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Abstract

This paper summarizes recent advances in PRLM language
recognition within the context of the NIST 2007 LR evaluations
(LRE). We present a comparison of binary decision tree (BT)
vs. N -gram models when adaptation from a universal (back-
ground) model (UBM) is used, we introducemulti-models—
anchor-model-like approach to scoring, and we adopt the frame-
work of intersession variation using factor analysis.
Index Terms: language recognition, phonotactic, binary deci-
sion tree

1. Introduction
Phonetic recognition followed by language model (PRLM) is
an essential part of most state-of-the-art language recognition
systems. Its principle lies in estimating a language model (LM)
on top of 1-best phoneme sequences generated by a phoneme
recognizer from the training data and applying this model tothe
sequences generated from the test data.

Traditionally, N -gram LM’s have been used in PRLM.
They compute the conditional probability of a coming phoneme
given the history ofN − 1 previous phonemes. Therefore the
LM for a given language can be built by collectingN -gram
statistics (counts) from 1-best phoneme strings and comput-
ing their conditional probabilities. Furthermore, Gauvain [1]
showed, thatN -gram statistics can be computed from theN -
gram posterior probabilities taken from the phoneme lattices—
as well generated by the phoneme recognizer. This way, alter-
native phoneme recognition paths are taken into account, giving
useful information and improving the performance. We will im-
plicitly present our results on these statistics.

Navratil [2, 3] has shown that clustering theN -gram history
by using binary decision trees (BT) improves the performance.
Growing the tree is based on finding questions about the his-
tory, following the maximum entropy reduction (or likelihood
increase) criterion. Each of these questions clusters the data
into two subsets. The conditional probabilities are then stored
in the leaves and are estimated from the clustered data. Two
approaches to BT estimation are proposed—building the whole
tree for each class in one case, and adapting from a UBM in the
other case. We have adopted the latter framework and used it in
conjunction with other techniques.

From this perspective, theN -gram LM is a special case
of BT where eachN -gram is a cluster itself. We will show,
that when applying the BT adaptation scheme from the pre-
vious paragraph toN -gram LM, the BT clustering effect is
suppressed and both models give similar results. We will also
present the application of BT smoothing (as used in [3]) toN -
gram LMs.

Note, thatN -gram probabilities can be used when referring
to the BT leaf probabilities further in the text.

Using linear backends to calibrate the model scores has
been studied recently. We will study the effect of linear Gaus-

sian backend (LDA, [4]) and linear logistic regression back-
end (LLR, [5]). In case of LDA, for each class, a single full-
covariance Gaussian (with the covariance matrix shared among
all classes) is trained using the vector of scores from all mod-
els. This corresponds to an affine transformation of the vector
of scores). LLR is somewhat constrained (one multiplier per
class is used), however it is trained discriminatively, therefore
we used both backends in cascade (LDA followed by LLR).

Being inspired by the anchor models [6], we present the
technique of multi-models. Here, each class is representedby
multiple models trained on different data sets. In our case,in-
stead of training one model on all databases of that language,
we cluster these databases according to dialects, and we train
separate models on these clusters. The LDA backend is then
used to reduce the number of scores to the desired number of
classes.

We try to compensate for the inter-session variation by in-
corporating the factor analysis framework (see [7, 8]). Treating
the leaf log-likelihoods as the model parameter space, we look
for its subspace, which is language invariant and whose variabil-
ity is caused by “parasite” factors (e.g. channel). When scoring
an utterance, we let the model adapt in this subspace only.

Section 2 gives theoretical background. We begin by ex-
plaining the way thatN -gram models can be adapted using
the BT framework in Section 2.1, we address the issue of
model smoothing in Section 2.2, Section 2.3 describes our inter-
session variation compensation technique, andmulti-modelsare
presented in Section 2.4. Experimental setup is described in
Section 3 We conclude the paper in Section 5

2. Theoretical background
2.1. Adaptation

When little data is available for building the (sub-)tree, adapta-
tion scheme has been proposed [3]. A UBM is build on sepa-
rate training set, where large amount of data is available. When
adapting a new tree, the UBM structure is copied and the leaf
distributions are estimated in the maximum a-posteriori (MAP)
framework.

So far, theN -gram LM’s have been estimated on training
data only, using the maximum likelihood criterion. However,
the BT adaptation scheme can be easily adopted to theN -gram
LMs:

For each leaf (cluster,N -gram history)l and symbols,
compute the new conditional probabilitŷP ′(s|l) as follows:

P̂ ′(s|l) =
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whereP̂ (s|l) is the original UBM probability of symbols given
leaf l, #(s|l) stands for counts of symbolss in leaf l, D nor-
malizes the values to probabilities, andr is an empirical value
controlling the strength of the update.

2.2. Smoothing

When traversing the BT, each node splits tha data into two sub-
sets, causing data sparsity. Each node in the BT can hold the
phoneme distribution before the split. Navratil [3] proposes a
smoothing technique, where the smoothed probability of a sym-
bol s in nodel P̂ ′

sm(s|l) is given as:

P̂ ′

sm(s|l) = bs,lP̂ (s|l) + (1 − bs,l)P̂sm(s|parent(l)) (3)

wherebs,l is as in Eq. 2, withr being the smoothing factor. The
equation is applied recursively untilparent(l) = root, when
P̂sm(s|root) = P̂ (s|root)

To be able to use this technique withN -gram LM, we
would have to treat it as a|A|-ary tree with depthN − 1, where
questions at leveln ask about thenth predictor.A is a set

In the case of BT’s, this approach is beneficial, having the
smoothing constantr set to 2. However, when applied toN -
gram LM’s, the performance generaly degrades.

2.3. Factor Analysis

Inspired by the inter-session variation techniques in acoustic
language recognition [7, 8], we have adopted the framework to
the phonotactic LR. With the leaf log-likelihoods defining the
model parameter space, we search for their subspace which best
describes the inter-session variability. In the testing phase, we
then let the model adapt to the test utterance in this subspace.

Let us denote the concatenation of leaf log-probabilities as a
column super-vectord, and letna be the concatenation of clus-
teredN -gram statistics of the inspected utterancea. The stan-
dard way to evaluate the tree score for utterancea is to compute
the inner product ofd andna:

Sa = n
T
a d (4)

In FA, we define a transform matrixV with the same num-
ber of rows as is the dimensionality ofd and the number of
columns corresponding to the desired number of vectors of fac-
tors. The vectors of factors are weighted by column vectorx,
and then added to the original model parameter supervectord.
The FA objective function and output score for utterancea are
computed as:
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with

lia = di + v
i
xa (6)

wheredi is the ith element ofd, v
i is i-th row of matrixV,

cluster(i) corresponds to the leaf to whichi belongs, andxa

is a column vector of weights estimated for each utterancea.
Matrix V and vectorxa are estimated numerically using

the R-prop algorithm [9] as an alternative to the traditional gra-
dient descend method, where gradient sign is used instead of
the gradient value.

We begin by estimating the vectorxa. The gradient is com-
puted as:
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V is estimated by maximizing Eq. 5 summed over a se-
lected sub-set of training utterancesA balanced among lan-
guages. The gradient for each rowi of matrix V is computed
as:
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The scheme for one training iteration of matrixV com-
prised 10 sub-iterations of estimating the vectorxa for each
utterancea from training setA, followed by 10 sub-iterations
of re-estimating matrixV. After 5 iterations, the recognition
performance converged.

When scoring a test utteranceâ, vectorx was estimated in
10 iterations, and the score was obtained using Eq. 5.

The critical issue was the initialization ofV. We observed
that simple principal component analysis framework, as in [8],
gave best convergence speed. The weightsx are initialized by
a zeros vector.

Empirically, the number of factors for the evaluation was
set 4.

2.4. Multi-models

Inspired by the principle of anchor models [6], we model lan-
guage classes by a combination of “other” language models.
Instead of merging all resources (databases) of one language to-
gether for UBM adaptation, those resources with large amount
of data were “hand-clustered”, and a single LM was created
for each of these clusters (e.g. 7 LMs for English). Such hand-
clustering reflected some specifics such as foreign-accented En-
glish, different dialects, etc. A linear backend is used to post-
process these individual outputs to come up with one score per
language.

Multi-models address the question of tweaking the weights
for multiple training sources. The application of LDA backend
is nothing but a linear combination of multiple model scores,
which is equivalent to giving different weights to different data
sources in the 1-model-per-language situation.

3. Experimental setup
The results are reported for the NIST LRE 2007 primary condi-
tion, for three tasks reflecting the nominal length of the test-
ing utterances—30, 10, and 3 seconds. As the metrics, the
100 × Cavg (see [10] for formulas) is used.

All results are presented for calibrated systems using lin-
ear backend (LDA) followed by linear logistic regression [5]
(LRR). Tab. 1 shows the impact of using different calibration
schemes on one phonotactic system. The backend for each con-
dition was trained on appropriate dev set (see Sec. 3.1).

3.1. Data

The training data for each language were taken from the pack-
ages distributed by LDC and ELRA, and the amount for each
language ranged from 1.5 to 228 hours. The exact numbers are
in [11].

The development data for this evaluation were defined by
MIT Lincoln Labs. The data have nominal duration of 3, 10
and 30 seconds and they are based on segments from previous



Tab. 1:Effect of calibration for the English GMM/HMM phono-
tactic system on LRE 2007 data with BTs (100 × Cavg)

30 10 3
No backend 9.02 14.21 24.37
LLR 3.96 10.83 22.97
LDA 3.85 10.55 22.58
LDA+LLR 3.54 10.68 22.66

evaluations plus additional segments extracted from longer files
from training databases (which were not included in the training
set).

As mentioned before, the test set was the 2007 evaluation
data.

3.2. Phone recognizers

The phonotactic systems were based on 3 phoneme recogniz-
ers: two left-context/right-context hybrid ANN/HMM [12, 13],
and one based on GMM/HMM context dependent models. See
Tab. 2 for the comparison.

Tab. 2:Different phoneme recognizers as tokenizers for phono-
tactic approach on LRE 2007 data with BTs — English
GMM/HMM, Hungarian Hybrid, Russian Hybrid (100×Cavg)

30 10 3

EN Tree 3.54 10.68 22.66
HU Tree 5.58 11.54 23.45
RU Tree 6.31 12.99 24.51

3.2.1. Hybrid phoneme recognizers

The phoneme recognizer is based on hybrid ANN/HMM ap-
proach, where artificial neural networks (ANN) are used to
estimate posterior probabilities of phonemes from Mel filter
bank log energies using the context of 310ms around the cur-
rent frame. Hybrid recognizers were trained for Hungarian
and Russian on the SpeechDat-E databases. For more details
see [12, 13].

3.2.2. GMM/HMM phoneme recognizer

The third phoneme recognizer was based on GMM/HMM
context dependent state clustered triphone models, which are
trained in similar way as the models used in AMI/AMIDA
LVCSR [14]. The models were trained using 2000 hours of En-
glish telephone conversational speech data from Fisher, Switch-
board and CallHome databases. The features are 13 PLP coef-
ficients augmented with their first, second and third derivatives
projected into 39 dimensional space using HLDA transforma-
tion. The models are trained discriminatively using MPE crite-
rion [15]. VTLN and MLLR adaptation is used for both training
and recognition in SAT fashion. The triphones were used for
phoneme recognition with a bi-gram phonotactic model trained
on English-only data.

4. Results

4.1. N -gram LM vs. Binary Tree

In our PRLM systems, both theN -gram LMs and BTs were
used. In both cases, trigram lattice counts were used. See Tab. 3
for the comparison of these approaches.

The setup for the BT training was setting the minimum data
mass criterion to 450, the minimum entropy reduction was setto
0.001, and both the adaptation and smoothing constantsr were
set to 2 (see [3] for details on these parameters).

Our strategy for scoring the test utterances in the case of
N -gram models in the previous years was to choose thoseN -
grams, that appeared in the training data (of any language) cer-
tain amount of times to avoid scoring unseen data. Further-
more, the Witten-Bell smoothing was applied (see lines 2 and
3 in Tab. 3). This would however mean, that the set of suitable
N -grams for the 2007 evaluations would be very limited as for
some languages, very limited data was available. On the other
hand, using unseenN -grams would cause severe data sparsity.
The adaptation (as described in Sec. 2.1) turned to be a good ap-
proach. See Tab. 3 for results. We expected that smoothing the
N -grams in the fashion described in Sec. 2.2 would also bring
some gain, however no improvement was observed.

Tab. 3: BT versus differentN -gram LM’s – Witten Bell
smoothed, no smoothing, LM adapted from UBM (100×Cavg)

LRE 2007 30 10 3
HU Tree 5.58 11.54 23.45
HU LM Witten Bell (BUT 2005) 5.85 12.63 23.81
HU LM no smoothing (MIT 2005) 6.30 12.72 25.06
HU LM MAP adapt from UBM 5.54 11.75 23.54

4.2. Multi-models

We found, that it is beneficial to train multiple models per lan-
guage, if there is sufficient amount of data for that language. We
have chosen those languages, for which large training databases
are available. The abbreviation A3E7M5S3G2 denotes the
number of models per particular language (e.g. A3 stands for
3 models for Arabic). Better description with exact database
division is in Tab. 4. These models could represent different
dialects, group of speakers, databases, etc. In our case, the clus-
tering was simply empirical. We end up by producing several
scores per language in the scoring phase. Producing final one-
score-per-language is again done using LDA backend. Results
are presented in Tab. 5.

4.3. Latent Factor Analysis - LFA

Tab. 6 describes influence of LFA to the phonotactic system
with Binary decision trees. It mainly helps for 30 second condi-
tion. We observed little or no improvement in case of 10 and 3
seconds tasks, where little data for model adaptation was avail-
able.

The results with multi-models are similar to the one in
Tab. 5, but the system with LFA is more complementary to our
other acoustic and phonotactic systems [11].



Tab. 4: Multiple models distribution with abbreviation
A3E7M5S3G2

Arabic CallFriend, Fisher, other
English Foreign accented Eng., Fisher, Callhome,

OGI 22, OGI multilang, SRE 2005 - native,
SRE 2005 - foreign, CallFriend - south,
CallFriend - north

Mandarin Fisher (HKUST), SRE 2006,
CallFriend - mandarin, CallFriend - Taiwan,
other

Spanish CallFriend Caribbean, CallFriend
non-Caribbean, other

German CallFriend, other

Tab. 5:Multimodels for binary decision tree on LRE 2007 data
(100 × Cavg)

LRE 2007 30 10 3
HU Tree 5.58 11.54 23.45
HU TREE A3E7M5S3G2 4.54 10.96 23.34

5. Conclusions
In this paper, we have shown, that the data sparsity problem of
theN -gram LMs can be solved by using the binary-tree adap-
tation scheme. Our experiments show, that it is the adaptation
from UBM that solves the problem, rather than the BT structural
context clustering. We proposed the technique of multi-models
and we have shown that it is beneficial to split the training data
of each class to several subsets, train separate models on these
subsets, and have the backend do their linear combination. We
have presented a concept of factor analysis in PRLM and we
have shown its gain in LRE.
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