
BUT-AGNITIO System Description for NIST Language Recognition
Evaluation 2009

Niko Brümmer (El Derivador), Lukáš Burget (El Discriminador), Ondřej Glembek (El Fonetista),
Valiantsina Hubeika (La Chica), Zdenek Jančı́k (El Estadı́stico), Martin Karafiát (Zorro),

Pavel Matějka (El Generador), Tomáš Mikolov (El Chico), Oldřich Plchot (El Organizador),
Albert Strasheim (Pocoyó)

Speech@FIT, Brno University of Technology, Czech Republic
and

AGNITIO, South Africa

1. Bugfix Update
All of our submitted systems were replaced with bugfix ver-
sions. The ‘bug’ was discovered after the results had been re-
leased and corrected subsequently. The corrected versions were
re-submitted to NIST for scoring.

Only one subsystem, which happened to be included in all
of our submissions, the one described in section 8.2, was subject
to this error. Slightly different versions of this subsystem had
been run on the development data and on the evaluation data.
This turned out to be fatal to all our submissions.

In our bugfix submissions, we corrected only this error and
left everything else as it was and as described below.

2. Introduction
BUT-AGNITIO are submitting 4 different systems, which we
exercised on the closed-set, open-set and language-pairs tasks.
Here we list these systems and specify which system should be
considered as primary system for which task. Detailed descrip-
tions follow later.

BUT-AGN-1: This is our primary system for closed-set. See
section 6.1 for details.

BUT-AGN-2: This is our primary system for open-set. It was
also exercised on closed-set as a contrastive system. See
section 6.2 for details.

BUT-AGN-3: This is our primary system for language-pairs.
It was also exercised on closed-set as a contrastive sys-
tem. See section 6.3 for details.

BUT-AGN-4: This is a contrastive system for closed-set. See
section 6.4 for details.

For all of our systems, the score in every trial may be interpreted
as the log-likelihood-ratio for the target versus the non-target
hypothesis.

3. Development data
The following data (distributed by LDC and ELRA) were used
to train our systems.:

CF CallFriend
F Fisher English Part 1.and 2.
F Fisher Levantine Arabic
F HKUST Mandarin

SRE Mixer (data from NIST SRE 2004,2005,2006, 2008)
LDC07 development data for NIST LRE 2007

OGI OGI-multilingual
OGI22 OGI 22 languages

FAE Foreigen Accented English
SpDat SpeechDat-East 1.

SB SwitchBoard
VOA Voice of America radio broadcast

Our data was separated into two independent subsets, which
we denoted TRAIN and DEV. The TRAIN subset had 54 lan-
guages (including the 23 target languages) and had about 80 000
segments in total. The DEV subset had 57 languages (includ-
ing the 23 targets) and a total of about 60 000 segments. The
DEV subset was split into balanced subsets having nominal du-
rations of 3s, 10s and 30s. The DEV set was based on segments
from previous evaluations plus additional segments extracted
from longer files from CTS and VOA databases (which were
not contained in the TRAIN set).

For a detailed breakdown of the amounts of training data
per language, see Table 1 at the end of the document.

4. General System description
In this section we describe the general system architecture that
is common to all systems. Each system has three main stages:

Frontends, of which there may be multiple different ones for
a complete system. Each frontend stage maps the input
speech segment to a score-vector. We denote these fron-
tend outputs as amorphous scores. The dimensionality
of these scores vary between 23 and 68, as described in
more detail later.

Backend, which performs fusion and calibration. The back-
end fuses the amorphous scores from the frontends and
outputs calibrated scores. These scores function as mul-
ticlass log-likelihoods. In the closed-set case there are 23
log-likelihoods per input segment, for each of the 23 tar-
get languages. In the Open-set case, there are 24: the 23
target log-likelihoods as well as the log-likelihood for the
hypothesis that the input is from some other language.
The backend is further described in the next section.



Decision stage, which takes the (i) backend output log-
likelihoods and (ii) the priors as defined for each trial.
These are used in Bayes’ rule to obtain the posterior dis-
tribution over the language classes. The posterior is then
used to make minimum-expected-cost Bayes decisions.
For closed-set the prior allows 23 hypotheses, for open-
set 24 hypotheses and for pairs 2 hypotheses. For each
input segment, there are multiple detection trials, where
the prior is varied between trials, as specified in the eval-
uation plan.

5. Backend
The backend maps one or more amorphous input score-vectors
to a calibrated output score-vector, for every input segment.
There are two backend variants, for closed-set and open-set re-
spectively. Both variants are composed of separate Gaussian
backends (GBE’s) for different frontends, followed by a single
discriminative fusion and calibration stage:

5.1. Gaussian Backend (GBE)

The GBE models the amorphous scores with a different Gaus-
sian model in amorphous score-space, for each language class.
In the closed-set case, all the class models share the same com-
mon within-class covariance (CWCC). In the open-set case, the
23 target languages share the CWCC, but the out-of-set class
has a larger covariance. In all cases there are different class-
conditional means.

For the closed-set case, we use maximum likelihood (ML)
estimates for the parameters. The CWCC was estimated over
all 57 languages, while we used the means only for the 23 target
languages.

In the open-set case, we take the out-of-set covariance as
CWCC+BCC, where BCC is the between-class covariance, es-
timated from the means of all 57 languages in DEV, so BCC
was estimated from 57 data points. The mean for this model
was chosen as the mean of the 57 language means.

The output scores of the GBE are the 23 or 24 log-
likelihoods of the input score-vector, given each of the class
models.

5.2. Fusion and calibration

In contrast to our previous work, where we used three separate
backends for nominal durations of 3s, 10s and 30s, we built a
single duration-compensated fusion and calibration stage this
year.

Let there be M input systems, where system i produces
amorphous score-vector sit for a given input t. Each system
also outputs as ancillary information an indication of the dura-
tion of the input segment, denoted dit. For acoustic systems,
this was the number of 10ms speech frames found by the VAD
(voice-activity-detection). For phonotactic systems, this was the
expected number of phones in the segment. Let B() denote the
mapping effected by the GBE, then the output of the fusion and
calibration is:

~̀
t =

N∑
i=1

a1iB(sit) + a2iB(d−0.5
it sit) + a3iB(d−1

it sit)

+ b + C~γt

(1)

where aji are scalar fusion weights, b is an offset vector, C
is a matrix and ~γt is a vector of ancillary data. For systems
which fused both acoustic and phonotactic, we composed ~γ of

the phone and frame durations, as well as their square roots. In
cases where we fused more than one phonotactic system, we
used the expected number of phones for each system.

Notice that for each system, we fused in three differently
normalized score variants and for each of these variants, a dif-
ferent GBE was trained.

The fusion parameters (aji,b,C) were discriminatively
trained using multiclass logistic regression [9, 10]. This tends to
produce well-calibrated class log-likelihoods. We verified this
fact by judging calibration on independent data (see jackknifing
below), by comparing Cavg and C∗

avg (as defined below).

5.3. Jackknifing

We used our TRAIN data subset to train all frontends, while we
used our DEV data to train all the backend stages and also to
test performance. To keep backend training and test separate,
we resorted to a jackknifing scheme. We did 5 outer iterations,
where in each we randomly partitioned the DEV data into 5
subsets balanced across all 57 languages. In 5 inner iterations,
one subset was held out as test data, while the other 4 were used
for backend training.

We computed Cavg and C∗
avg on each of the 25 test sets and

averaged. We also averaged the 25 backends thus obtained for a
final backend which was applied to the LRE’09 evaluation data.

6. System compositions
Here we describe how the different systems are composed.

6.1. BUT-AGN-1

This is our primary system for closed-set. It is a selection of
subsystems (frontends) which we judged to give the best per-
formance. We made the final decision, based on Cavg for 10s
duration, because we judged the error-rate on 30s duration was
too low for reliable decisions.

This system fuses three acoustic systems and four phono-
tactic systems. The acoustic systems are:

• The RDLT system of section 8.2, with channel compen-
sation as described in section 8.1.

• The RDLT system of section 8.2, with channel compen-
sation omitted.

• The MMI system of section 8.3.

The phonotactic systems are:

• Three systems described in section 8.4, respectively us-
ing the Hungarian, Russian and English phone recogniz-
ers.

• The SVM system as described in section 8.5.

6.2. BUT-AGN-2

This is our primary system for open-set. It is almost the same
BUT-AGN-1, with the following differences:

• The RDLT system without JFA channel compensation
was omitted.

• The backend was trained in open-set mode.

It was also run on closed-set as a contrastive system, by simply
ignoring the 24th log-likelihood output of the backend.



6.3. BUT-AGN-3

This is our primary system for all-pairs. It is almost the same
BUT-AGN-1, with the following difference:

• The RDLT system without JFA channel compensation
was omitted.

It was also run on closed-set as a contrastive system.

6.4. BUT-AGN-4

This is a monolithic system, composed of our single best acous-
tic system described in section 8.2. This is a contrastive system
for closed-set.

7. Frontend types
There are two types of frontend, acoustic and phonotactic.
Here, we give general descriptions of both types, followed by
details of each frontend.

7.1. Acoustic

The acoustic systems are based on MFCC/SDC acoustic fea-
tures. This is a brief summary of acoustic feature extraction and
UBM training. For more detail, see our previous work [22, 7].

The inputs to the language recognizer are segments of
recorded speech of varying duration. The voice activity detec-
tion (VAD) is performed by our Hungarian phoneme recognizer,
with all the phoneme classes linked to ’speech’ class.

All acoustic systems used the popular shifted-delta-
cepstra (SDC) [3] feature extraction. The feature extraction is
similar to BUT LRE 2005 system [2]. Every speech segment
is mapped to a variable-length sequence of feature vectors as
follows: After discarding silent portions, every 10ms speech-
frame is mapped to a 56-dimensional feature vector. The fea-
ture vector is the concatenation of an SDC-7-1-3-7 vector and 7
MFCC coefficients (including C0). Cepstral mean and variance
normalization are applied before SDC.

Vocal-tract length normalization (VTLN) performs simple
speaker adaptation. We used MAP adaptation from UBM (sin-
gle GMM with 32 diagonal Gaussians trained on Switchboard)
to derive specific models for each warping factor [19]. Models
are retrained using MMI (Maximum Mutual Information) crite-
rion. The reference is derived by LVSCR system.

A 2048-component, language-independent, maximum-
likelihood GMM was trained with the EM-algorithm on the
pooled acoustic feature vectors of all 54 languages in the
TRAIN dataset. We follow speaker recognition terminology
and refer to this language-independent GMM as the universal
background model, or UBM [8].

7.2. Phonotactic

The phonotactic systems were based on 3 phoneme recogniz-
ers: two left-context/right-context hybrids and one based on
GMM/HMM context dependent models. All the recognizers are
able to produce phoneme strings as well as phoneme lattices. In
case of lattices, posterior-weighted counts (“soft-counts”) were
used in the following processing [15].

7.2.1. Hybrid phoneme recognizers

The phoneme recognizer is based on hybrid ANN/HMM ap-
proach, where artificial neural networks (ANN) are used to
estimate posterior probabilities of phonemes from Mel filter

bank log energies using the context of 310ms around the cur-
rent frame. Hybrid recognizers were trained for Hungarian and
Russian on the SpeechDat-E databases. For more details see
[21, 13].

7.2.2. GMM/HMM phoneme recognizers

The third phoneme recognizer was based on GMM/HMM
context dependent state clustered triphone models, which are
trained in similar way as the models used in AMI/AMIDA
LVCSR [14]. The models were trained using 2000 hours of En-
glish telephone conversational speech data from Fisher, Switch-
board and CallHome databases. The features are 13 PLP coef-
ficients augmented with their first, second and third derivatives
projected into 39 dimensional space using HLDA transforma-
tion. The models are trained discriminatively using MPE crite-
rion [18]. VTLN and MLLR adaptation is used for both training
and recognition in SAT fashion. The triphones were used for
phoneme recognition with a bi-gram phonotactic model trained
on English-only data.

8. Frontend descriptions
This section lists details of all the different frontend variants.

8.1. JFA-2048G

This is an acoustic system, based on processing of sufficient
statistics derived from the UBM, in the same way that Patrick
Kenny does it for his ‘JFA’ speaker recognition systems [4, 5].
This system (JFA-2048G) is described in detail in [1].

This system does ‘channel’ compensation in the same
way it is done for speaker recognition, via factor analysis of
segment-dependent GMM models. The channel factor loading
matrix U, is trained via an EM algorithm over 500 sessions of
each of the 23 target languages. The supervector dimensionality
is about 105 and the dimensionality of the channel subspace is
200.

The language models are MAP-adapted with good-old
relevance-MAP adaptation from the UBM [8]. For this system,
we generated 68 models, to produce 68 frontend scores. We
used all of the 54 available languages and trained two separate
models for those languages that have both telephone and radio
speech.

Scoring is done by language-independent channel-
compensation, followed by linear scoring against each
language model [6].

8.2. RDLT14L256-2048G

Region Dependent Linear Transforms (RDLT) [24] is a discrim-
inatively trained feature extraction, which is generalization of a
technique known in speech recognition as fMPE [25]. In our
system, 256 linear transformations (56x56 matrices) take one
common 56-dimensional feature vector of SDC+MFCC as an
input. The outputs of the transformations are linearly combined
to form a single 56-dimensional output feature vector. The mix-
ing weights are given by posterior probabilities of 256 com-
ponents of a GMM, which is trained on the same input fea-
tures. The transformations are discriminatively trained in simi-
lar manner as described in [24, 25] to maximize the expected
probability of a segment being correctly recognized using a
set of language dependent GMMs, which are maximum like-
lihood trained on the RDLT output features. The average dura-
tion of training segments is about 1 second. After training the



RDLT, the set of language dependent GMMs is discarded, and
the RDLT features are used to generate statistics for the JFA
system described in 8.1.

8.3. MMI-FeaCC-2048G

This subsystem uses GMM models with 2048 Gaussians per
language, where mean and variance parameters are re-estimated
using Maximum Mutual Information criterion - the same as for
BUT LRE2005 [2]. The SDC features are first compensated us-
ing eigen-channel adaptation in feature domain [23, 20]. Start-
ing from target language models with means MAP adapted from
UBM using the compensated features, mean and variance pa-
rameters are further re-estimated using MMI criterion [22].

8.4. EN-TREE-45-N4, HU-TREE-6133-N4, RU-TREE-50-
N4

In all systems, binary decision tree language modeling was
based on creating a single language independent tree (refer-
enced as “UBM”) and adapting its distributions to individual
language training data, as described in Navratil’s work [16, 17].
We used English, Hungarian, Russian phone recognizer to gen-
erate 4-gram lattice counts.

8.5. SVM-HU-N3

In this subsystem, the trigram-lattice-counts from Hungarian
phoneme recognizer were used as features for subsequent clas-
sification by SVMs, similar to MIT’s work [26].

9. Processing time
The development effort at the BUT lab in the last month alone,
consumed 21.14 CPU years.

10. Evaluation criteria for development
The question of how to best judge the accuracy of language rec-
ognizers has been answered in the literature in different ways.
A straight-forward solution is multiclass misclassification error-
rate. However, this solution is lacking in two respects:

• It does not account for variation in the costs and priors
associated with application of the recognizer, and

• it does not allow for analysis of performance in terms of
discrimination and calibration.

NIST has addressed the first issue by defining the primary eval-
uation criterion Cavg, which can be interpreted as a mixture of
the error-rates obtained when different priors are applied. It
measures the ultimate practical decision-making ability of the
technology and as such is a test of both discrimination and cali-
bration of the systems under evaluation. Below we will criticize
some language recognition evaluation practices, but we exclude
Cavg from this criticism. In our opinion Cavg is a useful measure
and indeed the whole object of the exercise described below
is to better understand and to improve system performance as
measured with Cavg.

The problems that we discuss below occur when evalua-
tion criteria are chosen also to perform some form of calibra-
tion/discrimination analysis. Presumably in response to this
need, several authors reporting on the series of NIST Language
Recognition Evaluations have adopted the solution of pooling

language detection scores over multiple targets2 and then ana-
lyzing the pooled scores with the ROC analysis tools borrowed
from speaker recognition. (Under ROC analysis, we also mean
DET-curves as well as associated measures of goodness such as
EER and ‘min DCF’.)

Unfortunately, in our opinion, this pooled score analysis
does not give the same useful insights into system performance
as it does in speaker recognition. Below we mention the prob-
lems we see with pooling and then present the alternative evalu-
ation analysis that we used to guide our development decisions
for this LRE.

10.1. The problems with pooling

All ROC-curves are by definition pooled over multiple trials,
but the question is: What do you pool and what don’t you pool?
In speaker recognition, where ROC analysis works well, the
pooling is across different speakers and across different sessions
of those speakers. Why can we not do the same for language and
pool across all sessions of all languages?

Pooling is useful for ROC analysis in situations where it is
reasonable to set a single decision threshold for all trials that
are included in the pooling. The ROC curve (and everything
derived from it) exercises a single score threshold to make de-
cisions. By sweeping this threshold it does two things simulta-
neously:

• it accounts for variable relative weighting (by prior and
cost) of Pmiss and Pfa and

• it accounts for any monotonic rising miscalibration of
the scores.

ROC analysis assumes that for each relative weighting of the
error-rates, there is a single well-performing threshold for all of
the trials that are pooled.

This assumption is broken by pooling trials over different
languages, because of the way miscalibration occurs in a bat-
tery of language recognizers. With the current LRE detection
evaluation setup, ROC analysis is done effectively on language
posteriors, while miscalibration already occurs (before apply-
ing Bayes’ rule) with the language likelihoods. When the likeli-
hood for one language is overoptimistically large, the posterior
for that language (which is what is thresholded by ROC) also
becomes overoptimistically large but the posteriors for all other
languages become pessimistic. It makes no sense to try to adjust
a single threshold for all posteriors, because they compete and
the optimal thresholds move in opposite directions in response
to miscalibrations of the likelihoods.

Would it help to use a different threshold for each target?
Yes it would, but then one would need to do a separate ROC
analysis for every target and one would be swamped by DET-
curves. This separate ROC solution is furthermore not theoret-
ically very satisfying. If the different posteriors are effectively
individually calibrated one ends up with a posterior of which
the elements don’t sum to one. This illegal posterior suggests
that a calibration solution which produces a correctly normal-
ized posterior may be preferable, from both a theoretical and
practical viewpoint.

In summary, pooled ROC analysis of the posterior is prob-
lematic and this is not even solved in a satisfactory way by ‘un-
pooling’. For further discussion see [11, 12].

2Note, Cavg pools error-rates, not scores and is therefore not subject
to this criticism.



10.2. Our solution

The solution which we used to guide our development is based
on [11]. We model (and correct for) calibration of the language
likelihoods, rather than the language posteriors. By calibrating
before the non-linearity of Bayes’ rule, we can manage to do
effective calibration analysis with a simple linear method.

Since we are optimizing for Cavg in this LRE, our develop-
ment testing evaluation strategy was built around Cavg:

1. When we are busy with basic recognizer development
(i.e. the frontends) we want to judge the discrimination
rather than the calibration of our algorithms, In this case,
we prefer not to use the calibration-sensitive Cavg as is.
Our solution is to discount the effect of calibration by
letting the evaluator calibrate every system. That is, the
evaluator optimizes calibration on the evaluation data3

and then reports the value of Cavg obtained with this cal-
ibration. We denote this measure by C∗

avg.
The evaluator’s calibration transformation involves only
scaling and translation of the log-likelihood score-
vectors, so that it does not alter the ability of the scores
to discriminate between classes. In particular, the cali-
bration transformation is invertible, so it does not alter
the information content of the scores.
In summary C∗

avg measures discrimination, not calibra-
tion. It is therefore similar in spirit to the EER (equal-
error-rate) and ‘min DCF’ of speaker recognition, but it
avoids the above-mentioned problems of score pooling.

2. When we design the final stage of the backend, we are
more concerned with calibration than with discrimina-
tion. We judge calibration by observing the difference
between Cavg and C∗

avg. When they are close, we judge
calibration to be good.

3. Once all frontends and backends were made respectively
as discriminative and as well-calibrated as we could get
them, we made our final judgments about what to submit
on Cavg.

11. Acknowledgments
This work was partly supported by European projects MOBIO
(FP7-214324) and AMIDA (FP6-033812), by Grant Agency of
Czech Republic project No. 102/08/0707, by Czech Ministry
of Education project No. MSM0021630528 and by US Air
Force European Office of Aerospace Research & Development
(EOARD) Grant No. 083066.

12. References
[1] N. Brummer et al., “Discriminative Acoustic Language Recog-

nition via Channel-Compensated GMM Statistics”, submitted to
Interspeech 2009. 3

[2] P. Matejka, L. Burget, P. Schwarz, and J. Cernocky: Brno Univer-
sity of Technology System for NIST 2005 Language Recognition
Evaluation, in Proc. Odyssey 2006, San Juan, Puerto Rico, USA,
June 2006. 3, 4

[3] P.A. Torres-Carrasquillo, E. Singer, M.A. Kohler, R.J. Greene,
D.A. Reynolds, and J.R. Deller Jr., “Approaches to language
identification using Gaussian mixture models and shifted delta
cepstral features,” in Proc. International Conferences on Spoken
Language Processing (ICSLP), Sept. 2002, pp. 89–92. 3

3Our MATLAB code to perform this optimization is freely available
at http://niko.brummer.googlepages.com/focalmulticlass.

[4] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint fac-
tor analysis versus eigenchannels in speaker recognition”, IEEE
Transactions on Audio, Speech and Language Processing 15 (4),
pp. 1435-1447, May 2007. 3

[5] P. Kenny, N. Dehak, P. Ouellet, V. Gupta, and P. Dumouchel,
“Development of the Primary CRIM System for the NIST 2008
Speaker Recognition Evaluation”, in Proc. Interspeech 2008,
Brisbane, Australia, Sept 2008. 3

[6] O. Glembek, L. Burget, N. Dehak, N. Brummer and P. Kenny,
“Comparison of Scoring Methods used in Speaker Recognition
with Joint Factor Analysis” in Proc. ICASSP 2009, Taipei, Tai-
wan, April 2009. 3

[7] P. Matějka, L. Burget, P. Schwarz, and J. Černocký, “Brno Univer-
sity of Technology system for NIST 2005 Language recognition
evaluation,” in IEEE Odyssey: The Speaker and Language Recog-
nition Workshop, San Juan, Puerto Rico, June 2006, pp. 57–64. 3

[8] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn, “Speaker verifi-
cation using adapted Gaussian mixture models,” Digital Signal
Processing, vol. 10, no. 1–3, pp. 19–41, 2000. 3

[9] C.M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2007. 2

[10] J. Nocedal, and S.J. Wright, Numerical Optimization. Springer,
2006. 2

[11] N. Brümmer and D. van Leeuwen, “On calibration of language
recognition scores”, in Proc. IEEE Odyssey 2006: The Speaker
and Language Recognition Workshop, San Juan, June 2006. 4, 5

[12] D. van Leeuwen and K.P. Truong, “An open-set detection evalua-
tion methodology applied to language and emotion recognition”.
in Proc. Interspeech, pages 338341, Antwerp, August 2007. 4

[13] P. Schwarz, P. Matějka, and J. Černocký, “Towards lower error
rates in phoneme recognition,” in Proc. International Conference
on Text, Speech and Dialogue, Brno, Czech Republic, Sept. 2004,
pp. 465–472. 3

[14] T. Thomas, V. Wan, L. Burget, M. Karafit, J. Dines, J. Vepa, G.
Garau and M. Lincoln: “The AMI System for the Transcription of
Speech in Meetings”, In: Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2007), Hon-
onulu, 2007, pp. 357-360. 3

[15] J.L. Gauvain, A. Messaoudi and H. Schwenk, “Language Recog-
nition using Phone Lattices,” in Proc. International Conferences
on Spoken Language Processing (ICSLP), Sept. 2004, pp.1283–
1286. 3

[16] J. Navratil: “Spoken language recognition-a step toward multi-
linguality in speech processing”, in IEEE Trans. on Speech and
Audio Processing, Vol. 9, No. 6, pp. 678-685 ISSN: 1063-6676,
September 2001. 4

[17] J. Navratil: “Recent advances in phonotactic language recognition
using binary-decision trees,” in Proc. International Conferences
on Spoken Language Processing (ICSLP), Pittsburgh, PA, Octo-
ber 2006 4

[18] D. Povey, “Discriminative Training for Large Vocabulary Speech
Recognition,” Ph.D. thesis, Cambridge University, Jul. 2004. 3

[19] L. Welling, S. Kanthak and H. Ney, “Improved methods for vocal
tract normalization”, in Proc. ICASSP 1999. 3

[20] F. Castaldo, E. Dalmasso, P. Laface, D. Colibro and C. Vair: Lan-
guage identification using acoustic models and speaker compen-
sated cepstral-time matrices, Proc. ICASSP 2007. 4

[21] P. Schwarz, P. Matějka, and J. Černocký, “Hierarchical structures
of neural networks for phoneme recognition,” in Proc. ICASSP,
Toulouse, France, May 2006, pp. 325-328. 3

[22] V. Hubeika, L. Burget, P. Matjka and P. Schwarz, “ Discrimina-
tive Training and Channel Compensation for Acoustic Language
Recognition”, in Proc. Interspeech 2008. 3, 4

[23] V. Hubeika, L. Burget, P. Matejka and J. Cernocky: “Channel
Compensation for Speaker Recognition, poster at MLMI 2007”,
Brno, June 2007. 4



[24] B. Zhang, S. Matsoukas, R. Schwartz: “Recent progress on
the discriminative region-dependent transform for speech feature
extraction”, in Proceedings of INTERSPEECH, Pittsburgh, PA,
September, 2006 3

[25] D. Povey: “fMPE: discriminatively trained features for speech
recognition,” in Proceedings of ICASSP, Philadelphia, PA, Mar.
2005, IEEE. 3

[26] W.M. Campbell, F. Richardson, and D.A. Reynolds: “Language
Recognition with Word Lattices and Support Vector Machines”,
in Proc. ICASSP 2007. 4



Table 1: Training data in hours for each language and source.

Language CTS VOA
#files #hours #files #hours

alba 0 0 104 3.4
amha 0 0 1724 77.7
arab 4085 201.8 0 0
azer 0 0 510 29.3
bang 213 5.2 3871 83.4
bosn 0 0 268 7.0
burm 0 0 3365 81.6
cant 482 6.9 34 2.1
creo 0 0 425 14.8
croa 0 0 150 5.3
czec 241 0.3 0 0
dari 0 0 2410 78.8
engi 714 2.2 0 0
engl 10560 290.9 3963 132.5
fars 656 22.6 0 0
fren 403 21.8 3679 88.7
geor 0 0 100 4.7
germ 685 23.1 0 0
gree 0 0 851 16.6
haus 0 0 2599 74.4
hind 755 26.0 358 15.7
hung 287 0.4 0 0
chin 1226 29.9 0 0
indo 267 0.4 226 3.0
ital 294 1.3 0 0
japa 718 23.1 0 0
khme 0 0 1297 53.0
knkr 0 0 1307 66.7
kore 691 21.3 342 16.3
mace 0 0 344 15.1
mand 1321 64.8 1049 35.7
ndeb 0 0 945 64.4
orom 0 0 399 15.1
pash 0 0 6317 102.3
pers 0 0 1673 70.6
poli 284 0.4 0 0
port 294 0.5 1069 48.7
russ 643 8.4 3071 82.2
serb 0 0 175 2.9
shon 0 0 553 58.6
soma 0 0 1909 70.9
span 1001 47.5 1623 67.6
swah 194 0.3 1965 70.9
swed 290 0.5 0 0
taga 24 0.6 0 0
tami 623 19.6 0 0
thai 209 6.6 0 0
tibe 0 0 349 2.0
tigr 0 0 395 24.6
turk 0 0 262 9.8
ukra 0 0 105 3.0
urdu 24 1.4 1242 67.2
uzbe 0 0 241 3.5
viet 743 25.7 113 8.9
SUM 27927 853.7 51382 1696.8


	 Bugfix Update
	 Introduction
	 Development data
	 General System description
	 Backend
	 Gaussian Backend (GBE)
	 Fusion and calibration
	 Jackknifing

	 System compositions
	 BUT-AGN-1
	 BUT-AGN-2
	 BUT-AGN-3
	 BUT-AGN-4

	 Frontend types
	 Acoustic
	 Phonotactic
	 Hybrid phoneme recognizers
	 GMM/HMM phoneme recognizers


	 Frontend descriptions
	 JFA-2048G
	 RDLT14L256-2048G
	 MMI-FeaCC-2048G
	 EN-TREE-45-N4, HU-TREE-6133-N4, RU-TREE-50-N4
	 SVM-HU-N3

	 Processing time
	 Evaluation criteria for development
	 The problems with pooling
	 Our solution

	 Acknowledgments
	 References

