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1. Introduction

BUT submitted three systems to NIST SRE 2008 eval-
uations, only to the short2-short3 condition. The pri-
mary system is a fusion of three sub-systems: 2 based on
MFCC and factor analysis and one making use of SVM
scoring of CMLLR and MLLR matrices of an ASR sys-
tem. The first contrastive systems differs only in calli-
bration and the second contrastive system is a simplified
version of the primary one (no ASR use).

2. Feature extraction, segmentation

We used two types of features:

• MFCC19: Short time gaussianized MFCC 19 +
energy augmented with their delta an double delta
coefficients, making 60 dimensional feature vector.
The analysis window has 20 ms with shift of 10 ms.

• MFCC12: Short time gaussianized MFCC 12 +
C0 augmented with their delta, double delta and
triple delta coefficients. The dimensionality of the
resulting features is reduced from 52 to 39 us-
ing HLDA. HLDA classes corresponded to UBM
Gaussians.

Short-time gaussianization in both cases uses window of
300 frames (3 sec). For the first frame, only 150 frames
on the right are used and the window is growing till 300
while we move in time. When we approach the last
frame, we use only 150 frames on the left side.

Speech/silence segmentation is performed by our
Hungarian phoneme recognizer [1, 2], where all phoneme
classes are linked to ’speech’ class. Segments labeled
’speech’ or ’silence’ are generated, but not merged yet
to preserve smaller segments — a post-processing with
two rules based on short time energy is applied first:

1. If the average energy in ’speech’ segment is 30 dB
less than the maximum energy of the utterance, the
segment is labeled as silence.

2. If the energy in the other channel is greater than
maximum energy minus 3 dB in the processed
channel, the segment is also labeled as silence.

After this post-processing, the resulting segments are
merged together. Segments shorter than 20 frames are
marked as silence. Only speech segments are used. In
case of 1-channel files, rule #2 is not applied.

For the interview data, the processing described
above resulted in very small amount of speech, mainly
to complete failure of our phoneme recognizer. There-
fore, they were segmented in a different way: first, a
Wiener filter1 was applied and new phoneme strings were
generated. All phoneme classes were linked to ’speech’
class and no further post-processing was done. After
that, we took ASR transcripts of the interviewer and re-
moved his/her speech segments from our segmentation
files based on time-stamps provided by NIST. Note, that
Wiener filtered signals were used only in the segmenta-
tion, in the rest of feature extraction, original signals were
used.

3. Factor analysis based sub-subsystem
No. 1

3.1. Universal background models

Thwo universal background models (UBMs) are trained
on Switchboard II Phases 2 and 3, Switchboard Cel-
lular Parts 1 and 2, and NIST SRE 2004 and 2005
telephone data. In total, there were 16307 record-
ings (574 hours) from 1307 female speakers and
13229 recordings (442 hours) from 1011 male speakers.
Two gender-dependent with 2048 Gaussians trained on
MFCC19. We used 20 iterations of EM algorithm for
each we do splitting up to 256 Gaussians and 25 itera-
tions for 512 and up. No variance flooring was used.

3.2. Factor analysis – details

The Factor analysis (FA) system closely follows the de-
scription of “Large Factor Analysis model” in Patrick
Kenny’s paper [3] with MFCC19 features. The two gen-
der dependent UBMs are used to collect zero and first
order statistic for training two gender dependent FA sys-
tems.

1http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=7673



First, for each FA system, 300 eigenvoices2 are
trained on the same data as UBM, although only speak-
ers with more than 8 recordings were considered here.
For the estimated eigenvoices, MAP estimates of speaker
factors are obtained and fixed for the following training
of eigenchannels. A set of 100 eigenchannels is trained
on NIST SRE 2004 and 2005 telephone data (5029 and
4187 recordings of 376 females and 294 males speaker
respectively). Another set of 100 eigenchannels is trained
on SRE 2005 auxiliary microphone data (1619 and 1322
recordings of 52 females and 45 males speaker respec-
tively). Both sets are concatenated. On contrary to
Kenny’s paper [3], the diagonal matrix describing the re-
maining speaker super-vector variability (matrixd in [3])
is estimated on top of eigenvoices and eigenchannels. A
disjunct set of NIST SRE 2004 speakers with less than 8
recordings (277 and 82 recordings of 44 females and 13
males speaker respectively) is used for this purpose and
MAP estimates of speaker and channel factors are fixed
for estimating the diagonal matrix. To obtain speaker
models, MAP estimates of all the factors are estimated
on enrollment segments using Gauss-Seidel-like iterative
method [4]. Unlike Kenny [3], we use only MAP esti-
mates (not posterior distribution) of channel factors and
standard 10-best Expected Log Likelihood Ratio for scor-
ing.

3.3. Normalization

Finally, scores are normalized using zt-norm. We used
221 females and 149 males z-norm segments, 200 fe-
males and 159 males t-norm models, together 729 seg-
ments derived each from one speaker of NIST SRE 2004
and 2005 data.

4. Factor analysis based sub-subsystem
No. 2

The second FA system is similar to the previous one, with
the following differences:

1. MFCC12 features are used.

2. Gender-independent UBM with 2048 Gaussians
trained on MFCC12 is trained. We used 10 iter-
ations of EM algorithm for each splitting.

3. the Factor Analysis is also gender independent

4. the ztnorm is gender dependent!

5. SVM CMLLR-MLLR

In this system, the coefficients from constrained maxi-
mum likelihood linear regression (CMLLR) and maxi-
mum likelihood linear regression (MLLR) transforms es-

2We refer to “eigenvoices” and “eigenchannels” following the ter-
minology defined in [3] although these sub-spaces are estimated using
EM-algorithm, not PCA.

timated in an automatic speech recognition (ASR) system
are classified by SVMs.

5.1. Segmentation

In this system, we used the time informataion from ASR
transcripts provided by NIST. Because of time shift of
phncall-mic data, forced alignment was done to find out
correct timing of the words.

5.2. Recognition system

The ASR features are PLP with C0, delta coefficients up
to third order, cepstral mean and variance normalization,
HLDA (dimensionality reduction from 52 to 39).

The core of AMI system submitted to NIST RT
2005 [6] was used in MLLR/CMMLR work. However,
the models were re-trained on Fisher database using Min-
imum Phone Error rate criterion. Because of lack of time,
we did not generate our own ASR transcriptions, but used
the ASR output provided by NIST. Since NIST did not
provide pronunciation dictionary, we used the AMI dic-
tionary and generated the missing pronunciations using a
G2P system with automatically trained rules. With this,
we were able to generate the triphone alignment and to
apply VTLN.

CMLLR and MLLR transforms are trained for each
speaker. At first, CMLLR is trained with two classes
(speech + silence). On the top of it, MLLR with three
classes (2 speech classes obtained by automatic cluster-
ing on the ASR training data + silence) is estimated.

5.3. SVM

The transform matrices from CMLLR speech classes
(39×39×1+39) and MLLR (39×39×2+2×39) are con-
catenated to one super-vector with 4680 features. The
Rank normalization is applied.

The SVM used to classify super-vectors uses linear
kernel. It is trained on one positive example from the tar-
get speaker. The negative examples are taken from NIST
2004 data and microphone data from NIST 2005. In the
testing, the trial is scored by the respective SVM. The
SVM training and scoring was built with LibSVM [5] li-
brary.

5.4. Normalization

zt-norm normalization was applied on the scores. The
same selection of speakers as for our FA-systems was
used (section 3.3) but the normalization was gender-
independent.



6. Calibration and fusion

We used FOCAL toolkit3 for LLR side-information-
conditional calibration and fusion. The output scores
can be interpreted as detection log-likelihood-ratios. The
hard decision was made by using the Bayes threshold
2.29.

We used two kinds of side information in calibration
in the following order:

6.1. Channel type conditioning

First, we calibrated the subsystems with side informa-
tion about channel provided by NIST which categorized
each trial into one of four classes: phonecall/phonecall,
mic/phonecall, phonecall/mic, mic/mic.

6.2. Language type conditioning

On the top of channel-type conditioned calibration, an-
other calibration is done with the side information on the
language of training and test segments in a trial: eng/eng,
eng/noneng, noneng/eng and noneng/noneng. The lan-
guage was automatically detected by our phonotactic LID
system (based only on strings, see [2] and a our web-
demo4). Hard decisions (not language posteriors) were
used as side-information.

6.3. Fusion

Log Likelihood Regression fusion is used on the top of
calibrated systems.

7. Submitted systems

Our primary system is a fusion of three subsystems:

• Gender dependent Factor Analysis system with
MFCC19 features and gender dependent zt-norm.

• Gender independent Factor Analysis system with
MFCC12 features and gender dependent zt-norm.

• SVM-CMLLR-MLLR system with gender inde-
pendent zt-norm.

Each system was calibrated at first with the channel side-
information, then with language side-information. Such
calibrated sub-systems were fused by LLR.

7.1. First contrastive system

The same system as the primary one but without the chan-
nel and language conditioning in the calibration stage.

3http://niko.brummer.googlepages.com/
focalbilinear

4http://speech.fit.vutbr.cz/lid-demo/

7.2. Second contrastive system

The same system as the primary one but without the
SVM-CMLLR-MLLR subsystem.

8. Results on development set

This section reports the results on our development set
extracted from NIST SRE 2006 data. The 1conv4w-
1conv4w condition was the core condition in 2006 evalu-
ation defined by NIST. Other conditions were defined by
MIT. The numbers of trials and non-trials are:

• phn phn . . . Targets=3618 Nontargets=52041

• phn mic . . . Targets=2518 Nontargets=21204

• mic phn . . . Targets=2534 Nontargets=20937

• mic mic . . . Targets=5064 Nontargets=146111

Where thephn is the label for telephone segment
andmic is the label for telephone conversation recorded
through microphone. The results of our three submitted
systems are reported in Table 1. These results use trained
fusion and calibration on the same data. However, our
cross-validation experiments on two halves of the devel-
opment set with non-overlapping speakers showed the re-
alistic results.

9. Speed and resources

Real time factors are estimated on a standard PC Intel
Xeon 3,2GHz or similar.

For each FA-based system, the real time factor is ap-
proximately 0.5×RT.

For SVM CMLLR-MLLR system, the real time fac-
tor is approximately 2.5×RT. Memory requirement for
testing is 2 GB.
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Primary system
phn-phn phn-mic mic-phn mic-mic all

DCF 0.0105 0.0075 0.0108 0.0168 0.0128
EER [%] 2.24 1.75 3.03 2.98 2.59
1st contrastive
DCF 0.0157 0.0103 0.0138 0.0183 0.0232
EER [%] 3.27 2.70 4.14 3.64 4.73
2nd contrastive
DCF 0.0109 0.0095 0.0133 0.0174 0.0137
EER [%] 2.30 2.26 3.35 3.06 2.82

Table 1: Results on our development set
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chical Structures of Neural Networks for Phoneme
Recognition, In Proceedings of ICASSP 2006, May
2006, Toulouse, France
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