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Abstract
The use of acoustic short-time features for speaker identification
has established itself for several years. In this work, classical
acoustic as well as prosodic features are jointly used in a lexi-
cal context. The contours of pitch, energy and cepstral coeffi-
cients are continuously modeled over the time span of a syllable
to capture the speaking style on phonetic level. Especially the
addition of cepstral contours highly improves the performance.
Due to the small amount of data, best results are achieved with
a factor analysis framework. Results are presented for the NIST
SRE 2006 speaker identification task.

1. Introduction
State-of-the-art systems for text independent speaker identifica-
tion usually make use of acoustic short-time features in a Gaus-
sian Mixture Model (GMM) framework with Universal Back-
ground Model (UBM) [1]. As these systems are strongly af-
fected by session variability, new techniques have been suc-
cessfully developed in the last few years to compensate for
these channel effects [2, 3]. Still, most acoustic systems do
not make use of information from a higher level of speech, like
the phonetic-, prosodic- or lexical-layer. Different studies have
shown that adding phonotactic- or prosodic characteristics to
an acoustic baseline system can yield to a better overall perfor-
mance, especially when a large amount of data is available per
speaker [4]. Ferrer et al. [5] and Dehak et al. [6] also reported
gain in recognition performance on shorter tasks, where only a
few hundred feature vectors are available to train and test each
speaker.

The work in this paper is based on the use of classical
prosodic features like duration, pitch and energy in a syllable-
like temporal context. The trajectories of each feature is con-
tinuously modeled over the time span of a syllable and is rep-
resented by coefficients from a discrete cosine transformation
(DCT). Additionally we also capture the contour of acoustic
features in form of Mel-frequency cepstral coefficients (MFCC)
and form a single feature vector out of duration and pitch, en-
ergy and the MFCC contours. All these features are jointly
modeled using a GMM. As this mixed feature vector will also
be affected by variations in the channel, established techniques
for the compensation of session variability are applied. Since
each feature vector represents one syllable in the utterance,
there are only a few hundred features per recording, which
makes it hard to reliably estimate the channel factors that de-
termine how far a model is shifted in the channel subspace.
We will investigate if channel compensation in the model or in
the feature domain is more appropriate for this small amount of
feature vectors as well as the expansion of this factor analysis
model to include speaker factors to give a joint factor analysis
model [6].

The performance of the proposed system is presented in
terms of equal error rate for the text-independent NIST SRE
2006 speaker identification task.

The organization of the paper is as follows: section 2 de-
scribes the extraction of the syllable based features, including
the basic features itself, the way the utterance is segmented into
syllable-like units and based on this, the actual modeling of the
temporal trajectory of the basic features. Section 3 briefly de-
scribes the algorithms used to perform the channel compensa-
tion. Section 4 presents the experiments and results obtained
with the system and conclusions are given in section 5.

2. Heterogeneous syllable based features
This section describes how a feature vector for each syllable is
obtained by continuously modeling the temporal trajectory of
various frame based features.

2.1. Basic features

Different basic features are extracted at 10-ms intervals. Pitch
frequencies are computed with the Average Magnitude Differ-
ence Function from the Snack Sound Toolkit [8]. Snack is also
used to obtain windowed log power values. All these features
are extracted with Snacks default settings. Furthermore 12 Mel-
frequency cepstral coefficients (20ms window, 23 bands in Mel
filter bank) are used.

2.2. Syllable segmentation

The segmentation into syllable-like units is based on the pho-
netically alignment from a phoneme recognizer with long tem-
poral context [9]. We use a Hungarian recognizer, whose tokens
are mapped to classes pause, consonant and vowel. Then each
speech segment between two pauses is equally divided based
on the number of vowels in this segment. Each vowel is consid-
ered as the nucleus of a syllable. In a second step, the estimated
syllable boundary between two vowels can be shifted with re-
gard to the measured pitch at the potential boundary candidates.
This is done in order to preserve consecutive pitch contours that
proceed for example from a vowel to a voiced consonant.

2.3. Contour modeling

2.3.1. Pre-processing

All basic features are pre-processed before actually modeling
the temporal contour of them. Feature warping [10] (blind
warping into normal distribution) is applied to all MFCCs and
the logarithm is computed for the pitch frequencies. Finally,
mean subtraction is applied to all features. Note that the mean
was computed over the voiced parts of the whole utterance only
(obtained by valid pitch). Small gaps (1 frame) in the pitch con-



tour are smoothed by a median filter.

2.3.2. Temporal trajectory

The temporal contour of each feature can be approximated by
a curve fitting tool. We use the first n DCT bases to model
the trajectory, which correspond to characteristics of the curve,
like mean, slope and finer details. The contour is represented
by its DCT coefficients in the feature vector. The advantage of
using discrete cosine transformation instead of a simple poly-
nomial curve fitting is, that mapping the contour segment to a
fixed length is not necessary and that the coefficients are already
decorrelated.

As pitch may be undefined over parts of the syllable, one
can consider different approaches to model the other features
which are always defined within the syllable. In this work,
jointly modeling the unvoiced and voiced part and modeling
only the voiced part of each syllable is investigated for the other
features.

2.4. Final feature vector

The number of voiced/unvoiced frames inside the syllable also
serves as a discrete duration feature. The final feature vector for
each syllable consists of the duration followed by the represen-
tation of the temporal contour for each basic feature like pitch,
energy and MFCCs. Syllable segments that contain less frames
than the number of DCT coefficients used to model the contour
are omitted.

3. Session and Speaker Variability
Prosodic features like pitch and energy shall be used along
with acoustic features like MFCCs. Channel compensation
has proved to be beneficial for both of these feature types [6].
Challenging is the use of channel compensation with relatively
sparse feature vectors as it is the case here. For this purpose,
eigenchannel compensation was performed in both, feature and
model domain as it was proposed in [11] and [12]. [6] also
reported improvement through the use of a joint factor analysis
model on a very similar task. This section gives a brief overview
to the jointly used eigenchannel subspace and to the principles
of the two different compensation techniques, as well as the use
of eigenvoices for the speaker models.

3.1. Eigenchannel Subspace

The eigenchannel subspace is a low dimensional representation
of how the means of a GMM representing a speaker can be af-
fected by changing channel. This subspace is estimated as de-
scribed in [11]. Briefly, a corpus with multiple recordings for
each speaker under various conditions is needed. After adapt-
ing the UBM to each training utterance, mean supervectors are
formed by concatenating all mean vectors and dividing them by
corresponding standard deviation. The eigenchannels are the
eigenvectors of the average within-speaker covariance matrix.

3.2. Eigenchannel Compensation in model and feature do-
main

Eigenchannel compensation in model domain is only applied
to test conversations. During a single MAP-iteration, channel
factors are estimated for the UBM as well as for each speaker
model in test. These factors determine, how far each model is
shifted towards the test-utterance in the directions defining the
eigenchannel subspace.

A more simplified approach of channel compensation leads
to the possibility of shifting the features itself, rather than the
models as proposed in [12]. The channel compensated features
can be used to train and test a standard GMM system.

3.3. Eigenvoice modeling

We expand the channel model to a joint factor analysis model,
which is a model of speaker and session variability. In addi-
tion to channel directions, also speaker directions are identified
and represented in a low-dimensional subspace. The theory and
implementation is based on Kennys decoupled estimation as de-
scribed in detail in [7]. For this data, a pure eigenvoice approach
is used to model the speakers (d = 0). Initial eigenvoices and
eigenchannels are computed by principal component analysis
as described above. The final hyper-parameters are estimated
iteratively in terms of maximum likelihood.

4. Experiments
4.1. Data

Experiments were performed on the core condition of the NIST
2006 speaker recognition evaluation (SRE) [13], which contains
English trials only. The 1-side training 1-side test condition
is considered, where approximately 2.5min of speech is avail-
able from a 5min telephone conversation to train each speaker
and for each test trial. This set originally contains 462 female
and 354 male training utterances (where multiple utterances can
arise from one speaker) and 51448 test trials. Results are pre-
sented in terms of equal error rate (EER). The UBM model is
trained on utterances from Switchboard II, Switchboard Cellu-
lar and the NIST 2004 and 2005 SRE data sets. The eigenvoices
were estimated on all data, while the eigenchannel subspaces
were estimated on NIST SRE data only. The same corpus was
used to normalize verification scores via zt-norm [14].

4.2. Framework

The GMM framework used for the whole system is the same
as used for an acoustic baseline system [11]. The gender-
independent UBM is obtained by Expectation-Maximization
(EM) Training and the speaker models are derived by MAP-
Adaptation with τ = 19. Discrete as well as continuous fea-
tures are used within one feature vector, so variance flooring is
crucial while EM training. Variances are floored to 1/100 of
the global variance. Initial experiments were carried out with
256 Gaussians, no eigenchannel compensation and no zt-norm.

4.3. Prosodic contour features

First experiments were performed with a classical prosodic fea-
ture vector, which comprises the duration of the syllable as
well as the approximated pitch and energy contours, which are
modeled with 6 DCT coefficients (minimal segment length is
60ms). Results for different assortments of the feature vector
are presented in Table 1. As can be seen it is most beneficial to
use duration, pitch and energy jointly which also conforms to
similar results in [6].

As the feature vector will grow through the augmentation
of MFCC features, we want to use the smallest number of coef-
ficients to properly approximate the temporal contour in terms
of recognition performance. Table 2 shows that modeling even
finer details is not beneficial and that only a slight degradation
has to be accepted by reducing the resolution to 4 DCT coeffi-
cients.



Table 1: Different prosodic feature vectors with 6 coefficients
per contour.

Feature Vector Dim EER [%]
Pitch Contour 6 29.67
Duration, Pitch Contour 7 29.1
Pitch & Energy Contour 12 28.37
Duration, Pitch & Energy Contour 13 25.73

Table 2: Pitch & Energy contours modeled by different number
of DCT coefficients.

# of coefficients EER [%]
4 26.11
5 25.77
6 25.73
7 27.29

The best performing 13-dimensional feature vector was
also used to study the treatment of unvoiced parts within a sylla-
ble. Either the duration and the energy contour may correspond
to the whole syllable or only to the voiced part. As can be seen
in Table 3, it is beneficial to use only the voiced part of the syl-
lable. Note also that the mean subtraction of the basic features
in the pre-processing step is based only on the voiced parts as
well. Using all speech segments as determined by the phoneme
recognizer to compute the mean yields to much worse results.

Table 3: Modeling whole syllable or only voiced part.

Feature Vector EER [%]
whole Duration, Pitch & whole Energy Contour 25.73
voiced Duration, Pitch & voiced Energy Contour 24.4

4.4. Expansion of feature vectors

For the following experiments, the number of DCT coefficients
was reduced to 4. As the minimal segment length also is re-
duced to 40ms, about 10% more feature vectors could be ex-
tracted for each utterance. This and additional feature warping
of the energy coefficients reduced the EER to 22.3%, which
serves as a reference for expanding the feature vector with
MFCC contours.

In order to add a simple acoustic information, the prosodic
feature vector was augmented with the means of 12 MFCCs
over the syllable. This results in a drastic gain in recognition
performance to 14.07%. The benefit of adding all coefficients
for the MFCC contours can be seen in Table 4. Adding infor-
mation about the temporal contour of all MFCCs yields to an
EER of 9.87%, which is a relative improvement of 55% com-
pared to the purely prosodic system. Even the contours of the
higher MFCCs are beneficial and omitting them always results
in worse performance (see also Table 4). Also the addition of
the cepstral contours does not make the prosodic information
negligible, as performance degrades to 10.63% for cepstral con-
tours only.

Table 4: Augmentation of prosodic feature vector (baseline: du-
ration, pitch & energy contour). Contours are modeled with 4
coefficients, voiced parts only.

Feature Vector Dim EER [%]
Baseline 9 22.3
Baseline + 12 MFCC means 21 14.07
Baseline + 12 MFCC Contours 57 9.87
Baseline + 11 MFCC Contours 53 10.14
Baseline + 10 MFCC Contours 49 10.57
Baseline + 9 MFCC Contours 45 11.22
Baseline + 8 MFCC Contours 41 11.27
12 MFCC Contours 48 10.63

4.5. Channel Compensation

The effectiveness of eigenchannel compensation in model and
feature domain was investigated for a system trained on a 57-
dimensional vector containing duration and the temporal trajec-
tories for pitch, energy and 12 cepstral coefficients. 10 eigen-
channels were used in the experiments. Note that only ap-
proximately 500 feature vectors are available in this syllable-
framework to estimate the channel factors that determine the
compensation of each utterance. Table 5 shows the effect of
the channel compensation for GMMs with different number of
Gaussians. For small models with only 32 Gaussians, the chan-
nel factors can be estimated quite well and the compensation in
model as well as in feature domain results in 30% relative im-
provement, while for a model with 512 Gaussians, the gain is
only about 5%. Unfortunately the small models perform much
worse before applying the channel compensation, and EER is
still worse after eigenchannel adaptation. However, for the
model with 256 Gaussians the EER could still be reduced by
11% to 8.74%, even with this small amount of data.

Table 5: Effects of channel compensation for different sized
GMMs (10 Eigenchannels) in EER [%].

# of Gaussians No CC Model Domain Feature Domain
512 9.44 9.06 9.06
256 9.87 8.8 8.74
128 10.89 8.8 8.75
64 12.35 9.3 9.3
32 14.88 10.41 10.42

Eigenchannel compensation in feature domain bears the op-
portunity to compensate the features on a subspace created on a
smaller UBM and do the model training and evaluation with a
larger GMM, as it was performed for language identification
in [15]. This technique assumes that the properly estimated
channel directions and channel factors also fit for the bigger
GMM. In our experiments the features were compensated on
GMM sizes where the standard compensation showed adequate
performance. These compensated features were used to train
model sizes that performed best without channel compensation.
As can be seen in Table 6, this approach to handle the sparse
data results in better performance than the normal eigenchannel
adaptation. The relative improvement compared to the standard
compensation is 6% and 8% for the GMM sizes 256 and 512,
respectively.



Table 6: Different sized models with features compensated on
smaller Eigensubspace (sizes in # of Gaussians).

Speaker UBM Subspace UBM EER [%]
512 128 8.31
512 64 8.36
256 128 8.2
256 64 8.36
128 64 8.9

4.6. Joint factor analysis

A joint factor analysis system with 512 Gaussians, 150 eigen-
voices and 35 eigenchannels for the 57-dimensional vectors is
used to investigate the effectiveness of this approach for our
case. As shown in Table 7, the benefit from the joint use of
speaker and channel factors instead of pure eigenchannel com-
pensation (as in Table 6) is quite large. As reported in [6] the
joint factor analysis model seems to be very capable to handle
sparse amounts of data.

Table 7: EER [%] for systems without channel compensation,
eigenchannel compensation in model and feature domain and
factor analysis model (FA).

No CC Model Domain Feature Domain FA
9.44 9.06 9.06 5.91

As we always used a gender-independent framework (in
contrast to [6, 7]), a completely gender-dependent system was
also investigated. UBMs as well as the hyper-parameters were
trained on male and female utterances, respectively. Results are
presented in Table 8 for two types of feature vectors. While the
purely prosodic system enhances only slightly, the EER for the
big system is reduced by nearly 40% relatively.

Table 8: EER [%] for gender-dependent (GD) and gender-
independent (GI) FA-Systems with different number of eigen-
voices (EV) and eigenchannels (EC).

Feature Vector EV EC GI GD
Dur, F0 & Energy 50 20 15.27 14.62
Dur, F0, Energy & MFCCs 150 35 5.91 3.63

5. Conclusions
We have shown that syllable based prosodic feature vectors can
be successfully expanded and jointly modeled with acoustic
cepstral features by the use of DCT coefficients to represent
the temporal contour of each phonetically motivated segment.
The addition of cepstral contours achieves over 50% improve-
ment compared to a classical prosodic system with duration,
pitch and energy only. Without any compensation for session
variability, the performance of such a system is comparable to
a frame-based acoustic system and comprises complementary
information through different kinds of features like pitch and a
different temporal context. As the effect of channel compensa-
tion decreases for the proposed system due to the small amount
of features in the test utterance, it could be shown that a gender-
dependent joint factor analysis system highly improves the per-

formance and gives results similar to short-time eigenchannel
systems.
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