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Abstract
This paper describes Brno University of Technology (BUT) sys-
tem for 2007 NIST Language recognition (LRE) evaluation.
The system is a fusion of 4 acoustic and 9 phonotactic sub-
systems. We have investigated several new topics such as dis-
criminatively trained language models in phonotactic systems,
and eigen-channel adaptation in model and feature domain in
acoustic systems. We also point out the importance of calibra-
tion and fusion. All results are presented on NIST 2007 LRE
data.
Index terms: language recognition, phonotactic LRE, acoustic
LRE, decision trees, intersession variability, system calibration,
system fusion.

1. Introduction
NIST coordinated recent evaluations of automatic language
recognition systems in 1996, 2003, 2005 and 2007. This pa-
per describes Brno University of Technology (BUT) system for
LRE 2007 [5]. The system is a fusion of 4 acoustic systems and
9 phonotactic ones. The work builds on our previous LRE 2005
system [11] but also brings several new sub-systems such as
binary decision trees, discriminatively trained languagemodels
in phonotactic systems, and eigen-channel adaptation in model
and feature domain in acoustic systems. This paper gives an
overall presentation of all the systems and deals also with sys-
tem calibration which is essential to obtain good system per-
formance. For detailed information on our work on discrimi-
native training and channel compensation for acoustic language
recognition, refer to [8]. The advances in phonotactic language
recognition are presented in [6].

Our submission was only for the ’closed set’ condition of
the 14-class ’General LR’ test. All scores can be interpreted as
log likelihood ratios.

2. Data and metric
Four kinds of data were used. Besides the “hot” evaluation data,
the systems needed to be trained (training data), calibrated and
tuned (Dev1 data) and tested (Dev2 data).
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Evaluation data: The number of languages to be detected
has significantly increased since the last evaluation in 2005.
There are 14 languages that were used as detection targets in
LRE07 [5]. The evaluation set contains test segments with three
nominal durations of speech: 3, 10 and 30 seconds. Actual
speech durations varied but were constrained to be within the
ranges of 2-4 seconds, 7-13 seconds, and 25-35 seconds of ac-
tual speech contained in segments, respectively. The silence
was not removed from speech so a segment could be much
longer. Unlike previous evaluations, the nominal durationfor
each test segment was not identified. There were more than
7500 segments to identify.

Training data: The selection of training data was quite
challenging and we used a variety of corpora distributed by
LDC and ELRA to train our systems. The amounts of data
ranged from 264 hours for English until mere 1.45 hours for
Thai (Table 1).

Development data data for this evaluation were defined by
MIT Lincoln Labs. They have nominal duration 3, 10 and 30
seconds. The sets were based on segments from previous evalu-
ations plus additional segments extracted from longer filesfrom
training databases (which were not included in the trainingset).
Dev1 data were based on NIST LRE 1996 and 2003 and ad-
ditional segments from Fisher, CallHome and Mixer databases.
The set contains 5165 trials and served for system tuning and
calibration (especially the back-ends).Dev2 data were based
on NIST LRE 2005 and additional segments from OGI stories
and Mixer database. This set contains 5884 trials and servedto
test the system during the development.

Evaluation Metric: According to [5], basic pair-wise
language recognition performance is computed for all target
and non-target language pairs, and represented by miss and
false alarm probabilities. From these and application-motivated
costs, the average cost performanceCavg is computed [5] which
is our primary evaluation metric. All results are reported as
100 × Cavg.

3. System description
The system was a fusion of 13 sub-systems: 4 acoustic ones and
9 phonotactic. All sub-system descriptions are completed with
a “code” of the system for easy identification.

For all systems, the pre-processing was done by voice ac-
tivity detector (VAD) based on our Hungarian phone recognizer
with all the phoneme classes linked to ’speech’ class. The si-
lence is not used in acoustic systems.

3.1. Acoustic systems

The feature extraction was identical for all acoustic systems and
was the same as in our LRE 2005 system [11]: 7 MFCC coeffi-



sum CF CH F SRE LDC07 OGI OGI22 Other
Arabic 212 19.5 10.4 175 5.93 1.45 0.33
Bengali 4.27 2.86 1.42
Chinese 93.2 41.7 1.64 17.2 44.9 4.2 0.87 0.85
English 264 39.8 4.68 162 34.9 6.77 0.52 15.6 (FAE)
Hindustani 23.5 19.6 0.64 1.32 1.53 0.42
Spanish 54.3 43.8 6.71 2.63 1.18 0.38
Farsi 22.7 21.2 0.03 1.00 0.42
German 28.2 21.6 5.10 1.12 0.38
Japanese 23.9 19.1 3.47 0.87 0.35
Korean 19.7 18.4 0.09 0.72 0.5
Russian 15.1 3.38 1.33 0.43 10.0 (SpDat)
Tamil 19.6 18.4 0.96 0.26
Thai 1.45 0.15 1.23
Vietnamese 21.6 20.6 0.79 0.27
Other 62.5 20.7 1.10 3.29 37.4 (SpDat)

Table 1: Training data in hours for each language. Sources:CF: CallFriend,CH: CallHome,F: Fisher English Parts 1. and 2.,
Fisher Levantine Arabic, HKUST Mandarin,SRE: Mixer (data from NIST SRE 2004, 2005, 2006),LDC07: development data for
NIST LRE 2007,OGI: OGI-multilingual,OGI22: OGI 22 languages,FAE: Foreign Accented English,SpDat: SpeechDat-East (see
http://www.fee.vutbr.cz/SPEECHDAT-E or the ELRA/ELDA catalog).

cients (including coefficient C0) concatenated with SDC 7-1-3-
7, which totals in 56 coefficients per frame.

Vocal-tract length normalization (VTLN) was done with
the same models and in the same way as in NIST LRE 2005
[11]. The warping factors are estimated using single GMM
(512 Gaussians), ML-trained on the whole CallFriend database
(using all the languages). The model was trained in standard
speaker adaptive training (SAT) fashion in four iterationsof al-
ternately re-estimating the model parameters and the warping
factors for the training data.

3.1.1. GMM system with 2048 Gaussians per language and
eigen-channel adaptation GMM2048-eigchan

The inspiration comes from our GMM system for speaker
recognition [3] which follows conventional Universal Back-
ground Model-Gaussian Mixture Modeling (UBM-GMM)
paradigm and employs number of techniques that have previ-
ously proved to improve the GMM modeling [11].

Each language model is obtained by traditionalrelevance
MAP adaptation of UBM using enrollment conversation. In the
verification phase, standard Top-N Expected Log Likelihood
Ratio (ELLR) scoring is used to obtain verification score, with
N = 10. For each trial, both the model of target language and
UBM are adapted to channel of test conversation using simple
eigen-channel adaptation [1] prior to computing the log likeli-
hood ratio score. We adopted the term ‘eigen-channel’ as used
in speaker recognition (SRE) by Kenny [9]. The technique con-
sists of eigen-channel subspace estimation (training phase) and
eigen-channel adaptation (testing) and is described in detail in
[3, 8].

3.1.2. GMM-MMI: GMM256-MMI

This subsystem uses GMM models with 256 Gaussians per lan-
guage, where mean and variance parameters are re-estimated
using Maximum Mutual Information criterion - the same as for
LRE 2005 [11].

3.1.3. GMM-MMI with channel compensated features:
GMM256-MMI-chcf

Similar set of GMM models with 256 Gaussians per language
are trained with Maximum Mutual Information criterion. How-
ever, the features are first compensated using eigen-channel
adaptation in feature domain [8].

3.1.4. SVM on GMM super-vectors: GMM512-SVM

In this system, GMM super-vectors (concatenated GMM mean
vectors obtained by MAP adapting UBM to given speech seg-
ment) are extracted not only from target-model training speech
segments, but also for all other background and test speech seg-
ments. In other words, each speech segment is represented by
a single GMM super-vector. The target and background super-
vectors are then used to train support vector machine (SVM)
models of target languages against which the test super-vectors
are scored. The SVM uses a linear kernel in super-vector space.
Each SVM is trained using all available positive examples from
the target language, and many negative examples from other
languages.

3.2. Phonotactic systems

The phonotactic systems were based on 3 phone recogniz-
ers: two ANN/HMM hybrids and one based on GMM/HMM
context-dependent models.

The two hybrid phone recognizers [11] are based on
ANN/HMM approach, where artificial neural networks (ANN)
are used to estimate posterior probabilities of phones from
Mel filter bank log energies using split left and right contexts
(LCRC) of 310ms around the current frame. They were trained
on Hungarian and Russian SpeechDat-E databases.

OneGMM/HMM phone recognizer was based on context-
dependent state-clustered triphone models, which are trained in
similar way as the models used in AMI/AMIDA LVCSR [7].
The models were trained using 2000 hours of English telephone
conversational speech data from Fisher, Switchboard and Call-
Home. The features are 13 PLP coefficients augmented with
their first, second and third derivatives projected into 39 di-
mensional space using HLDA transformation. The models are
trained discriminatively using MPE criterion. VTLN and CM-



LLR adaptations are used for both training and recognition in
SAT fashion. The triphones were used for phone recognition
with a bi-gram phonotactic model trained on English-only data.

All the recognizers were able to produce phone strings as
well as phone lattices. In case of lattices, posterior-weighted
counts (“soft-counts”) were used. Detailed description ofour
phonotactic systems can be found in [6].

3.2.1. 4-gram language model based on strings: HU strLM,
EN strLM

These systems use 4-gram model estimated on phone strings
from the Hungarian LCRC and English GMM/HMM phone rec-
ognizers. In the case of Hungarian phone recognizer, the LM for
each language was derived by interpolating several LMs. In the
case of English phone recognizer, the final target language LMs
were interpolated with single LM trained on all languages to-
gether. This was helpful because of the limited amount of data
to train LMs. The interpolation weights were tuned to give min-
imal perplexity on Dev1 set. Witten-Bell smoothing was used
and pruning using minimal count was applied.

3.2.2. 3-gram language model on lattice counts: HU LM,
RU LM

The phonotactic models were based on soft-counts but they
wereadapted from “UBM” trained on all data in the same way
as in decision tree based phonotactic models [10].

3.2.3. Binary decision trees on lattice counts:
HU TREE A3E7M5S3G2 FA, RU Tree and EN Tree

In all our systems, binary decision tree language modeling was
based on creating a single language independent tree (referred
to as “UBM”) and adapting its distributions to individual lan-
guage training data, as described by Navratil [10]. While the
sub-systems built on Russian LCRC and English GMM/HMM
phone recognizers use this basic approach only, the Hungar-
ian output was processed in a more complex way using Multi-
models and applying factor analysis for intersession compensa-
tion of phonotactic statistics.

Multi-models: Instead of merging all resources (databases)
of one language together for a UBM adaptation, those resources
with large amount of data were “hand-clustered”, and a sin-
gle LM was created for each of these clusters (e.g. 7 LMs
for English, see the abbreviationA3E7M5S3G2). Such hand-
clustering reflected some specifics such as foreign-accented En-
glish, different dialects, etc. A linear back-end was used to post-
process these individual outputs to come up with one score per
language.

Factor analysis is a method we have proposed to compen-
sate for inter-session variation in decision tree modeling. It op-
erates on the leaf distributions by taking into account undesired
variability within languages, similarly as in the eigen-channel
compensation of acoustic systems [6].

3.2.4. 3-gram lattice counts as super-vectors to SVM:
HU SVM-3gram counts

In this subsystem, the trigram-lattice-counts from Hungarian
phone recognizer were used as a super-vectors for subsequent
classification by SVMs, similarly as in MIT’s work [4].

3.3. Normalization and Calibration

All systems were first processed by linear back-end and then
fused (or calibrated) using multi-class linear logistic regres-

GMM2048-MMI-chcf EN Tree all
30 10 3 30 10 3

No back-end 5.75 9.45 18.44 9.02 14.21 24.37
LLR 3.49 7.90 17.65 3.96 10.83 22.97
LDA 2.88 7.42 16.94 3.85 10.55 22.58
LDA+LLR 2.41 7.02 16.90 3.54 10.69 22.66

Table 2: Effects of calibration.

Acoustic 30 10 3
GMM256-MMI 4.15 8.61 18.43
GMM256-MMI-chcf 3.73 9.81 20.98
GMM2048-eigchan 2.76 7.38 17.14
GMM512-SVM 3.80 8.77 20.14

Phonotactic 30 10 3
HU LM 5.54 11.75 23.54
HU TREE A3E7M5S3G2FA 4.52 10.35 23.66
HU strLM (4-gram) 6.35 13.86 27.12
HU LM-MMI (2-gram) 6.85 14.27 26.37
HU SVM-3gram-counts 5.41 13.26 26.92
RU LM 6.06 13.04 24.47
RU Tree 6.31 12.99 24.51
EN Tree 4.56 12.32 24.54
EN strLM (4-gram) 5.83 14.62 27.24

Table 3: Performance of individual subsystems submitted to
NIST LRE 2007.

sion [2]. Both linear back-end and fusion parameters were
trained on Dev1 data. The FoCal Multi-class toolkit by Niko
Brümmer was used for the pre-processing and fusion.

4. Experiments
The attention is first given to the calibration and fusion, since it
had most of impact in our post-evaluation analysis.

The effect of calibration is demonstrated on one acous-
tic and one phonotactic system, the best one from each cat-
egory: GMM with 2048 Gaussian mixture model trained
using MMI criterion on channel compensated features
(GMM2048-MMI-chcf) and Binary decision trees on pos-
terior weighted counts from English HMM phone recognizer
trained on full data (EN Tree all – see below for the differ-
ence fromEN Tree). Three calibration schemes were com-
pared: (1) Linear back-end (LDA), (2) Linear Logistic Regres-
sion (LLR) and (3) LDA followed by LLR. With proper cali-
bration, it is possible to reduce the error by 60% for 30 second
condition (Table 2).

Detailed report of the results of all subsystems that were
part of our submission is given in Table 3. All systems were
calibrated using LDA+LLR. For the submission, the fusion of
systems calibrated by LDA+LLR was done by LLR, the results
are in the first line of Table 5.

In the post-evaluation analysis, we have concentrated on the
following three topics:

Improving the acoustic system: 2048 Gaussians, eigen-
channel compensated features and MMI training produced the
best performing acoustic subsystemGMM2048-MMI-chcf
and also the best performing stand-alone subsystem in our post
evaluation work with100 × Cavg = 2.41 on 30s segments [8].

Full training data for decision tree: with the English
phone recognizer based on LVCSR, we were able to process
only 3 hours per language for the submission, resulting in
100 × Cavg = 4.56 (Table 3). By processing all 450 hours



LLR fusion LDA fusion
calibrated on 30 10 3 30 10 3
Dev1-30+Dev1-10 2.01 4.74 14.20 1.71 5.21 16.39
Dev1 - duration dependent 1.94 4.87 13.84 2.02 5.58 16.06
Dev2 - duration dependent 1.61 4.61 14.24 2.38 5.32 18.73
Dev1+Dev2 - duration dependent 1.41 4.43 12.98 1.31 4.51 14.69

Table 4: Different fusions.

100xCavg Cllr avg Cllr multiclass
30 10 3 30 10 3 30 10 3

Submitted (LLR fusion) 2.01 4.74 14.20 .075 .184 .761 .284 .663 2.357
New Calibration (LLR fusion) 1.41 4.43 12.98 .056 .166 .447 .212 .614 1.671
Post-evaluation system (LLR fusion) 1.30 4.12 12.53 .051 .156 .433 .191 .577 1.615
Best 3 systems (LDA fusion) 1.28 4.63 13.53 .053 .161 .459 .187 .605 1.718

Table 5: Recapitulation of results using LLR and LDA fusions.

of training data and re-training decision trees, we obtained 3.54
(the system is denotedEN Tree all) [6].

Fusion: LLR fusion trained on join set of 10 and 30 sec-
onds from Dev1 set was used at the time of submission. The
LDA fusion1 produced approximately the same results (Table 4)
— it was better for the 30 seconds condition, but LLR outper-
formed it for 10 and 3 seconds. Therefore, we experimented
with duration-dependent fusion: for each 30s, 10s, 3s condition,
different calibration and fusion was trained on development seg-
ments of matching duration. This turned out to perform bet-
ter. There are three data sets on which we can train the fusion:
Dev1, Dev2 and Dev1+Dev2. Dev2 data are closer to the evalu-
ation data than Dev1, therefore the results are better for this set
for LLR fusion. But if we use Dev1 and Dev2 sets together (2
times more training examples), both LLR and LDA fusions are
better and produce similar results. The post-evaluation fusions
are calibrated on Dev1+Dev2 set, and are duration-dependent.

Table 5 compares results of submitted and post-evaluation
systems. The last line stands for a “light” system which
contains only 3 best sub-systems:GMM2048-MMI-chcf,
EN Tree all andHU TREE A3E7M5S3G2 LFA.

5. Conclusions
There are several statements we can make based on the above
results: The first one is about back-ends and fusion. It is neces-
sary to have lots of calibration data as closed as possible tothe
evaluation. This is at least as important as having good systems
that are calibrated. In acoustic system it is beneficial to use
a combination of all successful techniques: a lot of Gaussian
components, channel compensation and Maximum Mutual In-
formation training. In phonotactic system, we have confirmed,
that the accuracy of the phone recognizer is crucial for good
performance of LRE. Also, we found adaptation from UBM
advantageous both for classical LM and tree-based approaches,
and we investigated into intersession compensation in phono-
tactic models using factor analysis. The biggest challengein
LRE nowadays is the availability and quality of training data.
Resources such as Fisher do not exist for most languages and
we have to recur to collection of data from other sources. Initial
experiments in acquisition of telephone data from broadcasts
[12] showed promising results and we continue work in this di-
rection.

1Note, that for LDA fusion, LLR was applied at the end to calibrate
the whole system.
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