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Abstract
The amount of training data has a crucial effect on the accuracy
of HMM based meeting recognition systems. Conversational
telephone speech matches speech in meetings well. However
it is naturally recorded with low bandwidth. In this paper we
present a scheme that allows to transform wide-band meeting
data into the same space for improved model training. The
transformation into a joint space allows simpler and more ef-
ficient implementation of joint speaker adaptive training (SAT)
as well as adaptation of statistics for heteroscedastic discrimi-
nant analysis (HLDA). Models are tested on the NIST RT’05
meeting evaluation where a relative reduction in word error rate
of 4% was achieved. With the use of HLDA and SAT the im-
provement was retained.
Index Terms: Speech recognition, Speech processing, LVCSR,
Speech adaptation, CMLLR

1. Introduction
The amount of training data is critical in speech-to-text tran-
scription systems based on the Hidden Markov Models (HMM).
Our working area is speech recognition of meeting data. Data
in the meeting domain is still sparse and hence a common ap-
proach is to utilize other corpora for acoustic model training.

One possibility to improve the system performance is to
perform adaptation of models trained on considerably larger
amounts of data. Typical domains with large amounts of
recorded material are broadcast news (BN) or conversational
telephone speech (CTS). Depending on the domain difference
once would try to adapt to either different recording environ-
ments or different speech type. As the type of speech is often the
cause for greater variability adaptation of similar speech types is
generally preferred. Hence for the meeting domain adaptation
of models trained on CTS data is appropriate [1].

This however is not necessarily trivial as data recorded
over telephone is necessarily band-limited to 8kHz (narrow-
band,NB), whereas the standard bandwidth for meeting record-
ings is 16kHz (wide-band,WB).

The standard way to cope with this problem is to down-
sample meeting data to NB and to adapt CTS models in that
domain. In previous work we found that this process is subopti-
mal [2]. There it was show that a global feature space trans-
formation based on Maximum Likelihood Linear Regression
(MLLR) [3] to perform a NB to WB conversion and applied it
on CTS models can yield improved performance of both down-
sampling and unadapted training [2]. An iterative Maximum a
Posteriori (MAP) adaptation [4] is followed to settle the adapted
CTS models to meeting data.

But MLLR is difficult to implement with advanced tech-
niques such as Heteroscedastic Linear Discriminative Analysis
(HLDA) [5], Speaker Adaptive Training (SAT) [12].

In this paper we propose a single constrained MLLR [6]
for feature space transformation from WB to NB. This method
is straight-forward in implementation and requires little extra
computation in decoding. However, state-of-the-art systems in
meeting transcription [7] are using other techniques such as het-
eroscedastic discriminant analysis (HLDA), speaker adaptive
training (SAT), or discriminative model parameter estimation
to derive model sets. In all of these techniques accurate and
consistent statistics derived from both adaptation and baseline
training set are required. In the case of bandwidth difference
the merge of statistics has to include adaptation to the feature
domain.

2. Transformation between wide-band and
narrow-band

As introduced above the CMLLR transformation is estimated
to adapt CTS models to meeting WB data. This can equally be
interpreted as a projection of WB meeting data into NB CTS do-
main. This does not seem an obvious choice as one constrains
the increased richness of WB meeting data. However, the al-
ternative, i.e. transforming NB CTS data into the WB space,
clearly can only add distortion, but add no information. Hence
better model training on the larger amounts of data is given pri-
ority. Using a transformation matrix to make meeting data more
like CTS data may however preserve some of the characteristics
only visible with higher bandwidth.

Then, the WB to NB transformation is applied on the WB
train features. Now, it is possible to use any adaptation tech-
nique to adapt the CTS models into the transformed space.

In our experiments, we use MAP adaptation applied itera-
tively, so that output HMMs from previous iteration are taken
as prior for current iteration [2]. The first iteration is classi-
cal MAP. The CTS prior is used to align transformed WB data,
which is not very accurate. For further iterations, the MAP prior
at current iteration is taken from previous iteration. It gives bet-
ter full Gaussian alignment and smooth convergence to trans-
formed WB system. There is however a risk of overtraining, so
the optimal τ value should be set higher than during common
MAP, the number of iterations then provides a better adaptation
control.



3. Heteroscedastic Linear Discriminant
Analysis

Linear discriminant analysis is a standard technique that allows
decorrelation of the feature space while rotating to achieve max-
imum discrimination. However, the basic assumption is that
classes have equal covariances matrices. Heteroscedastic LDA
alleviates this constraint [9]). Both schemes allow to reduce di-
mensionality. For HLDA, each feature vector used to derive the
transformation must be assigned to a class. When performing
the dimensionality reduction, HLDA allows to preserve such di-
mensions, where feature vectors representing individual classes
are best separated. An efficient iterative algorithm [10, 11] is
used in our experiments to estimate HLDA matrix. The com-
putation of the HLDA matrix requires to collect full-covariance
statistics assigned to particular class. In our work, the classes
are given by Gaussian mixture components.

3.1. WB→NB transform in HLDA estimation

The easiest way to train WB→NB HLDA system is to take
HMMs and HLDA matrix already trained on CTS data and use
them as prior for adaptation of the WB→NB transformed fea-
tures, the same way as in section 2.

It is important to estimate statistics from both
data sets, to take an advantage of the meeting data
for HLDA matrix estimation. We use MAP adapta-
tion of statistics, so the CTS full-covariance statistics
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where A(WB→NB) and b(WB→NB) are given by
WB→NB CMLLR transform.
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where γ(m) is global occupation count of component m given
by:
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added to “de-normalize” the covariance matrix, and get back
the original “scatter” matrix. Here, the merging (adaptation) of
covariance matrices is possible. Therefore, the MAP adaptation
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where τ is the a control constant and µ̌
(m), Σ̌

(m)
, γ̌(m) are the

resulting adapted statistics.
In the next step, HLDA is estimated from these statistics

and HMMs are updated by projecting the statistics through
HLDA. The standard iterative MAP adaptation follows to settle
updated HMMs in the same way as in section 2.

4. WB→NB transform in Speaker Adaptive
Training

Speaker adaptive training (SAT) is a technique used to suppress
cross-speaker variance [12]. The implementation in [6], which
we used, estimates a set of CMLLR transforms to adapt speaker
dependent training data to a global model. These transforms are
used during the training.

An implementation of WB→NB transform during the SAT
training is a straightforward procedure:

1. The WB data are rotated into the NB space.
2. The SAT trained CTS HMMs are used to estimate a set

of SAT CMLLR transforms on WB→NB rotated data.
3. The SAT CTS HMMs are further adapted using iterative

MAP to WB→NB rotated data with apply SAT CMLLR
transforms (So, the WB data are rotated twice, first by
global WB→NB transform,secondly by speaker depen-
dent SAT transform).

5. EXPERIMENTS
The data used for train CTS models are based on h5train03
training set defined at Cambridge University. Sentences con-
taining words, which do not occur in training dictionary were
removed. The total amount of CTS training data is 270 hours.

Meeting WB data contains 112h of close talk speech from
ICSI (73 hours), NIST (13 hours), ISL (10 hours) and AMI (16
hours) corpora.

The speech recognition system is based on HMM cross-
word tied-states triphones. Mel-PLP’s features were generated
in classical way, the resulting number of coefficients is 13.
Deltas, double- and in HLDA system also triple-deltas were
added, so that the feature vector had 39 respectively 52 dimen-
sions. Cepstral mean and variance normalization was applied
with the means and variances estimated on each meeting chan-
nel. HLDA was estimated with Gaussian components as classes
to reduce the dimensionality to 39. VTLN warping factors were
applied on filters of Mel filterbanks.

To get better comparison three baselines were trained:

• Non-adapted WB systems (WB basic, WB HLDA, WB
HLDA SAT) trained on the WB meeting data only.



• Non-adapted NB systems (NB basic, NB HLDA, NB
HLDA SAT) trained on the downsampled meeting data
only.

• Adapted NB-NB systems (NB-NB basic, NB-NB
HLDA, NB-NB HLDA SAT) based on adaptation of
CTS models to downsampled meeting train data using
same techniques as WB→NB systems.

All results were obtained by acoustic rescoring of lattices
from AMI NIST 2005 Rich Transcription system on NIST RT05
ihm evaluation data [13]. The segmentation was taken from
NIST references.

5.1. WB→NB Basic system
The initial CMLLR WB→NB transform was estimated using
CTS models and WB data. This is, however, not too accurate
due to data mismatch. Therefore, the process was run iteratively
and next iterations use CMLLR WB→NB from previous itera-
tion to get better full state alignment. We use one block diagonal
transform. We also tried to run experiments with more complex
transform structure (speech/silence). They gave similar results
but with significantly increased complexity.

Table 1 shows performance of CTS models directly applied
on WB→NB rotated test data. After 16 CMLLR iterations we
do not have any improvement therefore this transformation was
fixed for the following experiments.

CMLLR iteration WER [%]
4 40.0
8 35.7
16 35.4
20 35.4

Table 1: WB→NB - Performance of CTS models on WB meet-
ing with different WB→NB CMLLR quality.

Next, the WB data are projected into NB space and itera-
tive MAP adaptation follows in same way as was described in
section 2.
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Figure 1: WB→NB - τ constant in the iterative MAP with fixed
number of 16 CMLLR iterations.

Figure 1 shows the performance with different τ values and
fixed number of 16 CMLLR iterations. We see that value τ is

not too important, but higher values give more smooth conver-
gence to the best WER, after it the system tends to be over-
trained. The τ was fixed on value 50 for further experiment.

Train set Adaptation WER [%]
WB none 30.3
NB none 30.7
NB-NB CMLLR MAP 29.8
WB-NB CMLLRWB→NB ,MAP 29.0

Table 2: Performance of basic systems

The best performance of basic WB→NB system is 29%
which is a 4.4% relative improvement over the non-adapted WB
system and 2.7% over NB-NB adapted system (see Table 2).

5.2. WB→NB HLDA experiments
HLDA transform is used to perform dimensionality reduction
from 52 dimensional space to 39. Therefore, WB→NB CM-
LLR has to be also 52 dimensional. To be able to estimate this
transform, 52 dimensional CTS models were trained.

Full covariance statistics have to be accumulated for both
data sets to estimate HLDA matrix. For the merging procedure,
it is important to collect them by the same clustered models.
The WB→NB transform was applied on WB data and all statis-
tics were collected with the CTS models. Consequently, the WB
statistics were collected in rotated space, thus equations 1,2 did
not need to be applied.

Equations 6,7,8 were used to merge the statistics according
to MAP criterion. The HLDA matrix was estimated and CTS
HMMs were updated. Further, the iterative MAP was applied
to settle the HMMs into the new space.
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Figure 2: WB→NB HLDA - the τ value in a MAP adaptation
of statistics.

Figure 2 shows the dependency of WER on the τ value dur-
ing MAP merging of statistics. The system generates the best
accuracy 27.8% with τ = 200. It gives a 3% relative improve-
ment over the non-adapted HLDA system (see Table 3).

The τ = “Inf” means that no WB data was used to estimate
HLDA. This is an interesting result because it still gives 1.5%
relative improvement even if HLDA has not been trained on
WB data at all. It means that the accuracy of the prior HMM
has higher importance than the kind of data used for HLDA
estimation.

Table 3 shows two kinds of HLDA estimation in NB-NB
adapted system. First, the HLDA were taken directly from CTS
system. Secondly, the HLDA were computed over the MAP
adapted statistics like in section 3.1. The CTS statistics were



System HLDA adaptation WER [%]
WB none 28.7
NB none 29.7
NB-NB HLDA taken from CTS 28.6
NB-NB MAP HLDA 29.0
WB-NB CMLLRWB→NB , MAP HLDA 27.8

Table 3: Performance of HLDA systems

System Adaptation WER [%]
WB none 27.5
NB none 28.8
NB-NB CMLLR, CMLLRSAT 27.9
WB-NB CMLLRWB→NB , CMLLRSAT 26.6

Table 4: Results of HLDA SAT systems

taken as a prior and statistics collected over the downsampled
meeting data were used for adaptation. It is interesting that
HLDA taken from CTS for NB-NB adapted system gives better
performance than adapted HLDA. It seems that statistics col-
lected over the downsampled meeting data does not contain any
additional information for HLDA estimation.

5.3. WB→NB HLDA SAT experiments
Speaker adaptive training was used in addition to HLDA sys-
tem. The implementation is similar to section 4 but extended
for HLDA implementation:

1. Take the CTS HLDA prior model
2. Rotate the WB data by:

ô(t) = A(HLDA)A(WB→NB)o(t)+A(HLDA)b(WB→NB),

(9)
where A(HLDA) is HLDA matrix.

3. Use the prior to estimate an independent SAT CMLLR
transform for each speaker in the training data ô(t).

4. Take the prior and run iterative MAP with the rotated
data ô(t) transformed by the respective SAT CMLLR
transform.

As is shown at Table 4, the best performance of WB→NB
in HLDA SAT system is 26.6% which is a 3.3% relative im-
provement over the non-adapted HLDA SAT system and 4.6%
relative improvement over NB-NB adapted system.

6. Conclusion
We successfully implemented an adaptation technique where
WB data are rotated into the NB domain by CMLLR feature
transform. Here, the CTS well trained models are taken as prior
for adaptation. A solution to apply this transform in HLDA and
SAT systems was given. On NIST RT 2005 task, the relative
improvement was higher than 4% in the basic system and more
than 3% in HLDA and SAT systems.

Our current work in acoustic modeling for LVCSR concen-
trates on the use of WB→NB transform along with discrimina-
tive and minimum phoneme error (MPE) training and adapta-
tion.
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