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ABSTRACT

In this paper we use acoustic and prosodic features jointly in a long-
temporal lexical context for automatic speaker recognition from
speech. The contours of pitch, energy and cepstral coefficients are
continuously modeled over the time span of a syllable to capture
the speaking style on phonetic level. As these features are affected
by session variability, established channel compensation techniques
are examined. Results for the combination of different features on a
syllable-level as well as for channel compensation are presented for
the NIST SRE 2006 speaker identification task. To show the comple-
mentary character of the features, the proposed system is fused with
an acoustic short-time system, leading to a relative improvement of
10.4%.

Index Terms— Speaker recognition, Prosody, GMM, Channel
Compensation

1. INTRODUCTION

State-of-the-art systems for text independent speaker identification
usually make use of acoustic short-time features in a Gaussian Mix-
ture Model (GMM) framework with Universal Background Model
(UBM) [1]. As these systems are strongly affected by session vari-
ability, new techniques have been successfully developed in the last
few years to compensate for these channel effects [2]. Still, most
acoustic systems do not make use of information from a higher level
of speech, like the phonetic, prosodic or lexical layer. Different
studies have shown that adding phonotactic- or prosodic characteris-
tics to an acoustic baseline system can yield to a better overall per-
formance, especially when a large amount of data is available per
speaker [3]. Dehak et al. [4] also reported gain in recognition per-
formance on shorter tasks, where only a few hundred feature vectors
are available to train and test each speaker.

The work in this paper is based on the use of classical prosodic
features like duration, pitch and energy in a syllable-like temporal
context. The trajectories of each feature is continuously modeled
over the time span of a syllable and is represented by coefficients
from a discrete cosine transformation (DCT). Additionally we also
capture the contour of acoustic features in form of Mel-frequency
cepstral coefficients (MFCC) and form a single feature vector out
of duration and pitch, energy and the MFCC contours. All these
features are jointly modeled using a GMM. As this mixed feature
vector will also be affected by variations in the channel, established
techniques for the compensation of session variability are applied.
Since each feature vector represents one syllable in the utterance,
there are only a few hundred features per recording, which makes it
hard to reliably estimate the channel factors that determine how far

a model is shifted in the channel subspace. We will investigate if
channel compensation in the model or in the feature domain is more
appropriate for this small amount of feature vectors.

The performance of the proposed system is presented in terms
of equal error rate for the text-independent NIST SRE 2006 speaker
identification task [5].

The organization of the paper is as follows: section 2 describes
the extraction of the syllable based features, including the basic fea-
tures itself, the way the utterance is segmented into syllable-like
units and based on this, the actual modeling of the temporal trajec-
tory of the basic features. Section 3 briefly describes the algorithms
used to perform the channel compensation. Section 4 presents the
experiments and results obtained with the system and conclusions
are given in section 5.

2. SYLLABLE BASED FEATURE CONTOURS

This section describes how a feature vector for each syllable is ob-
tained by continuously modeling the temporal trajectory of various
frame based features.

2.1. Basic features

Different basic features are extracted at 10-ms intervals. Pitch
frequencies are computed with the Average Magnitude Difference
Function from the Snack Sound Toolkit [6]. Snack is also used to
obtain windowed log power values. All these features are extracted
with Snacks default settings. Furthermore 12 Mel-frequency cepstral
coefficients (20ms Hamming window, 23 bands in Mel filter bank)
are generated.

2.2. Syllable segmentation

The segmentation into syllable-like units is based on the phoneti-
cally alignment from a phoneme recognizer with long temporal con-
text [7]. We use a Hungarian recognizer, whose tokens are mapped
to classes silence, consonant and vowel. Then each speech segment
between two pauses is equally divided based on the number of vow-
els in this segment. Figure 1 shows how each vowel is considered
as the nucleus of a syllable. In a second step, the estimated sylla-
ble boundary between two vowels can be shifted with regard to the
measured pitch at the potential boundary candidates. This is done in
order to preserve consecutive pitch contours that proceed for exam-
ple from a vowel to a voiced consonant.



2.3. Contour modeling
2.3.1. Pre-processing

All basic features are pre-processed before actually modeling the
temporal contour of them. Feature warping [8] (blind warping into
normal distribution) is applied to all MFCCs and the logarithm is
computed for the pitch frequencies. Finally, mean subtraction is ap-
plied to all features. Note that the mean was computed over the
voiced parts of the whole utterance only (obtained by valid pitch).
Small gaps (1 frame) in the pitch contour are smoothed by a median
filter.

2.3.2. Temporal trajectory

The temporal contour of each feature can be approximated by a curve
fitting tool, as shown in Figure 1. We use the first n DCT bases
to model the trajectory, which correspond to characteristics of the
curve, like mean, slope and finer details. The contour is represented
by its DCT coefficients in the feature vector. The advantage of using
discrete cosine transformation instead of a simple polynomial curve
fitting is, that mapping the contour segment to a fixed length is not
necessary and that the coefficients are already decorrelated. As pitch
may be undefined over parts of the syllable, one can consider differ-
ent approaches to model the other features which are always defined
within the syllable. In this work, jointly modeling the unvoiced and
voiced part and modeling only the voiced part of each syllable is
investigated for the other features.
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Fig. 1. Example for pitch contour over syllable with three phonemes.
Top: Original pitch values with phoneme and pseudo-syllable
boundaries (horizontal lines). Bottom: Original (dotted line) and
DCT approximated curve (solid line).

2.4. Final feature vector

The number of voiced/unvoiced frames inside the syllable also
serves as a discrete duration feature. The final feature vector for
each syllable consists of the duration followed by the representation
of the temporal contour for each basic feature like pitch, energy and
MFCCs. Syllable segments that contain less frames than the number
of DCT coefficients used to model the contour are omitted.

3. CHANNEL COMPENSATION

Prosodic features like pitch and energy shall be used along with
acoustic features like MFCCs. Channel compensation has proved to
be beneficial for both of these feature types [4]. Challenging is the
use of channel compensation with relatively sparse feature vectors as
it is the case here. For this purpose, eigenchannel compensation was
performed in both, feature and model domain as it was proposed in
[9] and [10]. This section gives a brief overview how the jointly used
eigenchannel subspace was estimated as well as to the principles of
the two different compensation techniques.

3.1. Eigenchannel Subspace

The eigenchannel subspace is a low dimensional representation of
how the means of a GMM representing a speaker can be affected
by changing channel. This subspace is estimated as described in
[9]. Briefly, a corpus with multiple recordings for each speaker un-
der various conditions is needed. After adapting the UBM to each
training utterance, mean supervectors are formed by concatenating
all mean vectors and dividing them by corresponding standard devi-
ation. The eigenchannels are the eigenvectors of the average within-
speaker covariance matrix. It is sufficient to keep only the the di-
rections that cover most of the variability caused by channel effects
(largest eigenvalues).

3.2. Eigenchannel Compensation in model and feature domain

Eigenchannel compensation in model domain is only applied to test
conversations. During a single MAP-iteration, channel factors are
estimated for the UBM as well as for each speaker model in test.
These factors determine, how far each model is shifted towards the
test-utterance in the directions defining the eigenchannel subspace.
A simplified implementation for estimating the channel factors is
used for computational efficiency as described in [9].

A more simplified approach of channel compensation leads to
the possibility of shifting the features itself, rather than the models
as proposed in [10]. One can assume to globally estimate the chan-
nel factors according only to the UBM. The change in means of the
mixture component with the highest occupation probability is then
applied to the feature vector itself. The channel compensated fea-
tures can be used to train and test a standard GMM system.

4. EXPERIMENTS

4.1. Data

Experiments were performed on the core condition of the NIST 2006
speaker recognition evaluation (SRE) [5], which contains English
trials only. The 1-side training 1-side test condition is considered,
where approximately 2.5min of speech is available from a 5min
telephone conversation to train each speaker and for each test trial.
This set originally contains 462 female and 354 male training utter-
ances (where multiple utterances can arise from one speaker) and
51448 test trials. Results are presented in terms of equal error rate
(EER)'. The UBM model is trained on 7880 5min utterances from
the NIST 2004 and 2005 SRE data sets. The eigenchannel subspaces
were estimated on 3399 sessions from 310 speakers (at least 8 ses-
sions per speaker) from the NIST 2004 SRE training set. The same

Note that evaluation key version 9 from NIST was used to measure the
system performance.



corpus was used to normalize verification scores via z-norm [11] us-
ing 248 utterances.

4.2. Framework

The GMM framework used for the whole system is the same as
used for an acoustic baseline system [9]. The gender-independent
UBM is obtained by Expectation-Maximization (EM) Training and
the speaker models are derived by MAP-Adaptation with 7 = 19.
Discrete as well as continuous features are used within one feature
vector, so variance flooring is crucial while EM training. Variances
are floored to 1/100 of the global variance. If not mentioned other-
wise, all results are obtained with 256 Gaussians, no eigenchannel
compensation and no z-norm.

4.3. Prosodic contour features

First experiments were performed with a classical prosodic feature
vector, which comprises the duration of the syllable as well as the
approximated pitch and energy contours, which are modeled with
6 DCT coefficients (minimal segment length is 60ms). Results for
different assortments of the feature vector are presented in Table 1.
As can be seen it is most beneficial to use duration, pitch and energy
jointly which also conforms to similar results in [4].

Table 1. Different prosodic feature vectors with 6 coefficients per
contour.

| Feature Vector [ Dim [ EER [%] ‘

Pitch Contour 6 29.67
Duration, Pitch Contour 7 29.1
Pitch & Energy Contour 12 28.37
Duration, Pitch & Energy Contour 13 25.73

As the feature vector will grow through the augmentation of
MFCC features, we want to use the smallest number of coefficients
to properly approximate the temporal contour in terms of recogni-
tion performance. Table 2 shows that modeling even finer details is
not beneficial and that only a slight degradation has to be accepted
by reducing the resolution to 4 DCT coefficients.

Table 2. Pitch & Energy contours modeled by different number of
DCT coefficients.

| # of coefficients | EER [%] |

4 26.11
5 25.77
6 25.73
7 27.29

The best performing 13-dimensional feature vector was also
used to study the treatment of unvoiced parts within a syllable. Either
the duration and the energy contour may correspond to the whole syl-
lable or only to the voiced part. As can be seen in Table 3, it is ben-
eficial to use only the voiced part of the syllable. Note also that the
mean subtraction of the basic features in the pre-processing step is
based only on the voiced parts as well. Using all speech segments as
determined by the phoneme recognizer to compute the mean yields
to much worse results.

Table 3. Modeling whole syllable or only voiced part.

[ EER [%] ‘
whole Duration, Pitch & whole Energy Contour 25.73
voiced Duration, Pitch & voiced Energy Contour 24.4

| Feature Vector

4.4. Expansion of feature vectors

For the following experiments, the number of DCT coefficients was
reduced to 4. As the minimal segment length also is reduced to
40ms, about 10% more feature vectors could be extracted for each
utterance. This and additional feature warping of the energy coef-
ficients reduced the EER to 22.3%, which serves as a reference for
expanding the feature vector with MFCC contours.

In order to add a simple acoustic information, the prosodic fea-
ture vector was augmented with the means of 12 MFCCs over the
syllable. This results in a drastic gain in recognition performance to
14.07%. The benefit of adding all coefficients for the MFCC con-
tours can be seen in Table 4. Adding information about the temporal
contour of all MFCCs yields to an EER of 9.87%, which is a relative
improvement of 55% compared to the purely prosodic system. Even
the contours of the higher MFCCs are beneficial and omitting them
always results in worse performance (see also Table 4). Also the
addition of the cepstral contours does not make the prosodic infor-
mation negligible, as performance degrades to 10.63% for cepstral
contours only.

Table 4. Augmentation of prosodic feature vector (baseline: dura-
tion, pitch & energy contour). Contours are modeled with 4 coeffi-
cients, voiced parts only.

| Feature Vector [ Dim [ EER [%] ‘

Baseline 9 22.3
Baseline + 12 MFCC means 21 14.07
Baseline + 12 MFCC Contours 57 9.87
Baseline + 11 MFCC Contours 53 10.14
Baseline + 10 MFCC Contours 49 10.57
Baseline + 9 MFCC Contours 45 11.22
Baseline + 8 MFCC Contours 41 11.27
12 MFCC Contours 48 10.63

4.5. Channel Compensation

The effectiveness of eigenchannel compensation in model and
feature domain was investigated for a system trained on a 57-
dimensional vector containing duration and the temporal trajecto-
ries for pitch, energy and 12 cepstral coefficients. 10 eigenchannels
were used in the experiments. Note that only approximately 500 fea-
ture vectors are available in this syllable-framework to estimate the
channel factors that determine the compensation of each utterance.
Table 5 shows the effect of the channel compensation for GMMs
with different number of Gaussians. For small models with only
32 Gaussians, the channel factors can be estimated quite well and
the compensation in model as well as in feature domain results in
30% relative improvement, while for a model with 512 Gaussians,
the gain is only about 5%. Unfortunately the small models perform
much worse before applying the channel compensation, and EER
is still worse after eigenchannel adaptation. However, for the model



with 256 Gaussians the EER could still be reduced by 11% to 8.74%,

even with this small amount of data.

Table 5. Effects of channel compensation for different sized GMMs
(10 Eigenchannels) in EER [%].

| # of Gaussians | No CC | Model Domain | Feature Domain |

512 9.44 9.06 9.06
256 9.87 8.8 8.74
128 10.89 8.8 8.75
64 12.35 9.3 9.3

32 14.88 10.41 10.42

Eigenchannel compensation in feature domain bears the oppor-
tunity to compensate the features on an eigenchannel subspace cre-
ated on a smaller UBM and do the model training and evaluation
with a larger GMM. This technique assumes that the properly es-
timated channel directions and channel factors also fit for the big-
ger GMM. In our experiments the features were compensated on
GMM sizes where the standard compensation showed adequate per-
formance. These compensated features were used to train model
sizes that performed best without channel compensation. As can be
seen in Table 6, this approach to handle the sparse data results in
better performance than the normal eigenchannel adaptation. The
relative improvement compared to the standard compensation is 6%
and 8% for the GMM sizes 256 and 512, respectively.

Table 6. Different sized models with features compensated on
smaller Eigensubspace (sizes in # of Gaussians).

| Speaker UBM [ Subspace UBM | EER [%] |

5. CONCLUSIONS

We have shown that syllable based prosodic feature vectors can be
successfully expanded and jointly modeled with acoustic cepstral
features by the use of DCT coefficients to represent the tempo-
ral contour of each phonetically motivated segment. The addition
of cepstral contours achieves over 50% improvement compared to
a classical prosodic system with duration, pitch and energy only.
Without any compensation for session variability, the performance
of such a system is comparable to a frame-based acoustic system
and comprises complementary information through different kinds
of features like pitch and a different temporal context. As the ef-
fect of channel compensation (frame-based acoustic systems im-
prove relatively about 50%) decreases for the proposed system due
to the small amount of features in the test utterance, an approach
could be presented to gain more improvement through the use of
channel compensation in feature domain, where features are com-
pensated through a smaller and more robust eigenchannel subspace.
When combining this system with best-performing baseline acoustic
system it results in a 10.4% improvement of overall performance.
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