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Abstract—This paper describes and discusses the ‘STBU’
speaker recognition system, which performed well in the NIST
Speaker Recognition Evaluation 2006 (SRE). STBU is a consor-
tium of 4 partners: Spescom DataVoice (South Africa), TNO
(The Netherlands), BUT (Czech Republic) and University of
Stellenbosch (South Africa). The STBU system was a combination
of three main kinds of sub-systems: (1) GMM, with short-
time MFCC or PLP features, (2) GMM-SVM, using GMM
mean supervectors as input to an SVM, and (3) MLLR-SVM,
using MLLR speaker adaptation coefficients derived from an
English LVCSR system. All sub-systems made use of supervector
subspace channel compensation methods—either eigenchannel
adaptation or nuisance attribute projection. We document the
design and performance of all sub-systems, as well as their fusion
and calibration via logistic regression. Finally, we also present a
cross-site fusion that was done with several additional systems
from other NIST SRE-2006 participants.

Index Terms—Speaker recognition, GMM, SVM, eigenchannel,
NAP, Fusion.

I. INTRODUCTION

This paper documents significant elements of the state-of-
the-art in text-independent telephone speaker recognition, as
measured in the NIST Speaker Recognition Evaluation 2006
(SRE), via a description of the design and performance of the
‘STBU’ submission. It expands on a short paper published
at ICASSP [1]. The U.S. National Institute of Standards and
Technology (NIST) organizes yearly SRE evaluations [2], [3]
to contribute to the direction of research efforts and to calibrate
the technical capabilities of different academic and industrial
sites active in text-independent speaker recognition.

The STBU submission to the NIST SRE-2006 was the result
of a collaboration between four institutes:

• Spescom DataVoice (SDV), South Africa,
• TNO, The Netherlands,
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Speech@FIT, Faculty of Information Technology Brno University of Tech-
nology, Czech Republic.

David is with TNO Human Factors, Postbus 23, 3769 ZG Soesterberg, The
Netherlands.

Albert is with University of Stellenbosch, Department of Electrical and
Electronic Engineering, Stellenbosch, South Africa.

• Brno University of Technology (BUT), Czech Republic,
and

• University of Stellenbosch (SUN), South Africa.

The STBU consortium was formed to learn and share the tech-
nologies and available know-how among partners. Another,
equally important, reason to join efforts was that most success-
ful submissions to NIST evaluations fuse the results of several
sub-systems to decrease error rates. Simply put, a consortium
can generate more diverse systems, and even if the theoretical
base is very similar, subtle details in implementation, features,
background models, channel normalization and training can
make the fused system more accurate.

Admittedly, this paper is not for novices in speaker recog-
nition. Rather, it assumes familiarity with basic approaches
such as Universal Background Model-Gaussian Mixture Mod-
elling (UBM-GMM) [4], sequence kernel Support Vector
Machines [5] and more advanced channel compensation ap-
proaches such as Eigenchannel Adaptation [6] and Nuisance
Attribute Projection (NAP) [7]. Further, the reader is assumed
to be familiar with the NIST SRE-2006 task of speaker
detection [8] and specifically with the ‘1conv4w-1conv4w’
condition1, where a detection trial consists of a pair of speech
segments, and where the objective of the exercise is to decide
independently for each of several thousand trials, whether the
two segments were spoken by the same speaker, or by two
different speakers. Speech segment here denotes an excerpt
of approximately 5 minutes, from one of the 2 channels of
a 4-wire recording of a telephone conversation between two
people.

The paper is organized as follows: Section II presents the
basic system types grouped into three categories. Section III
presents the systems from different STBU sites in more
detail. In Section IV, we describe in detail the theory and
implementation of system fusion and calibration using logistic
regression. In particular, we discuss how calibration was done
to meet both the traditional Cdet and the new Cllr metrics.
Results are presented in Section V—this section also analyzes
language dependence which was an important issue in SRE-
2006. Finally, Section VI presents a cross-site fusion of STBU

1For details see the evaluation plan, via http://www.nist.gov/speech/tests/
spk/2006/
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sub-systems together with several systems from other SRE-
2006 participants. We conclude the paper in Section VII.

II. SYSTEM DESCRIPTION

We used three basic system types: Eigenchannel GMM,
GMM-SVM and MLLR-SVM. All sub-systems had in com-
mon that they used one of two forms of linear supervector sub-
space channel compensation technique: (i) For eigenchannel
adaptation, supervectors were extracted from GMM models,
compensated for channel effects, translated back to adapted
GMM models and then employed in the usual way to score
the tests. (ii) In the case of the SVM-based systems, super-
vectors were extracted either from GMMs or from MLLR
adaptation coefficients and were then subjected to nuisance
attribute projection to cancel channel effects. Following that,
the supervectors are employed in the usual way to train SVM
models which can be scored against test supervectors. More
detail follows below.

A. Common signal processing

All sub-systems used standard features such as Mel-
frequency cepstral coefficients (MFCC) or perceptual linear
prediction (PLP) features. The basic cepstral features were
augmented with derivatives up to third order. A set of sev-
eral frame selection criteria were applied: (a) frame energy
must be more than than 30 dB below the maximum frame
energy; (b) frame energy at least 3 dB above energy in other
channel (cross channel squelch); (c) segmentation from BUT’s
Hungarian phone recognizer; (d) strongly voiced syllable nu-
clei detector; (e) ASR word transcript segmentation provided
by NIST. RASTA (relative spectral) filtering [9], short-time
Gaussianization [10] and heteroscedastic linear discriminant
transformation (HLDA) [11], [12] were used for basic channel
normalization, feature decorrelation and dimensionality reduc-
tion.

B. Feature mapping

TNO and BUT used the channel-compensation technique
of feature mapping [13] to post-process all of their acoustic
features. However, post-evaluation experiments by BUT [14]
strongly suggest that when eigenchannel or NAP channel
compensation are used, then feature mapping becomes unnec-
essary.

In the BUT systems, 8 feature mapping channels were found
by unsupervised iterative re-clustering of conversations [15],
primed with the TNO feature mapping labels (CDMA, GSM,
carbon button, electret per gender), as used in SRE-2005.
These were augmented with 6 channels determined from
SRE-2004 labels (cellular, cordless, standard per gender).
The TNO feature mapping used 16 classes, and was trained
with balanced quantities from Switchboard (640 speakers) and
Fisher (1000 speakers) databases.

C. Eigenchannel GMM

We adopted the term ‘eigenchannel’ as used in speaker
recognition from Kenny [6]. It was introduced to the NIST

SRE by SDV in 2004 [16], revisited by Kenny [17], [18] and
Vogt [19] in SRE 2005, and again by several sites in various
forms in SRE-2006 [20].

In our Gaussian mixture model (GMM) system [14], speaker
models were trained in the usual way by adapting from
a universal background model (UBM [4]) by maximum a-
posteriori (MAP) adaptation [21]. Only means of Gaussian
components are adapted.

In the following, we will use the notion of supervectors2:
Since our GMMs differ only in means, each model can be
represented by the concatenation of all the mean vectors of
all the Gaussians in the model. (We normalized each mean by
the corresponding standard deviation.)

In eigenchannel adaptation, a model that has been trained
under one channel condition, may be adapted towards a dif-
ferent channel condition of new test data, to reduce mismatch
when the speaker is the same. Importantly, the adaptation
must be constrained so that adaptation between different
speakers is suppressed. This constraint is effected by adapting
GMM models in supervector space, but only in a very small3

subspace.
The adaptation is effected by maximizing (with a single it-

eration of the Expectation Maximization (EM) algorithm [21])
the MAP-criterion, P ({ft}|m + Vx)P (x), w.r.t. the low-
dimensional ‘channel mismatch’ vector x [16], [14]. Here,
{ft} is the sequence of acoustic feature vectors in the test
segment, m is the supervector representing the original model,
V is a low-rank matrix that spans the adaptation subspace,
and P (x) is a zero-mean, unit-covariance Gaussian prior on
the channel mismatch. In later experiments, we found the
prior to be unimportant and that the MAP-criterion could be
replaced by a simpler ML-criterion, by ignoring the prior. The
adaptation subspace V was trained via the same eigen-analysis
that was used to find the NAP-subspace, see Section II-F1.

In the variant of this system without T-norm (test nor-
malization), the score for each trial was calculated as
log P ({ft}|ma) − log P ({ft}|Ua), where ma and Ua are
the independently adapted target and universal background
models. In the T-normed variant, the score was normalized in
the usual way [22], but with each T-norm model also indepen-
dently adapted. The EM-algorithm for adaptation of multiple
T-norm models was streamlined by using the state occupancy
probabilities of the UBM for all models, as proposed by [19].

The BUT eigenchannel GMM system and its interaction
with various feature-space compensations such HLDA and
feature mapping is analysed in more detail in [14].

D. GMM-SVM

In this type of system, GMM supervectors, as described
in the previous section, are extracted not only from target-
model training speech segments, but also for all other back-
ground and test speech segments. In other words, each speech
segment (conversation side) is represented by a single GMM

2Supervectors are just rather large vectors, where ‘super’ serves to distin-
guish them from the much smaller short-time feature vectors.

3In this case the subspace was 30-dimensional while the full supervector
dimension was almost 80000.
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supervector. The target and background supervectors are then
used to train support vector machine (SVM) speaker models
against which the test supervectors are scored [23], [24]. The
SVM uses a linear kernel in supervector space. Each SVM is
trained using the single available positive example from the
target speaker, and many4 negative examples from a pool of
background speakers.

All our SVM sub-systems used NAP as a preprocessing step
before SVM training. This is described in Section II-F.

E. MLLR-SVM

This type of system makes use of large vocabulary con-
tinuous speech recognition (LVCSR). Previous work [25] has
already shown that the adaptation matrices that LVCSR sys-
tems use to adapt towards new speakers are excellent features
for speaker recognition.

The sub-systems in this paper used the coefficients from
constrained maximum likelihood linear regression (CMLLR)
and maximum likelihood linear regression (MLLR) trans-
forms, as estimated by the LVCSR system developed in
AMI project5 submitted to NIST Rich Transcription 2005
evaluations [26]. This adaptation was ‘supervised’ by using
the ASR transcripts6, as made available by NIST for all speech
data in SRE-2005 and 2006. Since NIST did not provide
pronunciation dictionary, we used the AMI dictionary and we
generated the missing pronunciations automatically. With this,
we were able to generate the triphone alignment, to apply
vocal tract length normalization (VTLN) and to estimate the
coefficients of CMLLR and MLLR transformations.

These coefficients were normalized and concatenated into
supervectors and then used with SVMs, exactly as described
in the previous subsection for the GMM supervectors.

F. Nuisance attribute projection (NAP)

All of our SVM sub-systems used NAP [7], [27] to remove
unwanted channel or inter-session variability. There are dif-
ferent ways in which the NAP transform may be estimated
and applied. We give here the general recipe that we applied
in all of the STBU SVM systems. We also show how the
eigenchannel adaptation matrix V was obtained.

1) NAP training: The data collection used in SRE-2004
was specifically designed to contain a large channel variability.
Hence, as training material for the NAP-transforms we used
whole conversation sides from the NIST SRE-2004. This data
includes circa 310 speakers for most of which there are 10 or
more conversation sides, or sessions. The steps for estimating
the NAP transform are:

• Extract a supervector of dimension7 Dsv for each session
of each speaker.

4Background size was of the order of 2000, which is much smaller than the
supervector dimension. In practice this always results in SVM models with
zero training errors. This makes selection of the SVM regularization constant
irrelevant.

5See http://www.amiproject.org
6from a different English LVCSR system
7For GMM supervectors the dimension is the acoustic feature dimension

times the number of GMM components. Numerical values are given in Table I.

• For each speaker, calculate the mean supervector over
all of the available supervectors of that speaker. Then
subtract the mean from all of the vectors for that speaker.
Pooling all these difference vectors then gives a large
matrix D of supervectors from which most of the speaker
variability has been removed, but where the inter-session
(or nuisance) variability remains. The matrix D has
dimensions Dsv × Nses, where Nses is the total number
of sessions.

• Select the NAP transform dimension, denoted as DNAP.
We typically used DNAP = 40, but this dimension should
be chosen empirically as the one which gives best results.

• Now perform a principal component analysis (PCA)
on D. That is, we need to find the DNAP principal
eigenvectors of the normalized scatter matrix8 1

Nses
DD

T .
Since the number of session vectors is typically several
thousand, and the supervector dimension can be in the
tens of thousands, some careful engineering may be
needed to find these eigenvectors on machines of limited
memory and CPU capacity. Some hints are given in
Section II-H. We denote the Dsv × DNAP matrix of
principal eigenvectors as E.

• Since an iterative eigenvector algorithm typically gives
approximate solutions, it is a good precaution to normal-
ize and mutually orthogonalize the columns of matrix
E, for example by singular value decomposition (SVD)
of E. If the eigenvectors are not orthonormal, the NAP-
transform fails to project the nuisance subspace away
completely.

2) Eigenchannel matrix: If the ML-version (without chan-
nel mismatch prior) of eigenchannel adaptation is used, it suf-
fices to simply set V = E, where V is the matrix mentioned
in Section II-C. However if MAP-adaptation is used, then each
column j of V should be scaled by

√

2ej , where ej is the
corresponding eigenvalue. (Directions in nuisance subspace
with relatively smaller variances are thereby allowed to adapt
to a lesser extent.)

3) NAP-projection: Once the orthonormal9 NAP-subspace
E has been trained as explained above, we may use it to
train SVM speaker models that are more robust against inter-
session variability. The basic NAP-transform is designed to
be applied with linear-kernel SVMs. The transform must be
applied to all supervectors (target and background) before they
are used in SVM model training. That is, each supervector v

is transformed as:

v
′ = v − E(ET

v), (1)

where T denotes transpose. By orthonormality, this transfor-
mation is idempotent [27]. This means it is not necessary to
also NAP-transform the test supervectors10, before they are
scored against the SVM models. Finally, note that the NAP
transform should be applied before SVM training. It does not

8
D has zero mean, so that this normalized scatter matrix acts as estimate

of within-speaker covariance.
9
E

T
E = I

10It would also not matter if this operation was repeated because of the
idempotence.
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help to apply the NAP-transform afterwards to test vectors or
to models that have been trained on unprojected data.

G. Division of training data

Although not all STBU sites had the same speech databases
at their disposal, a general division of training data was
made early in the design stage to which all sites adhered.
Starting with the most recent collection, we used: SRE-2005
exclusively for sub-system development testing, calibration
and fusion; SRE-2004 for eigenchannel, NAP, UBM, T-norm
and rank normalization; SRE 1999–2003, Fisher, Switchboard
for UBM training, feature mapping, SVM background, and
T-norm.

H. Some notes on computational efficiency

For experiments with these complex systems and large test
databases it is important to have fairly efficient implementa-
tions of the various algorithms. Here we give some hints:

• Store the top-N Gaussian index for each speech frame,
where typically N = 5 [4]. Note that for obtaining this
index for a frame ft, only the distance to the Gaussian
centers needs to be evaluated, and the exponentiation can
be postponed or even omitted in the GMM-SVM case.

• For MAP adaptation of GMM means, only the top-
N Gaussian components need to be evaluated in the
‘expectation-step,’ making this typically a factor 100
faster [16]. Since this needs to be performed for each
test segment (in the GMM-SVM case), this makes a big
difference.

• In the estimation of the NAP projection, rather than
calculating the principal DNAP eigenvectors of DD

T ,
calculate the principal eigenvectors of D

T
D (which is

much smaller), and left-multiply these by D afterwards.
• Using ARPACK or Matlab’s eigs(), explicit calcu-

lation of D
T
D is not necessary, but rather a function

f(x) = D
T
Dx can be provided. This function can

be calculated without transposing large matrices using
f(x) =

(

(Dx)T
D
)T

.
• For training SVM models (e.g., using libSVM [28]),

pre-compute the Gram (kernel) matrix between all
background speakers. Then for each new target/T-norm
speaker, only one row and column needs to be replaced
in the Gram matrix. This speeds up SVM training with
orders of magnitude.

• For SVM scoring, SVM models can be folded, or com-
pacted [5], into a single vector by calculating a weighted
sum of the support vectors. Evaluation of a score is then
just calculation of an inner product and T-normalization
is just a matrix-vector multiplication.

III. SUB-SYSTEMS AND THEIR DIVERSITY

In the fusion of sub-systems, we found it advantageous to
include in each fusion several very similar, but not identical,
systems. Indeed, in post-evaluation experiments we found that
leaving any of the sub-systems out caused significant deteriora-
tion in performance. These sub-systems were different because

each was built by a different team, using different front-
ends, different development databases and somewhat different
flavours of the subspace channel compensation techniques. See
Table I for a summary of the main characteristics of the various
sub-systems.

Some remarks not captured in the table are the following. In
an attempt to compensate for asymmetric system design, SDV
provided two similar sub-systems: A reverse system swapped
test and train speech segments for each trial, but was otherwise
the same as the forward system. Because one speech segment
is used for training the model and the other for obtaining
a score, this swapping makes the system more symmetric.
Experiments have shown that fusing these to sub-systems leads
to better performance.

The acoustical features from BUT, as well as the MLLR
transform data, were used by SUN. SUN provided two ver-
sions of the MLLR-SVM system, differing in the number of
MLLR transforms.

CMLLR and MLLR transforms were trained for each
speaker. At first, CMLLR was trained with two classes (speech
+ silence). On top of it, MLLR with two (SUN) or three (BUT,
SUN) classes (the two speech classes were obtained by auto-
matic clustering on the LVCSR training data + silence) was
estimated. Using more classes caused missing data problems
for some files, and was found not to lead to better performance.
Both CMLLR and MLLR transform matrices were estimated
as block-diagonal in 13-coefficient wide streams.

IV. FUSION, CALIBRATION AND DECISIONS

The crux of the STBU design was to fuse multiple sub-
systems into a single effective system. By fusion we mean
the following: Let x represent a speaker detection trial11 and
let this trial be processed in parallel by N sub-systems, each
of which produces a real-valued output score, where more
positive scores favour the target hypothesis (same-speaker) and
more negative the non-target hypothesis (different-speakers) .
The score of the ith sub-system is denoted si(x). These scores
are fused using linear combination:

sf = s(x,w) = w0 +
N
∑

i=1

wisi(x) (2)

where sf is the fused output score and w = [w0, w1, . . . , wN ]
is a vector of real-valued weights. Perhaps counter intuitively,
some of the weights may be negative.

A. Logistic regression

The fusion weights were obtained by logistic regression [29]
training on a database of supervised scores. We used all
1conv4w-1conv4w trials of the NIST SRE-2005 for this pur-
pose. It is important to note that all development of the sub-
systems did not make use of any 2005 data. If for example,
2005 data had been used to train NAP/eigenchannel, then the
scores produced by these systems on the same data would have
been over-optimistic and therefore not suitable for training
fusion and calibration weights.

11Recall a trial consists of two speech segments.
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TABLE I
SUMMARY OF ALL SUB-SYSTEMS COMPONENTS. LEGEND TO DATA SOURCE: SW: SWITCHBOARD, Snn: NIST SRE-’nn, F1: FISHER RELEASE 1.

FRAME SELECTION METHODS (A)–(E) ARE EXPLAINED IN SECTION II-A.

Site SDV BUT SUN TNO
System GMM-SVM GMM GMM-SVM MLLR-SVM GMM-SVM MLLR-SVM GMM-SVM
Features 12 MFCC, ∆ 12 MFCC+C0, ∆3 12PLP+C0,∆3 12 MFCC+C0, ∆3 12PLP+C0,∆3 12 PLP + log E, ∆
HDLA dimension 39 39 39 39 39
Frame selection (b),(d) (a)–(c) (a)–(c) (e) (a)–(c) (e) (a)
Nf 24 39 39 39 39 39 26
UBM sources S99–S03 S04 S04 S04 SW, S01–S03, F1
NG 512 2048 512 512 512
Feature mapping channels 14 14 14 16
Relevance factor 16 19 19 19 16
Dsv 12288 79872 19968 1638 19968 1092, 1638 13312
DNAP 40 30 40 15 40 15 40
SVM Background speakers > 2000 2866 310 2606 310 1640

source S99–S03 F1, S02 S04 F1 S04 SW, S01–S03, F1
T/Rank norm speakers T: 310 T:260 T: 1080 T: 300 T: 310 T: 310

R: 2866 R:310
source S04 S02 F1, S02 S04 F1 S04 S04

The aim of logistic regression training is two-fold: First, it
should improve discriminative ability, i.e., the DET-curve of
the fused system should be better than the DET-curves of all
the input systems. This is clearly demonstrated in Figs. 2, 3
and 6, which compare DET-plots of sub-systems against their
fusion. Secondly it should calibrate the output score, so that
it functions as a well-calibrated log-likelihood-ratio. That is,
the training strives to achieve

sf ≈ log
P (sf |Htar)

P (sf |Hnon)
(3)

where Htar and Hnon denote target and non-target hypotheses
respectively [30]. With a linear fusion such as (2), the degrees
of freedom, which may be adjusted to optimize calibration,
effectively form an affine transform—i.e., scores can be scaled
and shifted. Scaling and shifting of scores does not affect
discrimination and does not change the DET-plot.

There is a subtle difference between our use of logistic
regression and the way in which it is traditionally applied in
many other pattern recognition problems [31]. As mentioned,
we train the fused score to function as a log-likelihood-ratio,
while in other problems it is appropriate to train the score to
function as posterior log-odds:

s′f ≈ log
P (Htar|s

′
f)

P (Hnon|s′f)
= log

Ptar

1 − Ptar
+ log

P (s′f |Htar)

P (s′f |Hnon)
(4)

In other words, the traditional posterior log-odds, s′f and our
log-likelihood-ratio, sf , differ essentially in an additive term,
namely the prior log-odds,

logit Ptar = log
Ptar

1 − Ptar
(5)

As is shown below, this is easily handled by a small modifi-
cation of the traditional logistic regression objective function.
Let Xtar and Xnon respectively represent sets of target and
non-target trials. Our logistic regression objective function is:

O(w, Ptar) =
Ptar

‖Xtar‖

∑

x∈Xtar

log(1 + e−s(x,w)−logit Ptar)

+
1 − Ptar

‖Xnon‖

∑

x∈Xnon

log(1 + es(x,w)+logit Ptar)

(6)

where ‖X‖ denotes the number of trials in set X . Note that
the objective is parameterized by the target prior Ptar. This
adaptation of the logistic regression objective function allows
one to set the parameter Ptar independently of the proportion
of target trials in the training database, to match the target prior
of an envisaged application of the fusion. Since the purpose of
this fusion was to optimize for the NIST SRE Cdet objective,
we set [32]

logit Ptar = logit P ′
tar + log

Cmiss

Cfa
(7)

where (P ′
tar, Cmiss, Cfa) = (0.01, 10, 1) are the parameters

specified by the evaluation plan12. This gives Ptar = 0.0917.
In experiments over a few different NIST SRE evaluation
sets, we have found that, although performance of the logistic
regression is relatively insensitive to the parameter Ptar, it
does help to set it to the above value.

On the other hand, if the fusion is to be designed to optimize
for the new Cllr objective [32], [33], which was adopted as a
secondary evaluation objective in the most recent NIST SRE
Evaluation plan13, then it would be better to choose Ptar =
0.5. Indeed, if (6) is reformulated as a function of the scores,
rather than of w, then at Ptar = 0.5, it is just the Cllr objective.

At a fixed value of Ptar, the objective O(w, Ptar) is a
convex function of w, and it has a global minimum. This
means it can be efficiently optimized with, for example,
conjugate-gradient methods. We implemented a conjugate-
gradient algorithm in Matlab, based on the work of Minka14,
but adapted to our variant of the objective function. This code
is freely available as part of the FoCal toolkit15.

B. Missing trials

We had the complication that not all sub-systems were able
to contribute a score for each trial, because of failure to detect
speech in training or test segment, or lack of transcription.
This necessitated a two step fusion strategy:

12See http://www.nist.gov/speech/tests/spk/
13See http://www.nist.gov/speech/tests/spk/2006/.
14See http://www.stat.cmu.edu/∼minka/papers/logreg/
15See http://www.dsp.sun.ac.za/∼nbrummer/focal/
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1) First, each sub-system on its own was subjected to
an affine calibration transformation16, also trained via
logistic regression, with Ptar = 0.5. This calibration
gave the scores a log-likelihood-ratio interpretation. The
training data for this calibration were all trials that
each sub-system could contribute out of the SRE-2005
(1conv4w-1conv4w) trials.

2) Next, scores (log-likelihood-ratios) of zero were inserted
for all missing trials. Now, all sub-systems had valid
scores for all trials and the fusion could be trained as
explained above.

C. Decisions

The beauty of a score that is calibrated so that approxima-
tion (3) holds is, that decisions with near-optimal expected
cost can be made by using standard, theoretically determined
score thresholds.

In past years, it was standard practice for NIST SRE
participants to empirically determine score thresholds by op-
timizing average Cdet performance over a database of su-
pervised scores. This strategy indeed often worked well for
the particular operating point defined via the Cdet parameters.
But if decisions at different operating points (different prior
or costs) were required for applications other than the NIST
SRE, then the threshold optimization procedure would have to
be repeated.

The advantage of calibrated scores is that the empirical
optimization, e.g. via logistic regression, over the supervised
database needs to be performed once only. Thereafter, theo-
retical thresholds can be used to give good performance over
a wide range of operating points [33]. If the goal is to make
decisions that optimize Cdet, then the theoretical threshold is
just the negative of (7):

θDET = − logit P ′
tar − log

Cmiss

Cfa
(8)

For (P ′
tar, Cmiss, Cfa) = (0.01, 10, 1), this gives θDET = 2.29.

The decision rule is then:

sf ≥ θDET 7→ accept,

sf ≤ θDET 7→ reject.
(9)

This new calibration-based strategy has indeed worked well,
as demonstrated by small Cdet − Cmin

det discrepancies in the
system submitted by SDV in the NIST SRE-2005, as well as
for 5 of the best-performing systems17 in the NIST SRE-2006,
all of which used logistic regression-based calibration with a
2.29 threshold.

D. Non-linear calibration (STBU-3)

As mentioned above, we are concerned with optimizing the
discriminative ability (DET-curves), as well as the calibration,
or actual decision-making ability of our scores. The traditional
evaluation tools which are applied to analyse NIST SRE results
include both (i) DET-curves to analyse discriminative ability

16This is the same as a fusion with a single input.
17NIST SRE rules prohibit publishing explicit performance details of other

participants.

over a wide operating range and (ii) Cdet to analyse actual
decision-making ability at a fixed operating point. The new
Cllr metric serves to fill this gap: It evaluates average actual
decision-making ability of log-likelihood-ratio scores, over
a wide operating range. For a tutorial introduction to Cllr

see [32] and for a reference implementation to calculate Cllr

and Cmin
llr , see the above-mentioned FoCal toolkit.

With our submissions STBU-1 and STBU-3, we tried to op-
timize calibration performance respectively for the traditional
Cdet and for the new Cllr. STBU-1 was a straight-forward
linear fusion (2) optimized with logistic regression with the
parameter Ptar = 0.0917. As explained, this fusion effects an
affine calibration transformation.

STBU-3 took the score the output, sf , of STBU-1 and then
subjected it to a further non-linear calibration stage. That is,
the score of STBU-3 was obtained by:

sc(sf) = log
α(esf − 1) + 1

β(esf − 1) + 1
(10)

where 0 < β < α < 1. This is a strictly increasing sigmoid
function, which saturates below at approximately − logit α and
above at approximately − logit β. The parameters α and β are
likewise found by optimizing the logistic regression objective,
but here our aim was to optimize for Cllr rather than Cdet,
so we set the parameter Ptar = 0.5. Code for performing this
optimization18 is also available in the FoCal toolkit, as well
as a derivation for the particular form of this saturating non-
linearity.19 As shown in Table IV in the results section, the
STBU-3 strategy did indeed improve calibration as measured
by Cllr.

V. RESULTS AND DISCUSSION

A. Comments on individual systems

In the development of individual systems, many configu-
rations and parameters were tested and it is not possible to
cover everything in this paper. We will therefore concentrate
on the most important findings. The results will be presented
on DET plots on 2006 data in Fig. 1:

1) Compare the influence that eigenchannel adaptation has
on the GMM system (left) to the influence of NAP
on the GMM-SVM (middle), as both techniques have
similar underlying principles. We have found that, while
eigenchannel greatly helps in the GMM system (and
actually makes feature mapping unnecessary [14]), NAP
helps in the GMM-SVM but to a much smaller extent.
We attribute this to the fact that linear-kernel SVM
models orient the score projection axis approximately
perpendicular to the subspace spanned by all the back-
ground supervectors, which also includes much channel
variation.

2) NAP in the MLLR-SVM sub-system (right) also helps,
but it seems that SVM itself is able to exploit the

18Because of the saturation, the objective function may become non-
convex. This makes it harder to optimize and it may fail to converge if not
appropriately initialized.

19See http://www.dsp.sun.ac.za/∼nbrummer/focal/cllr/calibration/s cal/
derivation.pdf
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speaker-discriminative information in LVCSR adaptation
matrices to some extent.

B. Fused systems and their results

Three fused systems were submitted to the evaluation.
The primary submission, STBU-1U (unsupervised adaptation
mode) is an 11-fold fusion of:

1) GMM-SVM forward, T-normed (SDV)
2) GMM-SVM reverse, T-normed (SDV)
3) Eigen-channel GMM (BUT)
4) Eigen-channel GMM T-normed (BUT)
5) GMM-SVM T-normed (BUT)
6) MLLR3-SVM (BUT)
7) GMM-SVM T-normed (SUN)
8) MLLR2-SVM (SUN)
9) MLLR3-SVM (SUN)

10) GMM-SVM T-normed, without unsupervised adaptation
(TNO)

11) GMM-SVM T-normed, with unsupervised adaptation
(TNO)

For the non-adaptive variant STBU-1, indicated as STBU-1N
in this paper, we simply omitted the last sub-system.

The second submission, STBU-2, is the same as STBU-1 in
all respects, except that the eigenchannel GMM sub-systems
were omitted. This makes this STBU-2 a pure fusion of SVM
sub-systems. The third submission, STBU-3 is the same as
STBU-1, except that the non-linear calibration described in
Section IV-D was added.

Table II describes results on the primary condition (English
only trials) for development data (SRE-2005) and for evalua-
tion data (SRE-2006). Results are reported for all sub-systems,
together with fused results which are with (U) and without (N)
unsupervised adaptation. Fig. 2 presents the results graphically,
where curves for GMM, GMM-SVM, and MLLR-SVM are
grouped to keep the legend size manageable. Note how the
curves for SRE-2006 are rotated clockwise w.r.t. the curves
for SRE-2005. The little cusps in the MLLR-SVM curves are
a side-effect of the zero-insertions discussed in Section IV-B.

Table III describes results on all trials from development and
evaluation data. Only results of the best sub-system from each
category is presented. Fig. 3 presents the results graphically
with the same grouping of individual systems.

A comparison of the calibration performances of STBU-1
versus STBU-3 is given in table IV, as measured20 on all 2006
1conv4w-1conv4w trials (without unsupervised adaptation).
The fixed-operating-point calibration performance can be
judged by the discrepancy between Cdet and Cmin

det , indeed as
planned, STBU-1 performed better than STBU-3. Conversely,
the general calibration as judged by the discrepancy between
Cllr and Cmin

llr shows STBU-3, described in Section IV-D, to
be better than STBU-1.

Although the calibration performance of the STBU system
was good enough to make it competitive with the other sub-
missions in the NIST SRE-2006, we note that the calibration

20Recall sub-systems were developed on 2004 and earlier data, fusion and
calibration was trained on 2005 data, and this test was performed on new
unseen 2006 data.

TABLE II
RESULTS OF THE SUB-SYSTEMS AND THE SUBMITTED ONE ON PRIMARY

CONDITION: ENGLISH TRIALS.

system SRE-2005 data SRE-2006 data
Cmin

det
EER Cmin

det
EER Cdet

GMM (BUT) .0174 3.88% .0178 3.44%
GMM T-norm (BUT) .0170 4.27% .0159 3.44%
GMM-SVM (SUN) .0153 4.19% .0171 3.61%
GMM-SVM (BUT) .0158 4.66% .0185 3.71%
GMM-SVM-U (TNO) .0116 3.72% .0185 3.81%
GMM-SVM (TNO) .0178 5.17% .0190 4.10%
GMM-SVM For (SDV) .0221 6.05% .0227 4.91%
GMM-SVM Rev (SDV) .0220 6.10% .0238 5.18%
MLLR3-SVM (SUN) .0212 6.05% .0218 4.49%
MLLR3-SVM (BUT) .0196 6.17% .0220 4.78%
MLLR2-SVM (SUN) .0264 7.50% .0270 5.56%
STBU-1U .0070 2.98% .0132 2.26% 0.0154
STBU-1N .0096 3.21% .0126 2.32% 0.0155
STBU-2U .0073 3.17% .0147 3.07% 0.0210
STBU-2N .0099 3.59% .0147 3.07% 0.0210
STBU-3U .0132 2.27% 0.0161
STBU-3N .0126 2.32% 0.0160

TABLE III
THE BEST PERFORMING SUB-SYSTEMS FROM EACH CATEGORY AND THE

SUBMITTED RESULTS ON ALL TRIALS.

system SRE-2005 data SRE-2006 data
Cmin

det
EER Cmin

det
EER Cdet

GMM (BUT) .0201 4.83% .0283 5.40%
GMM-SVM (TNO) .0192 5.77% .0285 6.04%
MLLR-SVM (BUT) .0224 7.15% .0327 7.57%
STBU-1U .0085 3.50% .0208 3.30% 0.0249
STBU-1 .0114 3.97% .0214 3.83% 0.0263

performance in this evaluation was somewhat poorer for most
participants as compared to the 2005 and 2004 evaluations.
It is unlikely that this problem can be solved within the
fusion and calibration paradigm presented here. Rather one
may have to improve the sub-systems and make them more
robust against changes in the nature of the speech data.

C. Unsupervised adaptation

Unsupervised adaptation is an ‘operating mode’ of pro-
cessing the NIST speaker recognition trials. In this mode,
the available speech for a particular trial is extended with
all earlier speech trials that include the same speaker model
as the current trial. The trial index files are built such that
(target) test segments are ordered by recording date for the
same model speaker. The operating mode was proposed by
Claude Barras [34] at the SRE-2003 workshop, adopted in
the following NIST SRE plan as an optional mode, analysed
separately. The rationale for this mode was that for certain
applications, such as access authentication, there will typically
be many target trials available which can provide the system
with more speech of the target speaker so that better models
can be formed [35].

For reasons which we will discuss below, successful ap-
plication in a NIST SRE is hard [36], [37], but it finally
succeeded in SRE-2005 [36]. Although, that year, only one
participant had attempted to run the unsupervised adaptation
mode, it still was considered an interesting research area, so it
was decided that in SRE-2006, unsupervised adaptation mode
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Fig. 1. Comparison of improvement with eigenchannel adaptation in the GMM system (left), NAP in GMM-SVM (middle) and NAP in MLLR-SVM (right).
Results from SRE-2006, English-only trials. Circles indicate the Cmin

det
operating point.
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Fig. 2. DET curves for individual and merged systems, English only trials. MLLR-SVM, GMM-SVM and GMM sub-systems are grouped by colour. Left
panel shows results on SRE-2005 data, where circles indicate Cmin

det
operating point. Right panel shows SRE-2006 results, with additional boxes indicating

95 % confidence interval around the Cdet operating point, based on calibration with SRE-2005 trials. The line type shows the site origin. STBU fusion results
are in black, with a dashed curve for the unsupervised adaptation mode.

TABLE IV
COMPARISON OF CALIBRATION OF STBU-1 VS STBU-3, SRE-2006 ALL

TRIALS.

SYSTEM Cllr Cmin

llr
Cdet Cmin

det

STBU-1 0.198 0.152 0.0263 0.0214
STBU-3 0.188 0.152 0.0274 0.0214

results could be entered as primary system.
There are different approaches to performing unsupervised

adaptation, ranging from simple threshold-based inclusion of
the test segment as extra training to score-weighted adaptation
of the current model [35], [34], [37], [38], but all of them
depend on proper calibration of the scores. This means that
the calibration will influence the position and shape of the
DET curve, as well as Cdet and Cllr. Further, as has been

pointed out earlier [34], [36], the evaluation priors of target
and non-target trials, as well as the number of target-trials
for each model speaker determine the potential success of
application of unsupervised adaptation. This is different from
the ‘normal mode’ of operation, where the evaluation priors
do not determine the performance measures such as Cdet and
EER. A last major difference between the two operating modes
is the influence of ‘pathological data’ in the evaluation. In the
much appreciated data collection efforts and quality control it
is inevitable, given the large amount of trials in evaluations
(over 50 000 in SRE-2006), that there are speech files which
contain little or no speech, are duplicates, or have the wrong
language or speaker ID associated with it. For the ‘normal
mode’ of operation this causes little problems, because in a
standard post evaluation quality control procedure by NIST,
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Fig. 3. DET curves for individual and merged systems, all trials. Colours, symbols and line type are the same as for Fig. 2.

trials involving these pathological files are discarded from
further analysis. However, for the unsupervised adaptation
mode, these pathological speech files can cause a major
problem because the adaptive speaker model may deteriorate
if such a file is not properly detected.

One sub-system (TNO) applied a simple adaptation scheme.
It is based on earlier work [36] and extended to include the
GMM-SVM-NAP technology. Basically, for each trial, the T-
normed score s is calculated. If s exceeds a predetermined
threshold a, the speech data in the test segment is used to
MAP adapt the means in the GMM for the current model
speaker, using a relevance factor r. The new means are used
to build a new SVM, which is used for subsequent trials. The
results for the development test (SRE-2005) and evaluation
are summarized in Table V, and the DET-curves are shown
in Fig. 4. Note, that these are the results of only one sub-
system of the STBU submission. Qualitatively, the adaptation
results are similar for the total system, but the effects are
less pronounced due to the importance of several other sub-
systems.

We tuned the parameters a = 4 and r = 36 to obtain
optimum Cmin

det for SRE-2005, and applied these to SRE-
2006. A speech file was classified as ‘potentially pathological’
if either the range of frame energy did not exceed 30 dB
(assuming the file contains no speech) or if the SVM score,
before T-norming, exceeded 0.95 (an assumed copy of a
speech segment). For these trials, no adaptation was carried
out. As it turns out, none of these trials survived the post
evaluation quality control of NIST.

As can be observed from the table and the DET-curves,
the discrimination performance increased dramatically for the
development test (34 % relative drop in Cdet), but hardly at
all for the evaluation (6 % relative drop in Cdet). The ‘knee’
close to the decision operating point for SRE-2006 is typical

of runs where adaptation has been applied too aggressively
(low a and r). It shows the effect of ‘false adaptations’ which
spoil a speaker model and lead to over-optimistic scores for
subsequent non-target trials. The 53966 trials in SRE-2006
lead to 5003 adaptations, of which 61.4 % were correct, 13.9 %
false adaptations, and 24.7 % unknown, because these trials
were later removed from the official scoring by NIST due
to the various problems described earlier. Even though ‘only’
2518 trials were removed from the original trial index file,
1223 of these (49 %) were used for adaptation of speaker
models. On the other hand, of a potential 3612 target trials,
only 14.9 % were missed for adaptation (see Table V).

As a post-evaluation experiment, ‘post1,’ we ran our adap-
tive mode parameters on the list of trials that were kept after
the post evaluation quality control. Oddly enough, we observe
from Table V that the performance decreases under this
condition. Apparently, the ‘pathological files’ that plagued so
many researchers during the evaluation, helped our sub-system
in unsupervised adaptation mode. Perhaps some speakers who
had enrolled twice under a different identity in the data
collection process, and whose ‘non-target trials’ were later
removed, actually helped in adaptation mode.

We attribute the poor adaptation performance to the high
probability of False Adaptation [34], which is an order of
magnitude larger than in the development test. This is not
only due to miscalibration, but also because the DET-curve
has a steeper slope. Indeed, optimizing the threshold as a
post-evaluation experiment ‘post2’ to a = 5 leads to the
expected larger benefit of unsupervised adaptation (21.5 %
drop in Cdet), with a much lower False Adaptation probability.

D. Language dependence
We have observed that the performance in the primary

condition (English only trials, Table II), is much better than
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TABLE V
PERFORMANCE MEASURES FOR THE TNO SUB-SYSTEM IN NORMAL AN UNSUPERVISED ADAPTATION MODES, FOR DEVELOPMENT TEST (NO

CALIBRATION, FIXED THRESHOLD OF 3), EVALUATION AND POST-EVALUATION EXPERIMENT. ALL (POST QUALITY CONTROL) TRIALS ARE INCLUDED.
TWO POST-EVALUATION EXPERIMENTS ARE INCLUDED AS WELL. THE LAST TWO COLUMNS INDICATE THE PROBABILITY OF FALSE ADAPTATION AND

MISSED ADAPTATION, RESPECTIVELY.

Mode dataset Cdet Cmin

det
EER Cllr Cmin

llr
PFalseAd. PmissAd.

Normal SRE-2006 0.0335 0.0286 6.04 % 0.262 0.220
Adapt. SRE-2006 0.0315 0.0290 5.48 % 0.264 0.219 13.9 % 14.9 %
Normal SRE-2005 0.0198 0.0189 5.79 % 0.629 0.220
Adapt. SRE-2005 0.0130 0.0124 4.38 % 0.572 0.171 1.1 % 13.8 %
Adapt. post1 SRE-2006 0.0349 0.0316 6.06 % 0.284 0.236 17.2 % 20.0 %
Adapt. post2 SRE-2006 0.0262 0.0227 4.73 % 0.220 0.182 5.5 % 25.4 %

Unsupervised adaptation TNO 2005/2006
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Fig. 4. DET-curves for the TNO sub-system in normal (solid lines) and
unsupervised adaptation (dashed lines) modes, for evaluation and development
test. Also included is a post-evaluation run with a more optimal threshold
value (post2).

that of the entire evaluation (all trials, Table III). In this
section we will analyse some language effects. A language
dependence may be introduced by several parts of the system:
the UBM, channel compensation, SVM background, score
normalization and calibration. We split all valid trials of SRE-
2006 into three conditions: Same language English, Same
language non-English and Cross language. Note that by design
of the evaluation, all cross-language trials involve English as
one of the two spoken languages. In Table VI we summarize
the important statistics of the three conditions.

Despite the low number of trials available for the non-
English same-language condition, we can observe the fol-
lowing. The discrimination potential of the system seems
similar for English and non-English same-language conditions,
judged from a very similar EER, Cmin

det and Cmin
llr . But the

calibration for non-English trials is very poor (Cdet, Cllr),
compared to the English trials. This result suggests that the
UBM and channel compensation components are less language
dependent, but that there is a possible language dependence

Effect of language
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Fig. 5. DET-plots of the three different language condition analyzed in
Table VI. The rectangle indicates the 95 % confidence interval around the
decision point.

in score normalization and definitely in the calibration. Most
sub-systems applied T-norm score normalization [39]. Because
we applied predominantly English T-norm model speakers, we
can imagine that non-English test segments will have lower
scores for the T-norm models than the English test segments.
This would lead to higher T-normed scores for non-English
trials, for both target and non-target, such that the calibration
is skewed towards more false alarms. Indeed, this is what is
observed in Fig. 5.

A genuine discrimination loss is observed in the cross
language trials. Interestingly, the calibration of the cross-
language condition seems to be reasonable. This may be due
to the fact that all cross-language target trials had English as
one of the two speech segment languages. Apparently, having
at least one English speech segment helps the calibration a lot.

All the described effects are qualitatively the same as
observed for just a single sub-system (TNO) of the STBU
fusion.
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TABLE VI
LANGUAGE DEPENDENCE OF THE STBU-1 SYSTEM, FOR ENGLISH SAME-LANGUAGE TRIALS, NON-ENGLISH SAME LANGUAGE TRIALS AND CROSS

LANGUAGE TRIALS.

Language Cdet Cmin

det
EER Cllr Cmin

llr
Ntar Nnon

English 0.0155 0.0126 2.32 % 0.148 0.101 1854 22159
Non-English 0.128 0.0154 2.54 % 0.721 0.099 516 2857
Cross language 0.0277 0.0272 4,60 % 0.199 0.180 1242 22820

Cross−site fusion
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Fig. 6. Cross-site fusion: DET curves for individual and fused systems, for
the English only trials condition of NIST SRE-2006.

VI. CROSS-SITE FUSION

As a final demonstration of the power of fusing diverse sub-
systems, we increased the diversity and tripled the number
of sub-systems by also including sub-systems, that performed
well, from 6 other participating SRE-2006 sites. Together
with 10 of the STBU sub-systems, this gave a total of 31
sub-systems, all non-adaptive. The fusion was trained on the
supervised scores of all 1conv4w-1conv4w trials of SRE-2005
and then tested on the English 1conv4w-1conv4w trials of
SRE-2006. See the DET-curves of Fig. 6, which shows (i)
all 31 sub-systems, (ii) the original STBU-1 fusion, and (iii)
the total fusion of all 31 systems. It is clear that the two
fusions outperform any individual system, and that the bigger
fusion (EER = 1.7%) outperforms the original STBU fusion
(EER = 2.3%).

VII. CONCLUSION

The STBU system has demonstrated a few important prin-
ciples that were exploited in reaching state-of-the-art speaker
detection performance. (i) GMMs and SVMs are still impor-
tant basic workhorses in speaker recognition, but alternative
strategies like MLLR-SVM are not to be ignored. (ii) An
abundance of suitable development data is perhaps the most
important resource. Without the SRE-2004 and SRE-2005

databases, developing, testing and calibrating the powerful
subspace channel compensation would not have been possible.
Until recently, speaker recognition had been all about training
individual speaker models. The emphasis has now shifted to
the data-driven training of methods that can discriminate be-
tween speakers—we are no longer just training speaker models
in isolation, each on a few minutes of speech. We are now
training whole systems on the hundreds of hours of speech
in whole NIST SRE databases. This is exemplified not only
by eigenchannel and NAP, but also by fusion, which likewise
needs to be trained on entire SRE databases. (iii) Calibration,
in order to make actual decisions, has always been important
in the NIST evaluations, but this had previously been measured
only at the same fixed Cdet operating point. The introduction
of Cllr has now widened the scope of the calibration challenge,
and so far not only the STBU system, but several other SRE-
2006 participants have met this challenge successfully.

Despite these successes, several problem areas remain. As
our investigation into the influence of the spoken language
in detection performance shows, there is a strong effect on
our system’s calibration if trials are not English, and there
is a reduction in discrimination if the segments of the trials
are spoken in different languages. Perhaps these issues can be
resolved with techniques similar to the channel compensation
approaches. The unsupervised adaptation mode of processing
trials did not deliver the large benefit we had expected, and we
attribute this to a calibration mismatch, to which adaptation is
very sensitive, and to the mysterious clockwise rotation of the
DET curve observed for all systems that perform well. There
remains the unsolved question of why new data collections
and acoustic conditions seem to have an effect of rotation
of the DET-curve—maybe to a more ‘natural’ state of equal
width target and non-target score distributions. Continuing data
collections, evaluations and research may on the long term
provide us with an answer.
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