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ABSTRACT

In this paper, we are concerned with using decision trees (DT)
and random forests (RF) in language modeling for Czech
LVCSR. We show that the RF approach can be successfully
implemented for language modeling of an inflectional lan-
guage. Performance of word-based and morphological DTs
and RFs was evaluated on lecture recognition task. We show
that while DTs perform worse than conventional trigram lan-
guage models (LM), RFs of both kind outperform the latter.
WER (up to 3.4% relative) and perplexity (10%) reduction
over the trigram model can be gained with morphological
RFs. Further improvement is obtained after interpolation of
DT and RF LMs with the trigram one (up to 15.6% perplexity
and 4.8% WER relative reduction). In this paper we also in-
vestigate distribution of morphological feature types chosen
for splitting data at different levels of DTs.

Index Terms— Speech recognition

1. INTRODUCTION

In this paper we study the application of the decision tree
(DT) and random forest (RF) approaches to language model-
ing of Czech as an inflectional language. The DT mechanism
for estimating probabilities of words following each other has
long been known [1] as an alternative to N-gram approach.
In the pioneering work on DTs as LMs [1], improvement in
perplexity was shown when DTs were used for a restricted
recognition task with grammatical classes elaborated by hand.
For more general and fully automated tasks the results were
mostly discouraging and no steady improvement over N-gram
LMs was reported. This can be explained by the peculiari-
ties of DTs themselves. The DTs suffer from training data
fragmentation and absence of theoretically founded grow-
stopping criteria [2]. However, with the recent advances in
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Burget was supported by Grant Agency of Czech Republic under project No.
GP102/06/383.

language modeling that extended the use of decision trees to
that of random forests, this direction of research was brought
back to the spotlight [2],[3].

Decision trees were introduced into language modeling to
alleviate the problem of data sparsity: with the help of DTs
it is possible to cluster together similar histories at the leaves
of a tree. Each leaf forms an equivalence class of the his-
tories that share the same distribution over predicted words.
Predictorrefers to words in the particular position in N-gram
history we askyes/noquestions in the node to split data when
we propagate them down the tree. If the predictor is the pre-
vious word, a question looks like “Is the previous word in the
setS or S?”. The data (i.e. N-grams) corresponding toyes
answers are propagated through the left branch going out of
a node, theno-data go to the right branch. Actually, a con-
ventional N-gram model can be regarded as a special case of
the tree model in which the setS consists of one individual
word at each node. Ideally, at the training phase all possible
predictors and questions should be tried at each node and the
“best” predictor/question pair should be picked and stored for
that node. However, in real life different solution is used, as
we describe in the next section.

A random forest is a collection of DTs that include ran-
domization in the tree-growing algorithm. The underlying as-
sumption is that while one DT does not generalize well to
unseen data, a set of randomized DTs might perform better.
Greedy algorithms are used at the stage of DT construction
for choosing best questions to split data. As a result, trees are
only locally but not globally optimal (with respect to training
data). Randomized trees are not locally optimal, but the col-
lection of them may be closer to a global optimum and thus
provide better results. When we randomize DTs to form a RF
there are two basic sources of randomization: initial split of
data in a node in two setsS, S and random selection of one
of the predictors.

2. DECISION TREES AND RANDOM FORESTS

How to measure goodness of a question that splits data in
the node?A DT is constructed in a way to reduce the uncer-



tainty about the event predicted. Thus, entropy can be used as
the goodness measure. One should measure entropy for data
M in a node before split, then split data in two setsS andS
according toyes/noquestions and find the entropy reduction
under the split. The reductionξ in entropy on development
data shows how good the question is.

How to find the best question?It is unfeasible to try all
possible questions that give rise to different data splits even
for a moderate number of parameters. Regarding sizes of vo-
cabularies used in real recognition tasks, that means that less
extensive sub-optimal greedy approaches should be consid-
ered. There are a number of different variations of greedy
tree-growing algorithms [1],[4]. They all suffer from the same
drawback we already noted, that is local optimum is searched
for splitting the histories. This problem is partially solved by
the RF approach.

How to define a stopping criterion so that the node
should be turned to a leaf? Entropy of a tree can always
be decreased by increasing the number of leaves. However,
such a tree will not be able to generalize on unseen data and
will be characterized by high entropy on test data [4]. Mini-
mum entropy reduction or minimum data thresholds may be
used to turn a node into a leaf. However, these constants are
empirical as opposed to measuring the entropy reduction un-
der the same split on heldout data. If heldout data entropy
is not reduced that means the split will lead to a tree that is
strongly biased to the training data.

In this study, we generally accept the approach proposed
in [4]. We use theexchange algorithmto find best questions
in DT nodes and heldout data entropy reduction as stopping
criterion. For RFs the exchange algorithm is initialized with
data randomly split in setsS andS and a randomly chosen
predictor to ask questions about.

3. MORPHOLOGICAL DECISION TREES

3.1. Morphological Features as Predictors

In word-based DTs questions like “Does the previous word
belong to the set of words{ wb, wf , wq, . . .}?” are asked at
each node. In morphological DTs we want to ask questions
about morphological features of word predictors. We expect
it to be particularly useful for morphologically-rich languages
as Czech. In this study morphological feature types are word-
form itself (W); word lemma, i.e. initial form of the word
(L); word stem (S); part-of-speech - POS (P); full morpho-
logical tag (T) and inflection (I). Thus, the questions may be
in the form “Is the full morphological tag of the predictoran-
imate singular noun in accusative case?”. Each combination
of position in word history and morphological feature type is
considered as an individual morphological predictor. Thus, in
the process of tree construction, the tree-growing algorithm
is given total freedom to choose independently between mor-
phological features. An HMM-based Czech POS tagger de-

veloped at IFAL in Prague (http://ufal.mff.cuni.cz/) is used for
tagging.

3.2. Smoothing

When traversing the DT, each node splits the data into
two subsets, causing data sparsity. Navratil [5] proposes a
smoothing technique, where the smoothed probability of a
symbols in a node is given as:

P̂ ′
sm(s|l) = bs,lP̂ (s|l) + (1− bs,l)P̂sm(s|parent(l)) (1)

wherebs,l is defined in equation 2. The equation is applied
recursively untilparent(l) = root, when P̂sm(s|root) =
P̂ (s|root)

bs,l =
C(s|l)

C(s|l) + r
(2)

whereC(s|l) stands for counts of wordss in leaf l, andr is
an empirical smoothing factor controlling the strength of the
update. This kind of smoothing does not take account of dis-
counting and backoff techniques that proved very helpful in
N-gram based language modeling (e.g. Kneser-Ney). How-
ever, it is of interest to try this way of smoothing that showed
good results for the automatic language identification task [6]
for the purpose of language modeling in LVCSR.

3.3. Morphological Random Forests

There are two basic sources of randomization: initial data
split in two setsS, S and random predictor selection. Initial
split randomization is basically the same for word and mor-
phological DTs. As for predictor position selection, random-
ization possibilities become much reacher for morphological
DTs. Thus, if we work on trigram level and use 6 morphologi-
cal features attached to each word, we end up with2 ∗ 6 = 12
morphological predictors. At the same, time morphological
features of different types (stem, inflection, POS, etc)̇ are not
equally important to predict next words. Thus if we randomly
pick up only one of those, we have equal chances to pick
up predictors pertaining to types with low predicting power
and end up with very shallow trees. So we form a pool of
“good” predictors at each node and then choose randomly one
of them. In our study we form a pool of predictors that are
above thresholdp that is calculated according to a very sim-
ple formula

p =
(ebest red − eworst red)

100%
× n% + eworst red (3)

whereebest red andeworst red are the largest and smallest en-
tropy reductions gained with some of the predictors. Value of
n is an empirical constant, in our study it equals to 70.



Table 1. Perplexity for stand-alone models.

Model IRP ISS MUL

Trigram 317 212 258
Word DT 433 253 336
Morph DT 413 252 320
Word RF 360 221 280
Morph RF 298 (6.0%) 190 (10.4%) 237 (7.4%)

4. EXPERIMENTS

4.1. Experimental Setup

The recognition of spoken lectures held in Czech is our target
task. The transcriptions of three lectures on different subjects
in the domain of information technology were chosen as the
testing data: IRP (16K words), ISS (6K words) and MUL
(10K words).

Small corpusannot of manually annotated lecture tran-
scripts consists of 200K words. It is very close in topics and
style to the testing data. Written corpuslect of lecture ma-
terials consists of 7.1M words, 240K words constituting the
vocabulary. Both these corpora are used to build bigram LMs
used to generate 500-best lists that are subsequently rescored
with more sophisticated (DT and RF) models. For the best
baseline LMs corresponding to both corpora were interpo-
lated with the weights tuned according to perplexity. Joint
240K vocabulary is used for recognition.

Corpusannot is used as training data for DTs. The vo-
cabulary was chosen as an intersection ofannotand lect vo-
cabularies and it consists of 15K words. Word history length
is two, we thus work on the word trigram level. Open vocab-
ulary models are built. At the stage of N-best list rescoring,
probabilities assigned to unknown words are discounted with
an empirical constant. Heldout data are used as stopping cri-
terion. After the tree is grown, heldout data is poured down
the tree to the leaves so that the resulting statistics correspond
to the whole corpus. Each RF consists of 100 randomized
DTs. In addition, minimal data threshold is also used to stop
growing a tree, that is found empirically.

4.2. RESULTS

4.2.1. Perplexity

First we evaluate the performance of different LMs with per-
plexity. Since our training data is very close in topics and style
to the testing data, the results give insight in real performance
of the models even though the size of the training data is
small. Table 1 represents perplexities for stand-alone models
on three different testing lectures. If the improvement over the
trigram model is gained, it is shown in brackets. We can see
that individual DTs perform worse than the standard Kneser-
Ney trigram model (trained with SRILM toolkit). Word RF

Table 2. Perplexity for interpolated models.

Model IRP ISS MUL

Trigram 317 212 258
Word DT 302 (4.7%) 198 (6.6%) 245 (5.0%)
Morph DT 296 (6.6%) 197 (7.1%) 240 (7.0%)
Word RF 292 (7.9%) 191 (9.9%) 234 (9.3%)
Morph RF 272 (14.2%) 179 (15.6%) 220 (14.7%)

Table 3. Word accuracy and relative WER reduction for
stand-alone models.

Model IRP ISS MUL

1-best 63.1 70.2 58.3
Trigram 63.8 70.9 59.2
Word DT 63.8 70.7 59.1
Morph DT 64.1 69.7 59.1
Word RF 64.2 (1.1%) 70.9 59.2
Morph RF 64.7 (2.5%) 71.9 (3.4%) 59.7 (1.2%)

does not show steady perplexity improvement on its own but
rather performs in the same way as the trigram model. Lit-
tle improvement of 2.6% for ISS data can not be considered
noteworthy for perplexity experiments. This difference from
results reported in [4] can be explained by the fact that in our
framework we do not make use of any smoothing and backoff
technique that are known successful for language modeling.
However, with morphological trees we achieve a noteworthy
improvement of perplexity over 10%.

Perplexity results after the interpolation of the trigram
model with different DT-based ones are presented in Table 2.
All DT-based models show steady perplexity improvement in
interpolation with the trigram model.

4.2.2. Word Accuracy Estimation

Word accuracy for different stand-alone models is shown in
Table 3. Row1-bestcorresponds to the 1-best accuracy for
500-best lists without any rescoring. Trigram LM is taken as
the baseline. Relative WER improvement over the trigram
model is shown in brackets, if gained. Following the results
represented in Table 1, individual DTs do not directly improve
the accuracy. However, both morphological and word RFs do.
Table 4 shows results for the DT-based models after interpola-
tion with the trigram one. The difference with the perplexity
results presented in Table 2 is mostly in the lower improve-
ment of the results with the interpolation of RFs.

4.2.3. Distribution of Morphological Predictors

We wanted to study the regularities how morphological pre-
dictors of different types are chosen at different tree-levels
by the tree-growing algorithm. Distribution of predictors that



Table 4. Word accuracy and relative WER reduction for in-
terpolated models.

Model IRP ISS MUL

Word DT 64.5 (2.0%) 71.5 (2.1%) 59.6 (1.0%)
Morph DT 64.5 (2.0%) 71.3 (1.4%) 59.8 (1.5%)
Word RF 64.5 (2.0%) 71.6 (2.4%) 59.8 (1.5%)
Morph RF 64.8 (2.8%) 72.3 (4.8%) 60.1 (2.2%)

Table 5. Distribution of morphological predictors related to -
1 (previous) word at different tree depth in a RF (in per cents).

Depth W S L T P I Total

1 29.0 23.0 20.0 26.0 2.0 - 100.0
2 35.5 23.0 24.0 12.5 5.0 - 100.0
3 27.2 26.2 21.8 13.2 8.5 - 97.0
4 26.6 24.5 21.2 12.8 6.0 - 91.1
5 24.8 22.0 17.9 13.4 5.1 0.9 84.2
6 18.7 17.6 14.8 9.4 3.6 1.5 65.5
7 15.6 14.2 12.5 6.7 2.7 1.2 52.9
8 12.4 11.6 10.8 5.2 1.5 1.4 43.0
9 11.5 9.7 8.7 4.6 1.7 1.7 38.0
10 9.4 8.6 7.9 4.8 2.0 2.2 34.9

refer to -1 (i.e. previous) word in history at different node
depths up to 10th in the morphological RF is presented in Ta-
ble 5. Distribution that refer to -2 position is skipped due to
the lack of space in this paper. Rows correspond to to the
depth of nodes in the tree. Columns correspond to morpho-
logical predictor types. Summary statistics for -1 predictors
is represented in the last column.

The distribution of morphological features chosen at each
node in the tree at the training phase shows some regularities.
First, in upper nodes questions about morphological features
of the previous word are chosen. Then, as moving down the
tree, -2 word comes to the foreground. Second, feature types
that cover narrower classes (W, S, L, T) are chosen at the up-
per levels in the tree. Questions about features that cover
wider classes (POS, I) tend to appear more and more often
as we go deeper down the tree.

5. DISCUSSION AND FUTURE WORK

Random forests consisting of randomized DTs that take ac-
count of grammatical information outperform word-based
RFs for the Czech language. However, this does not hold
for individual DTs. This fact may lead to the conclusion
that morphological RF are likely to perform better not due
to the morphological information itself but rather to wider
randomization possibilities.

There are several directions of the future work. First, DTs
and RFs on larger data should be trained and tested. Second,

we plan to run similar experiments for other inflectional lan-
guages. Third, while extension of context to more than two
previous words did not give much positive result for English
[4], the situation may be different for inflectional languages
with relatively free word order. Finally, integration of mor-
phological predictors with smoothing and backoff techniques
developed for N-grams should further improve the results.

6. CONCLUSIONS

In this paper we studied language modeling of an inflectional
language with decision trees and random forests for recog-
nition of spoken lectures. Both approaches were tested with
taking different sources of information into account: pure lex-
ical and morphological. Our experiments proved that deci-
sion trees do not outperform classical trigram model. The
perplexity and WER improvement is possible only with the
interpolation of tree-based models with an trigram one. Ran-
dom forests, on contrary, directly improve the baseline. Even
larger improvement is gained with the interpolation of RFs
with the conventional trigram model.

The distribution of different types of morphological pre-
dictors in a RF show that questions about predictors corre-
sponding to the previous word are preferred at top levels of
DTs, while those corresponding to the more distant word
position gradually get prominence as we traverse DTs in
top-down manner. Feature types that cover narrower classes
(word, stem, lemma, full morphological tag) are mostly cho-
sen at the upper levels in the tree.
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