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ABSTRACT

This paper presents comparison of Maximum Likelihood (ML) and
discriminative Maximum Mutual Information (MMI) training for
acoustic modeling in language identification (LID). Both approaches
are compared on state-of-the-art shifted delta-cepstra features, the
results are reported on data from NIST 2003 evaluations. Clear ad-
vantage of MMI over ML training is shown. Further improvements
of acoustic LID are discussed: Heteroscedastic Linear Discriminant
Analysis (HLDA) for feature de-correlation and dimensionality re-
duction and Ergodic Hidden Markov models (EHMM) for better
modeling of dynamics in the acoustic space. The final error rate
compares favorably to other results published on NIST 2003 data.

1. INTRODUCTION

Automatic language identification (LID) has increasing importance
among speech processing applications. It can be used to route
calls to human operators (commerce, emergency), pre-select suit-
able speech recognition system (information systems) and has many
uses in security applications.

The goal for Language Identification is to determine the lan-
guage a particular speech segment was spoken. The algorithms for
LID can be roughly divided (see for example [2]) into two groups.
In phonotactic modeling, a tokenizer transcribes the input speech
into phoneme strings or lattices and a language model (LM) scores
these structures. This approach is mostly referred to as PRLM
(Phoneme recognizer followed by language model) or PPRLM (Par-
allel PRLM). In acoustic modeling, input features are modeled di-
rectly by Gaussian mixture models (GMM), artificial neural net-
works, support vector machines, or other techniques [3].

This work concentrates on acoustic modeling using GMM and
complements our successful PPRLM based on robust phoneme rec-
ognizer [4, 18]. In acoustic modeling, we were inspired by the ad-
vantages brought by discriminative training into large vocabulary
continuous speech recognition (LVCSR) systems. The performance
of acoustic modeling was also increased by the use of Heteroscedas-
tic linear discriminant analysis (HLDA), also in common use in
LVCSR.

The paper is organized as follows: in section 2 we briefly review
feature extraction used for LID. In section 3, we compare maximum
likelihood and discriminative training approaches for acoustic mod-
eling. Section 4 presents the experimental data. Section 5 compares
the results obtained with the two mentioned training paradigms and
two feature extractions. The following section 6 concentrates on
the use of HLDA in our system and section 7 describes experiments
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conducted with Ergodic HMM (EHMM) instead of GMM. As we
will see, all experimental results were obtained on a subset of train-
ing data. Section 8 therefore presents the “ultimate” results with full
training set.

2. FEATURES

The most widely used features for LID (as well as for other speech
processing techniques) are Mel-Frequency Cepstral Coefficients
(MFCC). The works of Torres-Carasquillo [6] and others have how-
ever shown the importance of broader temporal information for LID.
The shifted delta cepstra (SDC) features are created by stacking
delta-cepstra computed across multiple speech frames. The SDC
features are specified by a set of 4 parameters: N, d, P and k, where
N is the number of cepstral coefficients, d is the advance and delay
for the delta-computation, k is the number of blocks whose delta-
coefficients are concatenated to form the final feature vector and P

is the time shift between consecutive blocks. In case we denote the
original features oh(t)1, shifted deltas are defined:

∆oh(t) = oh(t + iP + d) − oh(t + iP − d)

for i = 0, P, 2P, . . . , (k − 1)P . Obviously, these feature vectors
are heavily correlated (most of elements are merely copied from one
vector to another when we go from t to t + 1).

Two widely used enhancements of features for LID are RASTA
filtering of cepstral trajectories ensuring channel normalization [2]
and vocal-tract length normalization (VTLN) [1] which is a simple
speaker adaptation.

3. ACOUSTIC MODELING

Language recognition can be seen as a classification problem with
each language representing a class. The most straightforward way
to model class s is to construct a Gaussian mixture model that rep-
resents feature vectors by a weighted sum of multivariate Gaussian
distributions:

pλ(o(t)|s) =
M

X

m=1

csmN (o(t); µ
sm

, σ
2

sm),

where o(t) is the input feature vector and the parameters λ of model
of s-th class are csm, µ

sm
and σ

2

sm: mixture weight, mean vector
and variance2 vector respectively. The log likelihood of utterance

1
oh(t) denotes the h-th element of feature vector o(t)

2we assume diagonal covariance matrices that can be represented by vari-
ances.



Or given class s is then defined as:

log pλ(Or|s) =

Tr
X

t=1

log pλ(o(t)|s),

where Tr is the number of feature vectors in Or.
In the standard Maximum Likelihood (ML) training framework,

the objective function to maximize is the total (log) likelihood of
training data given their correct transcriptions:

FML(λ) =
R

X

r=1

log p(Or|sr) (1)

where λ denotes the set of model parameters, Or is r-th training ut-
terance, R is the number of training utterances and sr is the correct
transcription (in our case the correct language identity) of the r-th
training utterance. To increase the objective function, the GMM pa-
rameters are iteratively estimated using well known EM algorithm
reestimation formulae (see for example [16]).

In discriminative training, the objective function is designed in
such a way that it is (or is believed to be) better connected to
the recognition performance. One of the most popular discrimina-
tive training technique nowadays is Maximum Mutual Information
(MMI) training where the objective function is posterior probability
of correctly recognizing all training utterances:

FMMI (λ) =

R
X

r=1

log
pλ(Or|sr)P(sr)

P

∀s
pλ(Or|s)P(s)

. (2)

We consider the prior probabilities of all classes equal and
drop the prior terms P(sr) and P(s). The denominator
P

∀s
p(Or|s) is the likelihood of utterance Or given the “compet-

ing” model representing all possible transcriptions (in our case all
language labels). The derivation of parameter update formulae is
described in detail for example in [12].

Discriminative training techniques lead to consistent improve-
ment in accuracy of LVCSR systems [11, 12]. To our knowledge,
MMI training of GMMs has not been tested in LID so far. Dan and
Bingxi [17] report results with Minimum classification error (MCE)
criterion for the training, but the improvement they obtained was
less than reported in our paper. We have tested MCE training too,
but compared to MMI, the improvement was only about a half.

Our work on MMI training for LID was facilitated by the expe-
rience with discriminative training applied in AMI-LVCSR system3

[5]. We could also rely on our HMM toolkit STK4 that implements
MMI and other discriminative training techniques.

4. EXPERIMENTAL DATA

Acoustic models were trained on the CallFriend Corpus [8]. There
are 12 target languages: Arabic (Egyptian), Japanese, Farsi, French
(Canadian French), German, Hindi, English (American), Korean,
Mandarin, Spanish (Latin American), Tamil, and Vietnamese. The
data of each target language contains 20 complete half-hour con-
versations. All results except for these reported in section 8 were
obtained on a small training set: at first, all the training data were
end-pointed by our phoneme recognizer [9] with all phoneme classes
except sil linked to ’speech’. Then, 1 hour of data was selected

3AMI is EC-sponsored project Augmented Multi-Party Interaction,
http://www.amiproject.org

4http://www.fit.vutbr.cz/speech/sw/stk.html

from each of target languages by taking only segments longer than 2
seconds and balancing the amounts of data among speakers in each
language.

Test data comes from NIST 2003 LID evaluation [10]. This data
set consists of 80 segments with duration of 3, 10 and 30 second
duration in each of 12 target languages. Unless stated otherwise,
all results in this paper are reported for 30s segments. This data
comes from conversations collected for the CallFriend Corpus but
not included in its publicly released version. In addition, there are
four additional sets of 80 segments of each duration selected from
other LDC5 supplied conversational speech sources, namely Rus-
sian, Japanese, English, and cellular English.

The evaluation is done according to NIST [10] per-language,
considering each system is a language detector rather than recog-
nizer. A standard detection error trade-off (DET) curve is evalu-
ated as a plot of probability of false alarms against the probability of
misses with the detection threshold as parameter and equal priors for
target and non-target languages. Equal error rate (EER) is the point
where these probabilities are equal.

5. ML AND MMI SYSTEMS - RESULTS

The following two feature extractions were tested. VTLN was ap-
plied for both of them.

• For the MFCC38 system, 38 coefficients were used: standard
setup of 13 direct coefficients, ∆ and ∆∆, without c0 (we
found that for this baseline, c0 hurts).

• In the SDC setup, the cepstral coefficients were processed by
RASTA filters. Several experiments were done with the pa-
rameters of shifted-delta computation but we ended up with
the same setup as reported in [3]: 7,1,3,7 producing 49-
dimensional feature vectors. The influence of adding direct
coefficients was studied for M = 512 Gaussians. Without
them (SDC only), the EER was 11.6% while with these coef-
ficients, we obtained 8.9%. Therefore, the direct coefficients
were added to the feature vector in all SDC experiments mak-
ing it 56-dimensional. We experimented also with the c0 co-
efficient. Unlike in MFCC, adding c0 in SDC does not hurt
so that c0 (as well as all its shifted-deltas) was kept in feature
vectors. This system is denoted MFCC-SDC.

For ML-training, the number of Gaussian components M was var-
ied from 128 till 2048. For more computationally expensive MMI-
training, the numbers were only 128, 256 and 512.

Upper part of Table 1 summarizes the results for ML-training.
It is obvious that SDC clearly outperform MFCC which is coher-
ent with results of other groups. We see also decreasing EER for
increasing number of Gaussian components.

Lower part of Table 1 shows the results for MMI-training. We
see that systems with discriminatively trained models clearly outper-
form the standard ML-trained ones by several percent absolute. In
LVCSR, discriminative training usually yields only between 6-15%
relative improvement [12], we have therefore tried to explain such
a dramatic improvement in LID: In our opinion, the LVCSR-classes
(phone states) that are modeled by Gaussian mixtures are already rel-
atively well separated in the acoustic space, so standard ML training
does already well enough. In LID however, the classes are heavily
overlapped and Gaussians occupy mostly the same acoustic space.
The models need to concentrate on “tiny details” that help to separate

5Linguistic Data Consortium, http://www.ldc.upenn.edu



system 128 256 512 1024 2048
ML-TRAINING

MFCC38 18.8 17.3 16.2 14.8 14.5
MFCC-SDC 11.8 10.5 8.9 7.3 6.8

MMI-TRAINING
MFCC38 7.6 7.3 7.5 - -
MFCC-SDC 4.7 4.6 4.3 - -

Table 1. Equal error rates in % for ML and MMI training
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Fig. 1. Convergence of MMI-training for non-HLDA (solid line)
and HLDA (dashed line) SDC features. Zeroth iteration of MMI is
equivalent to ML-estimates.

the languages. With ML-training, the only possibility is the brute-
force approach – increasing the number of Gaussians. On the other
hand, discriminative training populates well these “tiny details” by
definition.

Based on the results of this sections, we have continued with
shifted delta-cepstra feature extraction and discriminatively trained
models. MMI is iterative, but usually requires only a few iterations
to converge (Fig. 1). Increasing the number of Gaussians in discrimi-
native training improves the results only slightly (Tab. 1) at the price
of very high computational load during the training, therefore, we
stuck with M = 128 in the following experiments.

6. HLDA IN ACOUSTIC LID

As the next step in the development of our LID system, we have em-
ployed Heteroscedastic linear discriminant analysis (HLDA), which
is also in common use in LVCSR. The reasons are obvious: our
features are too highly-dimensional and (as it comes clearly from
the nature of SDC) too correlated. HLDA provides a linear trans-
formation that can de-correlate the features and reduce the dimen-
sionality while preserving the discriminative power of features. In
our previous works in small- and large-vocabulary speech recogni-
tion [14, 15], HLDA consistently improved the recognition perfor-
mance.

The theory of HLDA is described in detail in [13] and [14].
HLDA needs classes to estimate its class-covariance statistics (which
are then used to estimate the transform matrix). In our case, these
classes were individual Gaussian components. HLDA is estimated
for the ML-trained model and its parameters are fixed in the follow-
ing MMI training.

Results with HLDA are summarized in Figure 2 again for
MFCC-SDC feature extraction and M = 128 Gaussians. Different
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Fig. 2. HLDA processing of features. The dashed line shows the
MMI result without HLDA.

lengths of the output feature vector were tested with MMI training.
Compared to non-HLDA result (4.7%), we see an improvement for
wide range of these lengths; HLDA helps even in case we use it only
to de-correlate, not to reduce the dimensionality (56 to 56 features).
When the output dimensionality is tuned, we obtain EER of 4.1%
which is a nice 0.6% absolute improvement over MMI-training only.

7. FROM GMM TO EHMM

The final improvement we brought to our acoustic LID system was
replacing the GMM by Ergodic HMM. By definition, one-state
GMM can not model any dynamics in speech (some dynamics is of
course represented by the delta or shifted-delta features). We felt that
splitting the model of each language into several states could bring
additional improvement. We therefore converted each MMI-trained
GMM into a fully connected (ergodic) HMM simply by copying
each individual mixture component into one state. We retrained the
transition probabilities using simple ML and have not touched the
mixture parameters.

The resulting likelihood of utterance can be evaluated in
“Viterbi” (taking only the maximum path in EHMM into account)
or “full model evaluation” styles. We have tested both without sig-
nificant difference. The results are reported for Viterbi computation
of the likelihood which is also about 10 times faster than full evalu-
ation.

Table 2 summarizes the results. EHMM on the top of discrimi-
native training and HLDA provided another 0.2% absolute improve-
ment, which confirmed our assumption that better modeling of dy-
namics is advantageous.

8. FULL TRAINING DATA

All training so far was done on a small sub-set (12 out of about 275
hours) of the training data. The last step is therefore to use all the
available data and report the results. This is done in the 2nd col-
umn of Table 2, with the usual feature extraction MFCC-SDC. While
EHMM helped similarly as we have seen for small training data,
HLDA does not perform as well — the number of output dimen-
sions (42) was tuned on the small set, and for full training data, this
reduction in dimensionality already seems to suppress useful infor-
mation. This could be fixed by more careful tuning of the output
dimensionality on the full set.

Compared to our best EER of 1.8% from our phonotactic system
[18], we see that the best result obtained from acoustic modeling,
also 1.8%, is very competitive. It also compares favorably to the



system small full
ML 2048 6.8 4.8
MMI 128 4.6 2.0
MMI 128 + HLDA 4.1 2.1
MMI 128 + EHMM 4.3 1.8
MMI 128 + HLDA + EHMM 3.9 -

Table 2. Equal error rates in % for MMI-trained system, completed
by HLDA and EHMM. The results in the right column are for the full
training set. For comparison, results of ML-training are presented
for M=2048 Gaussians.

system 30s 10s 3s
ML 2048 4.7 7.9 16.3
MMI 128 2.1 5.5 14.8
MMI+PPRLM 0.8 3.0 11.8

Table 3. Equal error rates in % for ML and MMI systems depending
on duration of test segments. MMI+PPRLM represents our final
system – a fusion of acoustic and phonotactic approaches.

best published GMM-based results obtained by MIT: 4.8% (Table 2
in [3], note that with ML-training, we obtained exactly the same
result).

So far, all the results were reported for test segments of duration
30 seconds. As mentioned in Section 4, the test data include also
10 and 3 second segments. The results obtained for all the three
conditions are presented in Table 3. The MMI-system with only 128
Gaussians clearly outperforms the ML-system (2048 Gaussians) in
all conditions, though improvement is not that prominent for shorter
segments. The last line of the table presents results obtained with our
final system, which is a fusion [4] of MMI-trained acoustic system,
and PPRLM system [18]. Similar system was also very successful
in 2005 NIST language recognition evaluations.

9. CONCLUSIONS

This paper deals with acoustic modeling for language identification.
We have verified that the results of other labs obtained with shifted
delta-cepstra (SDC) features are valid and that these features are
good for this task. We have concentrated on discriminative training
methods and have shown, that MMI-based training of models for
LID clearly outperforms widely used ML-training. This verified the
assumption that for LID, discriminative training would bring more
significant improvement than to LVCSR systems due to high overlap
of classes in the feature space. We have also studied HLDA applied
to de-correlate feature vectors and reduce their dimensionality, and
EHMMs to model the dynamics of features. Both methods bring
further improvement.
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