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Abstract. This paper describes “search in speech” tech-
niques developed in the Speech@FIT research group at FIT
BUT in the last couple of years. It concentrates on spoken
term detection (STD) and presents our system for NIST STD
2006 evaluations in detail. It also briefly mentions our sys-
tems for speaker and language recognition.
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1. Introduction
Speech is the most important modality in human to hu-

man communication. Even in face-to-face communication,
it might contain more than 80% of the information and in
case of a telephone conversation, this proportion goes up
to 100%. Speech is omni-present in many electronic me-
dia (land-line and mobile networks, IP telephony, dedicated
channels, . . . ).

In many applications (eLearning, meeting recognition,
audio archive search), the problem is usually not to obtain
the speech but to efficiently process thousands of hours of
speech records. Typically, speech is processed by human ex-
perts, but this processing capacity is always limited: by lack
of qualified personnel, lack of budget, insufficient knowl-
edge of foreign languages, insufficient security clearances
(for security applications), or combination of the above.

Automatic speech search techniques can help to find
the requested information – the “needle in a haystack” – in
reasonable time and without extensive human labor. How-
ever, they should not be considered almighty – they are not
able to replace qualified personnel that will always have to
do the final analysis and decisions. They are able to auto-
mate some processing steps and “limit the search space” for
humans.

Let us first define the categories of speech search:

• The task of Large Vocabulary Continuous speech
recognition (LVCSR) is to determine “what was
said” or to provide textual transcription of speech.
The best performing LVCSR systems are based on
complex acoustic models trained on thousands hours
of transcribed speech and on language models trained
on gigabytes of text. The biggest challenge in LVCSR
is processing spontaneous data for which developers
lack speech and language resources.

• In some situations, LVCSR is not the best suited to
find the information in speech — as it is constrained
by recognition vocabulary, it is hard to find rare infor-
mation such as new proper names (companies, politi-
cians, geographical). In this case, it is necessary to
use phonetic search that operates not on the output
of word recognizer, but rather on oriented graphs con-
taining smaller units – phonemes.

• As important as the contents of speech is the infor-
mation “who said it” – this is addressed by speaker
recognition. We speak about speaker identification
if the task is to choose one out of a set of N speakers,
or about speaker verification, where it s necessary to
confirm the claimed identity of a speaker.

• Last but not least, language identification is needed
in speech search to be used as search criterion itself or
for routing speech segments to appropriate language-
dependent recognizer.

This paper deals mainly with the first two mentioned
topics — LVCSR and phonetic search, jointly called spo-
ken term detection, mainly in light of first edition of NIST
Spoken term detection (STD) evaluations [3]. At the end,
we will also briefly mention our work in speaker recogni-
tion and language identification, although we will mainly
refer the reader to our respective summary publications.

The paper is organized as follows: section 2 defines the
techniques of spoken term detection, section 3 presents the



NIST STD 2006 evaluations, including our system and re-
sults. Sections 4 and 5 deal respectively with speaker recog-
nition and language identification and 6 concludes the paper.

2. Spoken term detection techniques
Unlike search in text, where the indexing and search is

the only “science”, spoken term detection is a more complex
process that needs to address the following points:

• conversion of speech to discrete symbols that can be
indexed and searched – LVCSR and phoneme recog-
nizers are used. Using phoneme recognizer allows to
deal with out-of-vocabulary words (OOVs) that can
not be handled by LVCSR.

• accounting for inherent errors of LVCSR and
phoneme recognizer – this is usually solved by stor-
ing and searching in word or phoneme lattices (Fig. 1)
instead of 1-best output.

• determining the confidence of a query – in this work
done by evaluating the likelihood ratio between the
path with searched keyword(s) and the optimal path
in the lattice.

• processing multi-word queries, both quoted (exact se-
quences of words) and unquoted.

• providing an efficient and fast mechanism to obtain
the search results in reasonable time even for huge
amounts of data.

2.1 LVCSR-based search

LVCSR lattices (upper panel in Fig. 1) contain nodes
carrying word labels and arcs, determining the timing and
acoustic (Llvcsr

a ) and language model (Llvcsr
l ) likelihoods

generated by an LVCSR decoder. Usually, each speech
record is first broken into segments (by speaker turn or voice
activity detector) and each segment is represented by one
lattice. The confidence of a keyword KW is given by

Clvcsr(KW ) =
Llvcsr

α (KW )Llvcsr(KW )Llvcsr
β (KW )

Llvcsr
best

,

(1)
where the Llvcsr(KW ) = Llvcsr

a (KW )Llvcsr
l (KW ).

The forward likelihood Llvcsr
α (KW ) is the likelihood

of the best path through lattice from the beginning of lattice
to the keyword and the backward likelihood Llvcsr

β (KW ) is
the likelihood of the best path from the keyword to the end
of lattice. For node N, these two likelihoods are computed
by the standard Viterbi formulae:

Llvcsr
α (N) = Llvcsr

a (N)Llvcsr
l (N) max

NP

Llvcsr
α (NP ) (2)

Llvcsr
β (N) = Llvcsr

a (N)Llvcsr
l (N) max

NF

Llvcsr
β (NF ) (3)

where NF is a set of nodes directly following node N (nodes
N and NF are connected by an arc) and NP is a set of nodes
directly preceding node N . The algorithm is initialized by
setting Llvcsr

α (first) = 1 and Llvcsr
β (last) = 1. The last

likelihood we need in Eq. 1: Llvcsr
best = Llvcsr

α = Llvcsr
β is

the likelihood of the most probable path through the lattice.

2.2 Phonetic search

The main problem of LVCSR is the dependence on
recognition vocabulary. The phonetic approach overcomes
this problem by conversion of query to a string of phonemes
and searching this string in a phoneme lattice (lower panel in
Fig. 1). The lattice has similar structure as word lattice (sec-
tion 2.1), but phonemes P populate nodes instead of words.

The confidence of keyword KW consisting of string
of phonemes Pb . . . Pe is defined similarly as in Eq. 1 by:

Cphn(KW ) =

Lphn
α (Pb)L

phn
β (Pe)

∏

P∈Pb...Pe

La(P )

Lphn
best

, (4)

where Lphn
α (Pb) is the forward Viterbi likelihood from the

beginning of lattice to phoneme Pb, the product is the like-
lihood of the keyword, and Lphn

β (Pe) is the likelihood from
the last phoneme till the end of the lattice. Lbest is the like-
lihood of the optimal path.

2.3 LVCSR lattice indexing

The indexing of LVCSR lattices is inspired by [4]. It
begins with the creation of lexicon which provides a trans-
formation from word to a unique number (ID) and vice
versa. Then, a forward index is created storing each hy-
pothesis (the word, its confidence, time and nodeID in the
lattice file) in a hit list. From this index, an inverted index is
created (like in text search) which has the same structure as
the forward index, but is sorted by words and by confidence
of hypotheses. Each speech record is represented by many
lattices. The inverted index tells us, in which lattice and at
which time the keyword appears.

In the search phase, the inverted index is used to find
occurrences of words from query. An important feature of
our system is the generation of the most probable context
of the found keyword – a piece of the Viterbi path from the
found keyword forward and backward. For all matching oc-
currences, the searcher therefore loads into the memory a
small part of lattice within which the found word occurs.
Then, the searcher traverses this part of lattice in forward
and backward directions selecting only the best hypotheses;
in this way it generates the most probable string which tra-
verses the found word.

2.4 Multi-word queries

A usable system for STD should support queries of
type



Fig. 1: Example of a word and phoneme lattices

word1 word2 word3 and "word1 word2 word3"
with the former one representing finding words in random
order with optional spaces in between (in opposite to text-
search where we work within a document, we specify a
time-context) and the later one representing the exact match.
Provided the query Q is found in the lattice, we again need
to evaluate its confidence C lvcsr(Q). Similarly to Eq. 1, this
is done by evaluating the likelihood of the path with all the
words wi belonging to the query and dividing it by the like-
lihood of the optimal path:

Clvcsr(Q) =

Llvcsr
rest

∏

i

Llvcsr(wi)

Llvcsr
best

, (5)

where Llvcsr
rest is the likelihood of the “Viterbi glue”: optimal

path from the beginning of the lattice to wearliest , connec-
tions between words wi (for unquoted query) and optimal
path from wlatest to the end of the lattice. In other words,
Llvcsr

rest represents everything except the searched words. We
should note, that each time we deviate the Viterbi path from
the best one, we loose some likelihood, so that C lvcsr(Q)
is upper-bounded by mini Clvcsr(wi) — actually the confi-
dence of the worst word in the query.

The same index as for single-word queries (keywords)
is used. Processing of a query involves the following steps:

1. Based on frequencies of words, the least frequent one
from the query, wlf , is taken as first and all its occur-
rences are retrieved.

2. The search proceeds with other words and verifies if
they are within the specified time interval from wlf

(for non-quoted queries) or joint to wlf (for quoted
ones). The internal memory representation resembles
again a lattice. In such way, a candidate list is created.

3. The list is pre-sorted by the upper-bound of query
confidence, as described above. The list is then lim-
ited to the pre-determined number of candidates (usu-
ally 10).

4. For these candidates, the evaluation of correct confi-
dence is done according to Eq. 5. While looking for

the “Viterbi glue”, the Viterbi algorithm is extended
before and after the part of lattice containing Q in or-
der to obtain the left and right contexts.

2.5 Indexing phoneme lattices

While the indexing of word lattices is straightforward,
indexing phoneme lattices is more tricky: in advance, we do
not know what we will search for. Yu and Seide in [6] and
Siohan and Bacchiani in [7] have chosen indexing sequences
of phonemes with variable length, we have however inves-
tigated a simpler approach making use of overlapping tri-
phonemes and indexing similar to multi-word queries. The
use of tri-phonemes was also recommended in [5] as the best
balance between number of units and number of units’ oc-
currences in a corpus.

In the indexing phase, tri-phonemes Ti are selected in
lattices. For each Ti, its confidence is evaluated by Eq. 4 as
if Ti was a keyword. In case this confidence is higher than
a pre-determined threshold, the tri-phoneme is inserted into
the index. The search stage is similar to multi-word quoted
queries:

1. The searched keyword generates a set of overlapping
tri-phonemes. Based on their frequencies in the index,
the least frequent one Tlf , is taken as first and all its
occurrences are retrieved.

2. The search proceeds with other tri-phonemes and ver-
ifies that they form a chain in time (with a security
margin between adjacent tri-phonemes). Similarly to
multi-word queries, the internal memory representa-
tion has again the form of lattice. In such way, a can-
didate list is created.

3. The confidence of keyword is again upper-bounded
by the confidence of the worst tri-phoneme. Based
on these, the list is pre-sorted and limited to the pre-
determined number of candidates (usually 10).

4. For these candidates, we go into the respective
phoneme lattices and evaluate the correct confidence
using Eq. 4.
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Fig. 2: BUT system for spoken term detection.

We have verified, that in case no thresholds are applied in the
index, we obtain exactly the same accuracy of search that in
case phoneme lattices are processed directly.

3. NIST STD evaluations 2006
The first edition of Spoken term detection evaluation

was organized to facilitate research and development of
technology for finding short word sequences rapidly and ac-
curately in large heterogeneous audio archives [3]. In this
paper, we will deal only with US English tasks.

3.1 Data and metrics

There were three kinds of data with the following
amounts available for both the development and evaluation:

• broadcast news (BCN) – 2.2 hours,
• conversational telephone speech (CTS) – 3 hours
• meeting speech (MTG) recorded over multiple distant

microphones (MDM) – 2 hours.

For all sets, NIST has defined 1100 search-terms1 having
1,2,3 and 4 words:

• 42 of them do not appear in any of BCN, CTS and
MTG data

• 898 of 1100 appear in BCN with ≈4900 occurrences
• 411 of 1100 appear in CTS with ≈5900 occurrences

and
• 241 of 1100 appear in MTG with ≈3700 occurrences
• 160 of 1100 appear in all three BCN, CTS and MTG.

Examples of terms are: “dr. carol lippa”, “bush’s father
george bush”, “thousand kurdish”, “senator charles”, “nato
chief”, “every evening”, “kostunica”, “audio”, “okay”.

The main mean for comparison of different systems
were detection error trade-off (DET) curves, displaying, for
various thresholds θ, the false alarm probability PFA(θ) on

1“quoted” queries where “quoted” refers to Google and similar search
engines and means that no other word(s) can appear inside the query.

x-axis and miss probability PMISS(θ) on the y-axis:

PMISS(θ) = avg
term

{1 − Ncorrect(term, θ)/Ntrue(term)}

PFA(θ) = avg
term

{Nspurious(term, θ)/NNT (term)}

where Ncorrect(term, θ) is the number of correct de-
tections of term with a score greater or equal to θ,
Nspurious(term, θ) is the number of spurious (incorrect)
detections of term with a score greater or equal to θ,
Ntrue(term) is the number of occurrences of term in cor-
pus and NNT (term) is the number of opportunities for in-
correct detection of term which is equal to length of the
corpus in seconds minus Ntrue(term).

NIST defined so called TWV (θ) (Term-Weighted
Value) metric to “score” a system by one number. Term
weighted value is computed by first computing the miss and
false alarm probabilities for each term separately, then us-
ing these and a pre-determined prior probability to com-
pute term-specific values, and finally averaging these term-
specific values over all terms to produce an overall system
value:

TWV (θ) = 1−avg
term

{PMISS(term, θ)+999.9 PFA(term, θ)}

Threshold θM is found on development data by maximiza-
tion of TWV (θ). TWV (θM ) is then computed on evalua-
tion data with θM threshold and denoted as ATWV (Actual
Term-Weighted Value, see evaluation plan [3] for further de-
tails).

3.2 BUT system

Our system was based on combination of LVCSR and
phonetic-based search and its overall structure is shown in
Figure 2. The detailed description of recognizers used in the
system is beyond the scope of this paper and can be found
in our system description for NIST [8] and in [9].

The indexing and search followed closely the theo-
retical description given above. In the indexing phase, word
lattices were first converted to forward index (word uni-
grams). Forward index was than sorted to inverted index.
Lattice were converted to binary format. The same process-
ing was applied to phoneme lattices.



task EVAL EVAL EVAL DEVEL

ATWV MTWV MTWV MTWV

Merged Merged LVCSR Merged

BCN 0.6541 0.6558 0.6305 0.7020

CTS 0.5235 0.5344 0.5301 0.5580

MTG 0.0549 0.0731 0.0695 0.2950

Tab. 1: Minimum (M) TWV and actual (A) ATWV val-
ues for individual and merged systems.

While searching a query, in-vocabulary (IV) tokens are
searched in inverted index to estimate their position in lat-
tices and than they are verified in the lattice.

Out-of-vocabulary (OOV) tokens are converted to
phoneme strings. Automatic grapheme-to-phoneme (G2P)
tool based on rules (derived from AMI recognition vocabu-
lary and BEEP dictionary) is used for the conversion. Then
the phoneme string is split into a train of overlapped tri-
phonemes. Then they are also searched in inverted index
(phoneme) and verified in lattice (phoneme). OOVs shorter
than 3 phonemes are not searched and are dropped.

If all tokens were successfully verified, the time and
score is produced. The score is computed as sum of IV
(LVCSR) part and OOV (PHN) part. IV scores are com-
puted by Viterbi approximation using likelihood ratio in
word lattice and then normalized. OOV scores are computed
by Viterbi approximation using likelihood ratio in phoneme
lattice and then normalized.

3.3 Results

The results of LVCSR systems for different tasks in
terms of word error rate (WER) evaluated on the develop-
ment sets, are the following: BCN 21.03%, CTS 22.83%
and MTG 46.65%. The oracle results obtained by scoring
the path in lattice that matches the best the reference, are
respectively: BCN 9.06%, CTS 8.32% and MTG 21.79%.
It is obvious that while BCN and CTS results are good and
comparable to the state-of-the-art, the recognition on meet-
ings is worse. This is due to the MDM condition, for which
all the systems in NIST RT’06 evaluation performed quite
poorly.

The STD results on all three conditions in terms of
DET curves on development data can be seen in Fig. 3 and
the results in terms of TWV are are summarized in Table 1.
First, we can see that the results on meetings are even worse
than for the development data suggesting a problem with the
data. Unfortunately, we are not able to analyze this in detail,
as NIST does not intend to provide word transcriptions for
the evaluation data. In the other tasks, the results were satis-
factory and we have seen the actual TWV not differing sub-
stantially from minimum TWV – a sign of good estimation
of the optimal threshold.

Except for BCN, we see minimum effect of merging
phonetic search with LVCSR, this is however caused by the
term-lists provided – in CTS data, we have counted only 6
OOVs out of all 1100 requested terms.

4. Speaker recognition
Speaker recognition and verification is another impor-

tant activity in Speech@FIT. In 2006, we have formed the
”STBU” consortium - BUT in cooperation with TNO Hu-
man factors (the Netherlands), Spescom Data Voice and
Stellenbosch University (both South Africa). The system
we produced included a combination of 3 acoustic classi-
fication techniques: (1) Gaussian mixture models (GMM)
classifying directly speech features, (2) Support vector ma-
chines (SVM) processing super-vectors of GMM means and
(3) SVM-classification of MLLR adaptation matrices from
LVCSR system.

Great care was given to transmission channel compen-
sation and score normalization: the system includes tech-
niques such as feature mapping, eigen-channel adaptation
and nuisance attribute projection (NAP). The scores are nor-
malized by classical t-norm technique and fusing of systems
was performed using logistic linear regression.

The STBU system as well as BUT’s independent sub-
mission recorded important success in NIST SRE evalua-
tions organized in spring 2006. We have scored among the
best (NIST rules prohibit us disclose the exact position of
our system) of almost 40 academic and industrial laborato-
ries from all over the world. The details on our systems can
be found in [2].

5. Language identification
The task of LID (also called language recognition -

LRE) is to detect the language a particular speech segment
was spoken. Speech@FIT works also in this direction, its
system uses a combinations of two techniques:

Acoustic LID determines the language directly on the
basis of features derived from the speech signal. This
approach can for example well separate between French
and English - in the former, the nasal cavity is more fre-
quently open which is directly translated into speech fea-
tures. Speech@FIT improved the existing technologies by
adding discriminative training of acoustic models.

In Phonotactic LID, speech is first transcribed by
phoneme recognizer into strings or graphs (lattices) of
phonemes. On these, ”language” models are trained to
capture statistics of couples and triples of phonemes. In
this way, German and English can be for example sep-
arated based on different statistics of ”und” and ”and”.
Speech@FIT group pioneered the use of so called ”anti-
models” for this task.

In NIST LRE-2005 evaluations, we have scored the
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second in the primary condition (30 second speech seg-
ments) and the best in two secondary conditions (10s and
3s) in competition of 12 academic and industrial laboratories
from all over the world. The full description of our system
can be found in [1].

6. Conclusions
Ten years after its founding, Speech@FIT group at FIT

BUT has become one of the leading European labs dealing
with speech processing. Experienced with keyword spotting
and speech, speaker and language recognition, the group re-
cently succeeded in several evaluations organized by U.S.
National Institute of Standards and Technology. We are
however far from exaggerated self-satisfaction. Good re-
sults usually bring more and more open questions and we
feel that in some areas, we are still at the beginning of seri-
ous research. But at least, we can say we have good base-
lines for our future work.
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