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ABSTRACT

The paper defines “search in speech” techniques for secu-
rity and defense and concentrates on spoken term detection
(STD). It presents NIST STD 2006 evaluations and discusses
the functionality and results of Brno University of Technol-
ogy (BUT) STD system.

1. INTRODUCTION

Speech is the most important modality in human to hu-
man communication. Even in face-to-face communication, it
might contain more than 80% of the information and in case
of a telephone conversation, this proportion goes up to 100%.
Speech is omni-present in many electronic media (land-line
and mobile networks, IP telephony, dedicated channels, . . . ).

Although most of the voice traffic in these media is legit-
imate, the operators can not avoid their use by persons and
groups willing to commit crimes, terrorism and other mali-
cious activities. Processing of voice calls consumes important
share of time, budget and efforts of intelligence (both civilian
and defense) services, police forces and private investigators.
In their work, the problem is usually not to obtain the speech,
as there are many ways to tap the wire, radio or optical cable
communications. The problem is to efficiently process thou-
sands of hours of voice communications running in parallel
with the aim to deliver results in reasonable time so that they
are still useful for an investigation or preventive action.

Typically, speech communications are processed by hu-
man experts, but this processing capacity is always limited
due to:

• lack of qualified personnel,
• lack of budget,
• insufficient knowledge of foreign languages
• insufficient security clearances

or combination of the above. The problem is especially se-
rious for languages spoken in potentially dangerous regions,

for which the lack of native speakers authorized to access sen-
sitive data can impair efficient action against criminal groups.

Automatic speech search techniques can help the secu-
rity and defense specialists to find the requested information
– the “needle in a haystack” – in reasonable time and without
extensive human labor. However, they should not be consid-
ered almighty – they are not able to replace qualified person-
nel that will always have to do the final analysis and decisions.
They are able to automate some processing steps and “limit
the search space” for humans.

Let us first define the categories of speech search:

• The task of Large Vocabulary Continuous speech
recognition (LVCSR) is to determine “what was said”
or to provide textual transcription of speech. The
best performing LVCSR systems are based on complex
acoustic models trained on thousands hours of tran-
scribed speech and on language models trained on gi-
gabytes of text. The biggest challenge in LVCSR is
processing spontaneous data for which developers lack
speech and language resources.

• In some situations, LVCSR is not the best suited to
find the information in speech — as it is constrained
by recognition vocabulary, it is hard to find rare infor-
mation such as new proper names (companies, politi-
cians, geographical). In this case, it is necessary to
use phonetic search that operates not on the output of
word recognizer, but rather on oriented graphs contain-
ing smaller units – phonemes.

• As important as the contents of speech is the informa-
tion “who said it” – this is addressed by speaker recog-
nition. We speak about speaker identification if the
task is to choose one out of a set of N speakers, or about
speaker verification, where it s necessary to confirm
the claimed identity of a speaker.

• Last but not least, language identification is needed
in speech search to be used as search criterion itself or
for routing speech segments to appropriate language-
dependent recognizer.



The research of our group – Speech@FIT – is closely re-
lated to public security and defense through our cooperation
with Czech Ministry of Defense. Starting from 2007, it is also
part of a a 1.3 M$/year research project “Security-oriented re-
search in information technology” at Faculty of Information
Technology of BUT sponsored by Czech Ministry of Educa-
tion.

Speech@FIT is involved in many aspects of speech search
and has recorded success in NIST speaker [2] and language
recognition [1] evaluations. However, this paper is devoted to
the first two mentioned topics — LVCSR and phonetic search,
jointly called spoken term detection, mainly in light of first
edition of NIST Spoken term detection (STD) evaluations [3].

The paper is organized as follows: section 2 defines the
techniques of spoken term detection. Section 3 deals with
indexing and search. Section 4 describes the data from 2006
NIST STD evaluations, provides details of BUT system and
its results. Section 5 concludes the paper.

2. SPOKEN TERM DETECTION TECHNIQUES

Unlike search in text, where the indexing and search is the
only “science”, spoken term detection is a more complex pro-
cess that needs to address the following points:

• conversion of speech to discrete symbols that can be
indexed and searched – LVCSR and phoneme recog-
nizers are used. Using phoneme recognizer allows to
deal with out-of-vocabulary words (OOVs) that can not
be handled by LVCSR.

• accounting for inherent errors of LVCSR and phoneme
recognizer – this is usually solved by storing and
searching in word or phoneme lattices (Fig. 1) instead
of 1-best output.

• determining the confidence of a query – in this work
done by evaluating the likelihood ratio between the path
with searched keyword(s) and the optimal path in the
lattice.

• processing multi-word queries, both quoted (exact se-
quences of words) and unquoted.

• providing an efficient and fast mechanism to obtain the
search results in reasonable time even for huge amounts
of data.

2.1. LVCSR-based search

LVCSR lattices (upper panel in Fig. 1) contain nodes carry-
ing word labels and arcs, determining the timing and acoustic
(Llvcsr

a ) and language model (Llvcsr
l ) likelihoods generated

by an LVCSR decoder. Usually, each speech record is first

broken into segments (by speaker turn or voice activity de-
tector) and each segment is represented by one lattice. The
confidence of a keyword KW is given by

Clvcsr(KW ) =
Llvcsr

α (KW )Llvcsr(KW )Llvcsr
β (KW )

Llvcsr
best

,

(1)
where the Llvcsr(KW ) = Llvcsr

a (KW )Llvcsr
l (KW ).

The forward likelihood Llvcsr
α (KW ) is the likelihood of

the best path through lattice from the beginning of lattice to
the keyword and the backward likelihood Llvcsr

β (KW ) is the
likelihood of the best path from the keyword to the end of
lattice. For node N, these two likelihoods are computed by
the standard Viterbi formulae:

Llvcsr
α (N) = Llvcsr

a (N)Llvcsr
l (N) max

NP

Llvcsr
α (NP ) (2)

Llvcsr
β (N) = Llvcsr

a (N)Llvcsr
l (N) max

NF

Llvcsr
β (NF ) (3)

where NF is a set of nodes directly following node N (nodes
N and NF are connected by an arc) and NP is a set of nodes
directly preceding node N . The algorithm is initialized by
setting Llvcsr

α (first) = 1 and Llvcsr
β (last) = 1. The last

likelihood we need in Eq. 1: Llvcsr
best = Llvcsr

α = Llvcsr
β is the

likelihood of the most probable path through the lattice.

2.2. Phonetic search

The main problem of LVCSR is the dependence on recog-
nition vocabulary. The phonetic approach overcomes this
problem by conversion of query to a string of phonemes and
searching this string in a phoneme lattice (lower panel in
Fig. 1). The lattice has similar structure as word lattice (sec-
tion 2.1), but phonemes P populate nodes instead of words.

The confidence of keyword KW consisting of string of
phonemes Pb . . . Pe is defined similarly as in Eq. 1 by:

Cphn(KW ) =

Lphn
α (Pb)L

phn
β (Pe)

∏

P∈Pb...Pe

La(P )

Lphn
best

, (4)

where Lphn
α (Pb) is the forward Viterbi likelihood from the be-

ginning of lattice to phoneme Pb, the product is the likelihood
of the keyword, and Lphn

β (Pe) is the likelihood from the last
phoneme till the end of the lattice. Lbest is the likelihood of
the optimal path.

3. INDEXING AND SEARCH

3.1. LVCSR lattice indexing

The indexing of LVCSR lattices is inspired by [4]. It begins
with the creation of lexicon which provides a transformation
from word to a unique number (ID) and vice versa. Then, a
forward index is created storing each hypothesis (the word,



Fig. 1. Example of a word and phoneme lattices

its confidence, time and nodeID in the lattice file) in a hit
list. From this index, an inverted index is created (like in text
search) which has the same structure as the forward index,
but is sorted by words and by confidence of hypotheses. Each
speech record is represented by many lattices. The inverted
index tells us, in which lattice and at which time the keyword
appears.

In the search phase, the inverted index is used to find oc-
currences of words from query. An important feature of our
system is the generation of the most probable context of the
found keyword – a piece of the Viterbi path from the found
keyword forward and backward. For all matching occur-
rences, the searcher therefore loads into the memory a small
part of lattice within which the found word occurs. Then, the
searcher traverses this part of lattice in forward and backward
directions selecting only the best hypotheses; in this way it
generates the most probable string which traverses the found
word.

3.2. Multi-word queries

A usable system for STD should support queries of type
word1 word2 word3 and "word1 word2 word3"

with the former one representing finding words in random or-
der with optional spaces in between (in opposite to text-search
where we work within a document, we specify a time-context)
and the later one representing the exact match. Provided the
query Q is found in the lattice, we again need to evaluate
its confidence C lvcsr(Q). Similarly to Eq. 1, this is done by
evaluating the likelihood of the path with all the words wi be-
longing to the query and dividing it by the likelihood of the
optimal path:

Clvcsr(Q) =

Llvcsr
rest

∏

i

Llvcsr(wi)

Llvcsr
best

, (5)

where Llvcsr
rest is the likelihood of the “Viterbi glue”: optimal

path from the beginning of the lattice to wearliest , connec-
tions between words wi (for unquoted query) and optimal
path from wlatest to the end of the lattice. In other words,
Llvcsr

rest represents everything except the searched words. We
should note, that each time we deviate the Viterbi path from
the best one, we loose some likelihood, so that C lvcsr(Q)
is upper-bounded by mini Clvcsr(wi) — actually the confi-
dence of the worst word in the query.

The same index as for single-word queries (keywords) is
used. Processing of a query involves the following steps:

1. Based on frequencies of words, the least frequent one
from the query, wlf , is taken as first and all its occur-
rences are retrieved.

2. The search proceeds with other words and verifies if
they are within the specified time interval from wlf (for
non-quoted queries) or joint to wlf (for quoted ones).
The internal memory representation resembles again a
lattice. In such way, a candidate list is created.

3. The list is pre-sorted by the upper-bound of query con-
fidence, as described above. The list is then limited to
the pre-determined number of candidates (usually 10).

4. For these candidates, the evaluation of correct confi-
dence is done according to Eq. 5. While looking for the
“Viterbi glue”, the Viterbi algorithm is extended before
and after the part of lattice containing Q in order to ob-
tain the left and right contexts.

3.3. Indexing phoneme lattices

While the indexing of word lattices is straightforward, index-
ing phoneme lattices is more tricky: in advance, we do not



Lattices

Diar.
Coef.

DEVELOPMENT
DATA

EVALUATION
DATA

Segmentation
Diarization

Segmentation
Diarization

LVCSR/PHN recognizer

HMM Models
Language Models

Neural Nets

P1 P2 P3

Normalization

Lattices Posterior
Pruning

Indexing Searching

Evaluation
TLIST.XML

Normalization

Norm.
Coef.

Output
STDLIST.XML

Fig. 2. BUT system for spoken term detection.

know what we will search for. Yu and Seide in [6] and Sio-
han and Bacchiani in [7] have chosen indexing sequences of
phonemes with variable length, we have however investigated
a simpler approach making use of overlapping tri-phonemes
and indexing similar to multi-word queries. The use of tri-
phonemes was also recommended in [5] as the best balance
between number of units and number of units’ occurrences in
a corpus.

In the indexing phase, tri-phonemes Ti are selected in lat-
tices. For each Ti, its confidence is evaluated by Eq. 4 as
if Ti was a keyword. In case this confidence is higher than
a pre-determined threshold, the tri-phoneme is inserted into
the index. The search stage is similar to multi-word quoted
queries:

1. The searched keyword generates a set of overlapping
tri-phonemes. Based on their frequencies in the index,
the least frequent one Tlf , is taken as first and all its
occurrences are retrieved.

2. The search proceeds with other tri-phonemes and ver-
ifies that they form a chain in time (with a security
margin between adjacent tri-phonemes). Similarly to
multi-word queries, the internal memory representation
has again the form of lattice. In such way, a candidate
list is created.

3. The confidence of keyword is again upper-bounded
by the confidence of the worst tri-phoneme. Based
on these, the list is pre-sorted and limited to the pre-
determined number of candidates (usually 10).

4. For these candidates, we go into the respective
phoneme lattices and evaluate the correct confidence
using Eq. 4.

We have verified, that in case no thresholds are applied in the
index, we obtain exactly the same accuracy of search that in
case phoneme lattices are processed directly.

4. NIST STD EVALUATIONS 2006

The first edition of Spoken term detection evaluation was or-
ganized to facilitate research and development of technology
for finding short word sequences rapidly and accurately in
large heterogeneous audio archives [3]. In this paper, we will
deal only with US English conversational telephone speech
(CTS) task, as it is the most relevant to security and defense
applications.

4.1. Data and metrics

The development data (available for system tuning) consisted
of 36 conversations totaling in 3 hours of speech. The evalu-
ation data had also 36 conversations with 3 hours of speech.
Development and evaluation term-lists containing 1100 of 1-
to 4-word “quoted” queries were provided by NIST. The eval-
uation term-list contains 411 terms appearing in the CTS data,
with 5856 occurrences. There were 5674 occurrences of 1-
word terms, 166 occurrences of 2-word terms and only 16
occurrences of 3- and 4-word terms. Examples of terms are:

dr. carol lippa
bush’s father george bush
thousand kurdish
senator charles
nato chief
every evening
kostunica
audio
okay

The main mean for comparison of different systems were
detection error trade-off (DET) curves, displaying, for various
thresholds θ, the false alarm probability PFA(θ) on x-axis and
miss probability PMISS(θ) on the y-axis:

PMISS(θ) = avg
term

{1− Ncorrect(term, θ)/Ntrue(term)}

PFA(θ) = avg
term

{Nspurious(term, θ)/NNT (term)}
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Fig. 3. LVCSR system used for spoken term detection.

where Ncorrect(term, θ) is the number of correct de-
tections of term with a score greater or equal to θ,
Nspurious(term, θ) is the number of spurious (incorrect)
detections of term with a score greater or equal to θ,
Ntrue(term) is the number of occurrences of term in corpus
and NNT (term) is the number of opportunities for incorrect
detection of term which is equal to length of the corpus in
seconds minus Ntrue(term).

NIST defined so called TWV (θ) (Term-Weighted Value)
metric to “score” a system by one number. Term weighted
value is computed by first computing the miss and false alarm
probabilities for each term separately, then using these and
a pre-determined prior probability to compute term-specific
values, and finally averaging these term-specific values over
all terms to produce an overall system value:

TWV (θ) = 1−avg
term

{PMISS(term, θ)+999.9 PFA(term, θ)}

Threshold θM is found on development data by maximiza-
tion of TWV (θ). TWV (θM ) is then computed on evalua-
tion data with θM threshold and denoted as ATWV (Actual
Term-Weighted Value, see evaluation plan [3] for further de-
tails).

4.2. BUT system

We have submitted LVCSR, phonetic-based and merged sys-
tem to STD evaluations. Full description of our system (Fig-
ure 2) is available in [8].

Recognizers The signals are first segmented into speech
and non-speech regions and diarized by a Bayesian informa-

tion criterion (BIC) based system [9]. Heuristics are applied
not to have too long segments for the speech recognizer.

Segmented data was than processed by word (LVCSR)
and phoneme (PHN) recognizer. Our LVCSR (Figure 3) is
simplified version of the AMI LVCSR system [10]. It oper-
ates in three passes: in the first pass, standard MF-PLP fea-
tures are derived, and the the first decoding pass yields ini-
tial transcripts. These serve for initial acoustic normaliza-
tion. The second pass (P2) processes the new features and
its output is used to adapt models with maximum likelihood
linear regression (MLLR). Bigram lattices are produced and
re-scored by trigram and fourgram language model. In the
third pass (P3), posterior features [12, 11] are generated. The
output from second pass is used to adapt models with Con-
strained MLLR (CMLLR) and MLLR. The bigram lattices
with posterior features are produced and finally re-scored with
trigram and fourgram language model. All systems use stan-
dard cross-word tied states hidden Markov models (HMM).

CTS acoustic models were trained on 277 hours of speech
from Switchboard database, while the language model was
trained on a variety of text resources and spontaneous speech
transcripts [10, 8].

Phoneme recognition was based on the same features
and models as LVCSR. Only the recognition network was
changed to context dependent phoneme (triphone) loop with
phoneme bigram language model producing context indepen-
dent output (ie. the output is phonemes) .

Indexing and search followed closely the theoretical de-
scription given in section 3. In the indexing phase, word lat-
tices were first converted to forward index (word unigrams).



Forward index was than sorted to inverted index. Lattice were
converted to binary format. The same processing was applied
to phoneme lattices.

While searching a query, in-vocabulary (IV) tokens are
searched in inverted index to estimate their position in lattices
and than they are verified in the lattice.

Out-of-vocabulary (OOV) tokens are converted to
phoneme strings. Automatic grapheme-to-phoneme (G2P)
tool based on rules (derived from AMI recognition vocabu-
lary and BEEP dictionary) is used for the conversion. Then
the phoneme string is split into a train of overlapped tri-
phonemes. Then they are also searched in inverted index
(phoneme) and verified in lattice (phoneme). OOVs shorter
than 3 phonemes are not searched and are dropped.

If all tokens were successfully verified, the time and score
is produced. The score is computed as sum of IV (LVCSR)
part and OOV (PHN) part. IV scores are computed by Viterbi
approximation using likelihood ratio in word lattice and then
normalized. OOV scores are computed by Viterbi approxi-
mation using likelihood ratio in phoneme lattice and then nor-
malized.

Normalization The normalization serves to make scores of
different queries comparable (note that NIST scores STD sys-
tems with one single threshold). Our normalization is based
on contributions of phonemes to normalization factors:

sN(KW ) = s(KW )−G−F l(KW )−P1|p1|+...+PK|pK |,

where s(KW ) is raw score of the keyword, sN (KW ) is
the normalized score, l(KW ) is length of the keyword and
|p1| . . . |pK | are counts of individual phonemes in the key-
word. G (a constant), F (length-dependent factor) and
P1 . . . PN (phoneme-dependent factors) need to be trained:
First, for large set of keywords, we derive scores for hits and
false alarms (FA) on the development set. The scores cor-
responding to each keyword are used to construct pairs of
(HIT, FA). For each pair, an equation is generated:

s(HIT ) + s(FA)

2
= G+F l(HIT )+P1|p1|+...+PK|pK |,

where the left side represents an optimal threshold for given
(HIT, FA) pair. We solve the over-defined set of equations
in minimum square error sense and use the resulting factors
to normalize scores.

4.3. Results

The results in terms of DET curves on development data can
be seen in Fig. 4. The results in terms of ATWV are are sum-
marized in Table 1. We see minimum effect of merging pho-
netic search with LVCSR, this is however caused by the term-
lists provided – in CTS data, we have counted only 6 OOVs
out of all 1100 requested terms.
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system LVCSR phonetic merged
ATWV-Devel 0.5560 0.2910 0.5580
ATWV-Eval 0.5186 0.2977 0.5235
Table 1. ATWV values for individual systems.

To present our results in more “readable” format, think
about the miss probability given some fixed proportion of
false alarms (FA) per hour. For example, 1 FA/hour corre-
sponds to 1/3600=0.028% on the x-axis of Figure 4. We can
say, that at this FA rate, we are able to reach approximately
20% average miss probability, or 80% accuracy. That means,
that 8 terms out of 10 will be detected.

5. CONCLUSIONS

The STD evaluation confirmed the usability of our STD sys-
tem and provided us with the opportunity to compare it to
other labs working in the field. The evaluation provided us
also with several technical lessons, such as that using 4-gram
expansion is only slightly better than 3-gram expansion, pos-
terior pruning of LVCSR lattices shortens DET but does not
decreases TWV significantly, etc.

Among the (many) issues we need to address is primar-
ily the CPU time and memory footprint needed – despite its
good accuracy, our system was far too slow compared to the
others in the evaluation. When designing the system for a real
security/defense oriented user, we also need to take into ac-
count other user requirements, such as signal pre-processing,
entering queries and combination with other speech search
modalities.
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