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Introduction

A procedure for checking entailments in a fragment of separation
logic with inductive predicates based on a reduction to checking
inclusion on tree automata.

Separation logic (SL)
I among the most popular formalisms for reasoning about heaps,
I allows for local reasoning

• handling separately disjoint sub-heaps,
I used in many tools: Space Invader, Slayer, Xisa, Predator, S2, ...

Reasoning about heaps and dynamic linked data structures
I crucial for many program analysis tasks,
I notoriously difficult

• dealing with infinite sets of complex graphs,
I still under heavy research.
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Separation Logic

Considered basic formulae of SL:

ϕ ::= ∃x1, ..., xn . Π ∧ Σ
Π ::= x1 = x2 | x = nil | Π1 ∧ Π2 pure part
Σ ::= emp | x 7→ (x1, . . . , xn) | Σ1 ∗ Σ2 spatial part

For example:

x y

* y (v,x)x (y,u) u = nil  v = nil
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Inductive Definitions

A system P of inductive definitions is an indexed set
I { Pi (x) ≡

∨
j Ri,j (x) }i∈{1,...,n}, n ≥ 1.

Ri ,j are rules of a predicate Pi :
I Ri,j (x) ≡ ∃z . Σ ∗ Pi1 (y1) ∗ . . . ∗ Pim (ym) ∧ Π

For example:
DLL(h, p, t, n) ≡ h 7→ (n, p) ∧ h = t | ∃x . h 7→ (x , p) ∗ DLL(x , h, t, n)

h
t

np

TLL(r , ll , lr) ≡
r 7→ (nil,nil, lr) ∧ r = ll |
∃x , y , z . r 7→ (x , y ,nil) ∗

TLL(x , ll , z) ∗
TLL(y , z , lr)

lr

ll

r
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Restrictions

One points-to predicate per rule:

I YES: R(x) ≡ ∃q. x 7→ y ∗ R(y),

I NO: R1(x) ≡ ∃y , z , q. x 7→ (y , z) ∗ y 7→ (q, x) ∗ R2(y) ∗ R3(q),
I NO: R2(y , z) ≡ emp ∧ y = z .

Equalities restricted to allocated variables:

I YES: Q(x , y) ≡ ∃q. x 7→ q ∧ x = y ∗ R(q),

I NO: Q(x , y , z) ≡ ∃q. x 7→ q ∧ y = z ∗ R(q).

Local edges only,

I mapping (up to direction) to edges of a spanning tree,

Connected systems only.
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Lifting the Restrictions

Non-local and/or disconnected systems: incompleteness.

Rules with more points-to predicates can be (automatically) split.
I E.g., R1(x) ≡ ∃y , z , q.x 7→ (y , z) ∗ y 7→ (q, x) ∗ R2(y) ∗ R3(q) splits to:

• R1.1(x) ≡ ∃y , z . x 7→ (y , z) ∗ R1.2(x , y) ∗ R2(y) and
• R1.2(x , y) ≡ ∃q. y 7→ (q, x) ∗ R3(q).

I Can lead to non-local edges or a disconnected system.

Empty rules can be inlined.
I E.g., for Q1(x , y) ≡ ∃z .x 7→ (z) ∗ Q2(y , z), Q2(y , z) ≡ emp ∧ y = z ,

• Inlining gives Q(x , y) ::= x 7→ y .

I Inlining can lead to forbidden equalities.

General equalities can be removed:
I tracking explicitly different combinations of equalities,
I leads to an exponential blowup.
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Basic Idea of the Procedure

We reduce checking of ϕ |= ψ to checking L(Aϕ) ⊆ L(Aψ) where:

I TA Aϕ/Aψ recognize unfolding trees of inductive definitions of ϕ/ψ,

I Rotation closure: dealing with possibly different spanning trees.

I Alphabet – tiles: small graphs of the neighbourhood of allocated nodes.

I Local edges: tree edges – composition of neighbouring tiles.

I Non-local edges: sequences of equalities passed through tiles.
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Tiles

Tiles: small graphs of the neighbourhood of allocated nodes.

I A single allocated node.
I A single vector of input ports:

• towards the root of the unfolding tree.
I Possibly multiple vectors of output ports:

• towards the leaves of the unfolding tree.
I Two kinds of edges:

• points-to edges: solid lines from the allocated node,
• equality edges: dotted lines.

I Can be described by a simple SL formula.

x0 y1

y0 x1

/\ z = x0

∃z. z (y0,y1,y2)

/\ z = x1

y2

x2

/\ x2 = y2

z

input ports

output ports

allocated
node
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Tile Composition

Local edges:
I correspond to edges of unfolding trees,
I composition of a single points-to and a single equality edge.

Global edges:
I span multiple tree edges,
I composition of a single points-to and ≥ 2 equality edges.

y1 x0y0 x1 x2y2

x0 y1 x2 y2 x1 y0

local edge global edge
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Specialization

Top-most tiles have no input ports.
I Parameters of top-most predicate calls are replaced by free variables.
I For that, a specialised version of the top-level predicate is created.

For example:

I when DLL(a, b, c , d) is used on the top level,
• DLL(h, p, t, n) ≡ ∃x . h 7→ (x , p) ∗ DLL(x , h, t, n) | h 7→ (n, p)∧h = t,

I the top call is transformed to DLL′(),
• DLL′() ≡ ∃x . a 7→ (x , b) ∗ DLL(x , a, c, d) | a 7→ (d , b)∧a = c.
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Translation to Tree Automata

A system of inductive definitions P is translated to a TA AP :
I Each predicate P maps to a single TA state qP .
I Predicates with no parameters become final states (for bottom-up TA).
I Each predicate rule is translated to a TA rule.

For example:

I DLL′() ≡ ∃x . a 7→ (x , b) ∗DLL(x , a, c , d)  qDLL
T A

1−−→ qDLL′

| a 7→ (d , b)∧ a = c  
T B

1−−→ qDLL′

I DLL(h, p, t, n) ≡ ∃x . h 7→ (x , p)∗DLL(x , h, t, n)  qDLL
T A

2−−→ qDLL

| h 7→ (x , p)∧h = t  
T B

2−−→ qDLL
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T A
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Entailment Checking

The described translation from inductive SL definitions to TA gives
an incomplete entailment checking procedure:

I L(AP1 ) ⊆ L(AP2 )⇒ P1 |= P2

An EXPTIME upper bound.

To get a complete procedure, one has to tackle:
I Canonical tiling of the system of predicates.
I Possibly different spanning trees of the same structure.
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(Quasi-)Canonical Tiles

Different orderings of predicate parameters give different tiles, e.g.,
for a slightly simplified DLL predicate:

DLLA(head , prev) ≡
∃x . head 7→ (x , prev) ∗ DLL(x , head)
| head 7→ (nil, prev) 1

2

head prev

headx

prev

2

1

head

nil

DLLB(prev , head) ≡
∃x . head 7→ (x , prev) ∗ DLL(head , x)
| head 7→ (nil, prev)

headprev

head x

2

1

2

1

prev head

nil

Order the vectors of input/output ports as follows:

1 Ports corresponding to forward local edges ordered wrt. selectors.
2 Ports corresponding to backward local edges ordered wrt. selectors.
3 Ports corresponding to non-local edges,

• not ordered: leading to quasi-canonicity in this case.
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Different Spanning Trees

Data structures can be represented using different spanning trees:

h
p

t
n

y0 x1

p
h (y0,p,y2)

/\ h = x1

x0 y1

y0 x1

x0 y1

n

y1 x0y0 x1

y2

/\ z = x0

∃z. z (y0,y1,y2)

/\ z = x1

y2

x2

x2

t (n,y1,t)
/\ t = x0

/\ x2 = y2 x2y2

/\ z = x0

∃z. z (y0,y1,y2)
/\ z = x1 /\ x2 = y2

x0 y1

n

x2

t (n,y1,t)
/\ t = x0

y2 x1

p

y0

h (y0,p,y2)
/\ h = x1

h

z

t /\ t = x2 /\ t = x2

The different spanning trees are often equal up to rotation.
I A mapping which preserves neighbouring nodes of each node.

The above always holds for systems with local edges.
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Rotation Closure on TA

Dealing with different spanning trees:

1 Generate a TA for one kind of spanning trees.
2 Close the TA under rotation.

Rotation closure is easy to implement on TA:
I T (p1, . . . , pm) −→ q changes to Tnew (p1, . . . , q

rev , . . . pm) −→ qfin.
I T (q1, . . . , q, . . . , qn) −→ p changes to Tnew (q1, . . . , p

rev , . . . qn) −→ qrev .

q

p
qrev

prev

qfin
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Completeness of the Entailment Check

For local, connected inductive systems, the described procedure with
canonization and rotation closure is sound and complete, i.e.,

I L(AP1 ) ⊆ L(Ar
P2

)⇔ P1 |= P2.

EXPTIME upper bound.

Quasi-canonization and rotation closure improve completeness for
systems with non-local edges also.
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Implementation and Experimental Results

Implemented in a tool called SLIDE:
http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/

Tested successfully on a number of experiments:

Entailment LHS |= RHS Answer |Alhs | |Arhs | |Ar
rhs |

DLL(a, nil, c, nil) |= DLLrev (a, nil, c, nil) True 2/4 2/4 5/8
DLLrev (a, nil, c, nil) |= DLLmid (a, nil, c, nil) True 2/4 4/8 12/18
DLLmid (a, nil, c, nil) |= DLL(a, nil, c, nil) True 4/8 2/4 5/8

∃x, n, b. x 7→ (n, b) ∗ DLLrev (a, nil, b, x) ∗ DLL(n, x, c, nil) |= DLL(a, nil, c, nil) True 3/5 2/4 5/8
DLL(a, nil, c, nil) |= ∃x, n, b. x 7→ (n, b) ∗ DLLrev (a, nil, b, x) ∗ DLL(n, x, c, nil) False 2/4 3/5 9/13
∃y, a. x 7→ (y, nil) ∗ y 7→ (a, x) ∗ DLL(a, y, c, nil) |= DLL(x, nil, c, nil) True 3/4 2/4 5/8
DLL(x, nil, c, nil) |= ∃y, a. x 7→ (nil, y) ∗ y 7→ (a, x) ∗ DLL(a, y, c, nil) False 2/4 3/4 8/10
∃x, b.DLL(x, b, c, nil) ∗ DLLrev (a, nil, b, x) |= DLL(a, nil, c, nil) True 3/6 2/4 5/8

DLL(a, nil, c, nil) |= DLL0+(a, nil, c, nil) True 2/4 2/4 5/8
TREEpp (a, nil) |= TREErev

pp (a, nil) True 2/4 3/8 6/11

TREErev
pp (a, nil) |= TREEpp (a, nil) True 3/8 2/4 5/10

TLLpp (a, nil, c, nil) |= TLLrev
pp (a, nil, c, nil) True 4/8 4/8 13/22

TLLrev
pp (a, nil, c, nil) |= TLLpp (a, nil, c, nil) True 4/8 4/8 13/22

∃l, r, z. a 7→ (l, r, nil, nil) ∗ TLL(l, c, z) ∗ TLL(r, z, nil) |= TLL(a, c, nil) True 4/7 4/8 13/22
TLL(a, c, nil) |= ∃l, r, z. a 7→ (l, r, nil, nil) ∗ TLL(l, c, z) ∗ TLL(r, z, nil) False 4/8 4/7 13/21

SLCOMP’14: 2nd (out of 3 participants) in the UDB devision.
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Related Approaches and Summary

Lists:
I many entailment procedures,

• recently, e.g., SPEN: graph homomorphisms, SAT, TA membership.

I Often with hard-coded predicates and/or incomplete.
I Special procedures in analysers like Space Invader, Predator, or Infer.

Trees:
I GRIT: based on translation to SMT, more restricted than our approach.

User-defined predicates:
I Sleek, Cyclist – incomplete procedures.

Iosif, Rogalewicz 2013: bounded tree width data structures:
I complete procedure based on translation from SL to MSO on graphs,
I multiply exponential.

The proposed approach:
I Lists, trees, user-defined predicates.
I Complete on a rich class of structures, EXPTIME -complete.
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Future Work

Better support of top-level formulae:
I disconnected systems, Boolean skeleton, ...

Better implementation, more experiments.

Integration of the procedure into some verification tool.
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