, h, t,n)

h § P
h hi—(yo,P,Y)
ANh=x,
Yol X[Y2 >
|_>,f°_|_)"'_|_’,f2_| 3z. Z— (Yo.¥1.Ya)
k 32z (Yo, ¥1.Y2) Nz=XNAZ=XNX; =Y,
: Nz =X, -
Nz =x,
NXz =Y, (\
Y2] X1 Yo
te(y) || B B (oY)
At=x, At=x, Ah=x,
t Nt=x, Nt=x,
n n P
losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata

June 2015 7 /19

Basic Idea of the Procedure

m We reduce checking of ¢ |= ¢ to checking L(A,) C L(Ay) where:

TA A, /Ay recognize unfolding trees of inductive definitions of /4,
Rotation closure: dealing with possibly different spanning trees.
Alphabet — tiles: small graphs of the neighbourhood of allocated nodes.
Local edges: tree edges — composition of neighbouring tiles.

Non-local edges: sequences of equalities passed through tiles.

v

v

v

v

v

TDLL(h,p,t,n) = h+— (n,p,t) AN h=t | 3z. h— (z,p,t) * TDLL(z, h, t,n)

h P

t
n

losif, Rogalewicz, Vojnar

p
h h—(yo,p.Y2)
ANh=x,
Yol X[Y2
L’,fO_L)"'_L’,%_I 3z. Z— (Yo.¥1.Ya)
k 32z (Yo, ¥1.Y2) Nz=XNAZ=XNX; =Y,
: Nz =Xy -
Nz =x,
NXy =Y, (\
Y2| Xi] Yo
=y, ey " D (yop.y2)
At=x, At=x, Ah=x,
At=x, Nt=x,
n n
(CNRS, BUT) Deciding SL with Tree Automata June 2015

7/19

Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.

input ports
S

%[y

{322 (Yo ¥s ¥e)

zZ=X,
Nz=x,
NXz =Y,

allocated
node

~ output ports

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

8 /19

Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.

losif, Rogalewicz, Vojnar

input ports
S

%[y

{322 (Yo ¥s ¥e)

zZ=X,
Nz=x,
e NXp =Y,
allocated
node

" output ports

(CNRS, BUT) Deciding SL with Tree Automata June 2015

8 /19

Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.
» A single vector of input ports:
e towards the root of the unfolding tree.

input ports

AL

; {322 (Yo ¥s ¥e)

zZ=X,
Nz=x,
e NXp =Y,
allocated
node

~ output ports

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

8 /19

Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.
» A single vector of input ports:
e towards the root of the unfolding tree.
» Possibly multiple vectors of output ports:
e towards the leaves of the unfolding tree.

input ports

AL

; {322 (Yo ¥s ¥e)

zZ=X,
Nz=x,
e NXp =Y,
allocated
node

~ output ports

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

8 /19

Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.
» A single vector of input ports:
e towards the root of the unfolding tree.
» Possibly multiple vectors of output ports:
e towards the leaves of the unfolding tree.
» Two kinds of edges:
® points-to edges: solid lines from the allocated node,
e cquality edges: dotted lines.

input ports
S

L322 (VoY)

zZ=X,
Nz=x,
e NXp =Y,
allocated
node

~ output ports

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

8 /19

Tiles

m Tiles: small graphs of the neighbourhood of allocated nodes.
> A single allocated node.
» A single vector of input ports:
e towards the root of the unfolding tree.
Possibly multiple vectors of output ports:
e towards the leaves of the unfolding tree.
Two kinds of edges:
® points-to edges: solid lines from the allocated node,
e cquality edges: dotted lines.

\4

v

» Can be described by a simple SL formula.

input ports
S

L322 (VoY)

zZ=X,
Nz=x,
e NXp =Y,
allocated
node

~ output ports

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

8 /19

Tile Composition

m Local edges:

» correspond to edges of unfolding trees,

» composition of a single points-to and a single equality edge.
m Global edges:

» span multiple tree edges,
» composition of a single points-to and > 2 equality edges.

Iocal__fdge global edge

[xi Ty2] [X] vi %]
Xo [V[%o [T Y2l X Vo |

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

9/19

Specialization

m Top-most tiles have no input ports.

» Parameters of top-most predicate calls are replaced by free variables.
» For that, a specialised version of the top-level predicate is created.

m For example:

» when DLL(a, b, ¢, d) is used on the top level,
e DLL(h,p,t,n) = 3x. h+ (x,p) *DLL(x, h,t,n) | h— (n,p)Ah=t,

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 10 / 19

Specialization

m Top-most tiles have no input ports.
» Parameters of top-most predicate calls are replaced by free variables.

» For that, a specialised version of the top-level predicate is created.
m For example:

» when DLL(a, b, ¢, d) is used on the top level,
e DLL(h,p,t,n) = 3x. h+ (x,p) *DLL(x, h,t,n) | h— (n,p)Ah=t,

» the top call is transformed to DLL/(),
e DLL'() = 3Ix. ar (x,b)*DLL(x,a,c,d) | ar (d,b)Aa=c.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 10 / 19

Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
> Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 1 /19

Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
» Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.

m For example:

A
» DLL'() = 3x. a— (x, b)*DLL(x, a, ¢, d) ~ gpLL T—1> gbLL

Yo X0

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 1 /19

Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
» Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.

m For example:

TA
» DLL'() = 3x. a+ (x, b) x DLL(x, a, ¢, d) ~ gpLL — gpLL/
TE
|a— (d,b)ha=c ~ — doLu
] TE
2,y a2 b
Vat
Yo X0

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 1 /19

Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:

» Each predicate P maps to a single TA state gp.

» Predicates with no parameters become final states (for bottom-up TA).

» Each predicate rule is translated to a TA rule.

m For example:

» DLL'() = 3x. ar (x, b)*DLL(x, a, c, d)
|a— (d,b)ha=c
» DLL(h,p,t,n) = 3Ix. h— (x, p)*xDLL(x, h, t, n)

L T

Yo X0

dlzb

7

losif, Rogalewicz, Vojnar (CNRS, BUT)

Deciding SL with Tree Automata

e
gdoLL — 4bLL

June 2015 1 /19

Translation to Tree Automata

m A system of inductive definitions P is translated to a TA Ap:
» Each predicate P maps to a single TA state gp.
» Predicates with no parameters become final states (for bottom-up TA).
» Each predicate rule is translated to a TA rule.

m For example:

» DLL/() = 3x. a+> (x, b) xDLL(x, a, ¢, d) ~ gpLL — qDLL’
B
|a— (d,b)ha=c ~ I, qoLL’
A
» DLL(h,p, t,n) = 3x. h— (x,p)*DLL(x, h,t,n) ~~ qpLL BEN goLL
T8
| h— (x,p)Ah=t ~ — dbLL
L s A [[w
“'. 2
2., LD ol
1~
Yo X0

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 1 /19

Entailment Checking

m The described translation from inductive SL definitions to TA gives
an incomplete entailment checking procedure:

> L(Ap,) C L(Ap,) = P1 = P2
m An EXPTIME upper bound.

m To get a complete procedure, one has to tackle:

» Canonical tiling of the system of predicates.
» Possibly different spanning trees of the same structure.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 12 /19

(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) =
dx. head — (x, prev) * DLL(x, head)
| head — (nil, prev)

DLLg(prev, head) =
dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

losif, Rogalewicz, Vojnar

(CNRS, BUT)

head | prev

prev fhead

2

nil

Deciding SL with Tree Automata

June 2015

13 /19

(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) =
dx. head — (x, prev) * DLL(x, head)
| head — (nil, prev)

DLLg(prev, head) =

dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

m Order the vectors of input/output ports as follows:

head | prev

prev fhead

2

nil

Ports corresponding to forward local edges ordered wrt. selectors.

losif, Rogalewicz, Vojnar

(CNRS, BUT)

Deciding SL with Tree Automata

June 2015

13 /19

(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) = head [
Jx. head — (x, prev) = DLL(x, head) :
| head — (nil, prev)

DLLg(prev, head) =
dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

prev fhead

2

nil

m Order the vectors of input/output ports as follows:

Ports corresponding to forward local edges ordered wrt. selectors.
Ports corresponding to backward local edges ordered wrt. selectors.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 13 /19

(Quasi-)Canonical Tiles

m Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLa(head, prev) = head [
Jx. head — (x, prev) = DLL(x, head) :
| head — (nil, prev)

DLLg(prev, head) =
dx. head — (x, prev) = DLL(head, x)
| head — (nil, prev)

prev fhead

2

nil

m Order the vectors of input/output ports as follows:

Ports corresponding to forward local edges ordered wrt. selectors.
Ports corresponding to backward local edges ordered wrt. selectors.
Ports corresponding to non-local edges,

e not ordered: leading to quasi-canonicity in this case.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 13 /19

Different Spanning Trees

m Data structures can be represented using different spanning trees:

h P P

h—(¥o,p.y2)
Nh=x,

IFAES > 3z. 2 (Yo.Y1,Ye)

k 3z. 2 (Yo,¥1,Y2) NZ=%XNZ=XNX, =Y,

Nz =Xy -

Nz =x 4 -

Axp =Y, > (Yo | Xi[Y2 Xo| Y4 \
te(yt) ||ty S

At=x, At=X,

At =x, At=x,

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 14 /19

Different Spanning Trees

m Data structures can be represented using different spanning trees:

h P P

h—(¥o,p.y2)
Nh=x,

k 3z. 2 (Yo,¥1,Y2)

A FAES > 3z. 2 (Yo.¥1,Y2)
3 NzZ=XNZ=XNX,=Y,

Nz =Xy -
Nz=x
Axp =Y, > (Yo | Xi[Y2 Xo| Y4 \
te(yt) || ey
At=x, At=X,

t Nt=x, At=x,

m The different spanning trees are often equal up to rotation.
» A mapping which preserves neighbouring nodes of each node.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

14 / 19

Different Spanning Trees

m Data structures can be represented using different spanning trees:

h P P

h—(¥o,p.y2)
Nh=x,

IFAES > 3z. 2 (Yo.Y1,Ye)

k 3z. 2 (Yo,¥1,Y2)

Nz =X,
Nz =x
NXp =Y, >
t=(n,y;,t) |ty
At =X, At =X,
t Nt=x, At=x,

m The different spanning trees are often equal up to rotation.
» A mapping which preserves neighbouring nodes of each node.

m The above always holds for systems with local edges.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015

14 / 19

Rotation Closure on TA

m Dealing with different spanning trees:

Generate a TA for one kind of spanning trees.
Close the TA under rotation.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 15 /19

Rotation Closure on TA

m Dealing with different spanning trees:

Generate a TA for one kind of spanning trees.
Close the TA under rotation.

m Rotation closure is easy to implement on TA:
» T(p1,...,pm) — q changes to Tpew(p1,--.,9,...pm) — q™".

rev

» T(g1,---,9,-..,qn) = p changes to Then(qu,...,p"",...qn) = q"".

fin

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 15 /19

Completeness of the Entailment Check

m For local, connected inductive systems, the described procedure with
canonization and rotation closure is sound and complete, i.e.,
»> L"(AT’L) - [,(Arpz) = 771 ‘: /Pg.
m EXPTIME upper bound.

m Quasi-canonization and rotation closure improve completeness for
systems with non-local edges also.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 16 / 19

Implementation and Experimental Results

m Implemented in a tool called SLIDE:

http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/

m Tested successfully on a number of experiments:

I Entailment LHS = RHS [[Answer T[TAms| | [Ams| | [ALl]
DLL(a, nil, ¢, nil) = DLL/e (a, nil, c, nil) True 2/4 2/4 5/8
DLLyey (a, nil, ¢, nil) |= DLL ;4 (a, nil, ¢, nil) True 2/4 4/8 12/18
DLL ;4 (a, nil, ¢, nil) |= DLL(a, nil, c, nil) True 4/8 2/4 5/8
3x, n, b. x — (n, b) * DLLyey(a, nil, b, x) * DLL(n, x, c, nil) |= DLL(a, nil, c, nil) True 3/5 2/4 5/8
DLL(a, nil, ¢, nil) |= 3x, n, b. x — (n, b) * DLLey(a, nil, b, x) * DLL(n, x, c, nil) False 2/4 3/5 9/13
Jy, a. x — (y, nil) * y — (a, x) = DLL(a, y, c, nil) = DLL(x, nil, c, nil) True 3/4 2/4 5/8
DLL(x, nil, ¢, nil) |= 3y, a. x — (nil, y) * y — (a, x) * DLL(a, y, c, nil) False 2/4 3/4 8/10
3x, b.DLL(x, b, ¢, nil) * DLLye, (a, nil, b, x) |= DLL(a, nil, c, nil) True 3/6 2/4 5/8
DLL(a, nil, c, nil) |= DLLq (a, nil, ¢, nil) True 2/4 2/4 5/8
TREEp(a, nil) |= TREES (a, nil) True 2/4 3/8 6/11
TREE;Y (a, nil) |= TREEpp(a, nil) True 3/8 2/4 5/10
TLLpp(a, nil, ¢, nil) = TLL;;/(a, nil, ¢, nil) True 4/8 4/8 13/22
TLL;e;;/(a, nil, ¢, nil) |= TLLy,(a, nil, ¢, nil) True 4/8 4/8 13/22
31, r,z. a~ (I, r,nil, nil) = TLL(/, ¢, z) * TLL(r, z, nil) |= TLL(a, c, nil) True 4/7 4/8 13/22
TLL(a, ¢, nil) = 3/, r,z. a— (I, r,nil, nil) x TLL(/, ¢, z) * TLL(r, z, nil) False 4/8 4/7 13/21
f
m SLCOMP’14: 2nd (out of 3 participants) in the UDB devision.
losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 17 /19

Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.
» Special procedures in analysers like Space Invader, Predator, or Infer.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 18 /19

Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.
» Special procedures in analysers like Space Invader, Predator, or Infer.

m Trees:
» GRIT: based on translation to SMT, more restricted than our approach.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 18 /19

Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.
» Special procedures in analysers like Space Invader, Predator, or Infer.

m Trees:

» GRIT: based on translation to SMT, more restricted than our approach.
m User-defined predicates:

» Sleek, Cyclist — incomplete procedures.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 18 /19

Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.
» Special procedures in analysers like Space Invader, Predator, or Infer.

m Trees:

» GRIT: based on translation to SMT, more restricted than our approach.
m User-defined predicates:

» Sleek, Cyclist — incomplete procedures.
m losif, Rogalewicz 2013: bounded tree width data structures:

» complete procedure based on translation from SL to MSO on graphs,
» multiply exponential.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 18 /19

Related Approaches and Summary

m Lists:
» many entailment procedures,
e recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

» Often with hard-coded predicates and/or incomplete.

» Special procedures in analysers like Space Invader, Predator, or Infer.
m Trees:

» GRIT: based on translation to SMT, more restricted than our approach.
m User-defined predicates:

» Sleek, Cyclist — incomplete procedures.
m losif, Rogalewicz 2013: bounded tree width data structures:

» complete procedure based on translation from SL to MSO on graphs,
» multiply exponential.

m The proposed approach:

» Lists, trees, user-defined predicates.
» Complete on a rich class of structures, EXPTIME-complete.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 18 /19

Future Work

m Better support of top-level formulae:
» disconnected systems, Boolean skeleton, ...

m Better implementation, more experiments.

m Integration of the procedure into some verification tool.

losif, Rogalewicz, Vojnar (CNRS, BUT) Deciding SL with Tree Automata June 2015 19 /19

