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ABSTRACT

The aim of this paper is to compare different log-likelihoodscor-
ing methods, that different sites used in the latest state-of-the-art
Joint Factor Analysis (JFA) Speaker Recognition systems. The al-
gorithms use various assumptions and have been derived fromvari-
ous approximations of the objective functions of JFA. We compare
the techniques in terms of speed and performance. We show, that
approximations of the true log-likelihood ratio (LLR) may lead to
significant speedup without any loss in performance.

Index Terms— GMM, fast scoring, speaker recognition, joint
factor analysis

1. INTRODUCTION

Joint Factor Analysis (JFA) has become the state-of-the-art tech-
nique in the problem of speaker recognition1. It has been proposed
to model the speaker and session variabilities in the parameter space
of the Gaussian Mixture Model (GMM) [1]. The variabilities are de-
termined by subspaces in the parameter space, commonly called the
hyper-parameters.

Many sites used JFA in the latest NIST evaluations, however
they report their results using different scoring methods ([2], [3],
[4]). The aim of this paper is to compare these techniques in terms
of speed and performance.

The theory about JFA and each technique is given in Sec. 2.
Starting with the conventional frame-by-frame GMM evaluation in
Sec. 2.1, where the whole feature file of each utterance is processed,
the sections 2.2 to 2.5 describe methods which work with the col-
lected statistics only and which differ mostly in the way they treat
channel compensation. In Sec. 2.2, integration over the whole dis-
tribution of channel factors for the given test utterance isperformed.
In Sec. 2.3, the likelihood of each utterance given testing model is
computed using a channel point estimate. In Sec. 2.4, the channel
factor point estimate is estimated using UBM only. In Sec 2.5, the
formula is further simplified by using the first order Taylor series
approximation.

2. THEORETICAL BACKGROUND

Joint factor analysis is a model used to treat the problem of speaker
and session variability in GMMs. In this model, each speakeris rep-

1In the meaning of speaker verification

resented by the means, covariance, and weights of a mixture of C

multivariate Gaussian densities defined in some continuousfeature
space of dimensionF . The GMM for a target speaker is obtained
by adapting the Universal Background Model (UBM) mean param-
eters. In Joint Factor Analysis [2], the basic assumption isthat a
speaker- and channel- dependent supervector of meansM can be
decomposed into a sum of two supervectors: a speaker supervector
s and a channel supervectorc

M = s + c, (1)

wheres andc are normally distributed. In [5], Kenny et al. described
how the speaker dependent supervector and channel dependent su-
pervector can be represented in low dimensional spaces. Thefirst
term in the right hand side of (1) is modeled by assuming that if s is
the speaker supervector for a randomly chosen speaker then

s = m + Vy + Dz, (2)

where m is the speaker and channel independent supervector
(UBM), D is a diagonal matrix,V is a rectangular matrix of low
rank andy andz are independent random vectors having standard
normal distributions. In other words,s is assumed to be normally
distributed with meanm and covariance matrixVV∗ + DD∗. The
components ofy andz are respectively the speaker and common
factors.

The channel-dependent supervectorc, which represents the
channel effect in an utterance, is assumed to be distributedaccord-
ing to

c = Ux, (3)

whereU is a rectangular matrix of low rank (known as eigenchannel
matrix), x is a vector distributed with standard normal distribution.
This is equivalent to saying thatc is normally distributed with zero
mean and covarianceUU∗. The components ofx are the channel
factors in factor analysis modeling.

The underlying task in JFA is to train the hyperparametersU, V,
andD on a large training set. In the Bayesian framework, posterior
distribution of the factors (knowing their priors) can be computed
using the enrollment data. The likelihood of test utteranceX is then
computed by integrating over the posterior distribution ofy andz,
and the prior distribution ofx [6]. In [7], it was later shown, that
using mere MAP point estimates ofy andz is sufficient. Still, in-
tegration over the prior distribution ofx was performed. We will
further show, that using the MAP point estimate ofx gives compa-
rable results. Scoring is understood as computing the log-likelihood



ratio (LLR) between the target speaker models and the UBM, for
the test utteranceX .

There are many ways in which JFA can be trained and which
different sites have experimented with. Not only the training algo-
rithms differ, but also the results were reported using different scor-
ing strategies.

2.1. Frame by Frame

Frame-by-Frame is based on a full GMM log-likelihood evaluation.
The log-likelihood of utteranceX and models is computed as an
average frame log-likelihood2. It is practically infeasible to integrate
out the channel, therefore MAP point estimate ofx is used. The
formula is as follows

log P (X|s) =
T

X

t=1

log
C

X

c=1

wcN (ot; µc,Σc) , (4)

whereot is the feature vector at framet, T is the length (in frames)
for utteranceX , C is number of Gaussians in the GMM, andwc,
Σc, andµc thec th Gaussian weight, mean, and covariance matrix,
respectively.

2.2. Integrating over Channel Distribution

This approach is based on evaluating an objective function as given
by Equation (13) in [2]:

P (X|s) =

Z

P (X|s,x)N (x;0, I)dx (5)

As was said in the previous paragraph, it would be difficult toeval-
uate this formula in the frame-by-frame strategy. However,(4) can
be approximated by using fixed alignment of frames to Gaussians,
i.e., assume that each frame is generated by a single (best scoring)
Gaussian. In this case, the likelihood can be evaluated in terms of the
sufficient statistics. If the statistics are collected in the Baum-Welch
way, the approximation is equal to the GMM EM auxiliary func-
tion, which is a lower bound to (5). The closed form (logarithmic)
solution is then given as:

log P̃ (X|s) =

C
X

c=1

Nc log
1

(2π)F/2|Σc|1/2

−
1

2
tr(Σ−1

Ss) −
1

2
log|L|

+
1

2
‖L−1/2

U
∗

Σ
−1

Fs‖
2 (6)

where for the first term,C is the number of Gaussians,Nc is the
data count for Gaussianc, F is the feature vector size,Σc is covari-
ance matrix for Gaussianc. These numbers will be equal both for
UBM and the target model, thus the whole term will cancel out in
the computation of the log-likelihood ratio.

For the second term of (6),Σ is the block-diagonal matrix of
separate covariance matrices for each Gaussian,Ss is the second
order moment ofX around speakers given as

Ss = S − 2diag(Fs
∗) + diag(Nss

∗), (7)

whereS is theCF × CF block-diagonal matrix whose diagonal
blocks are uncentered second order cumulantsSc. This term is in-
dependent of speaker, thus will cancel out in the LLR computation

2All scores are normalized by frame length of the tested utterance, there-
fore the log-likelihood is average.

(note that this was the only place where second order statistics ap-
peared, therefore are not needed for scoring).F is aCF × 1 vector,
obtained by concatenating the first order statistics.N is aCF ×CF

diagonal matrix, whose diagonal blocks areNcIF , i.e., the occupa-
tion counts for each Gaussian (IF is F × F identity matrix).

TheL in the third term of (6) is given as

L = I + U
∗

Σ
−1

NU, (8)
whereI is aCF×CF identity matrix,U is the eigenchannel matrix,
and the rest is as in the second term. The whole term, however,does
not depend on speaker and will cancel out in the LLR computation.

In the fourth term of (6), letL1/2 be a lower triangular matrix,
such that

L = L
1/2

L
1/2∗ (9)

i.e.,L−1/2 is the inverse of the Cholesky decomposition ofL.
As was said, terms one and three in (6), and second order statis-

ticsS in (7) will cancel out. Then the formula for the score is given
as

Qint(X|s) = tr(Σ−1diag(Fs
∗))

+
1

2
tr(Σ−1diag(Nss

∗))

+
1

2
‖L−1/2

U
∗

Σ
−1

Fs‖
2 (10)

2.3. Channel Point Estimate

This function is similar to the previous case, except for thefact, that
the channel factorx is known. This way, there is no need for inte-
grating over the whole distribution ofx, and only its point estimate is
taken for LLR computation. The formula is directly adopted from [8]
(Theorem 1),

log P̃ (X|s,x) =
C

X

c=1

Nc log
1

(2π)F/2|Σc|1/2

−
1

2
tr(Σ−1

S)

+M
∗

Σ
−1

F +
1

2
M

∗

NΣ
−1

M, (11)

whereM is given by (1). In this formula, the first and second terms
cancel out in LLR computation, leading to scoring function

Qx(X|s,x) = M
∗

Σ
−1

F

+
1

2
M

∗

NΣ
−1

M, (12)

hence

LLRx(X|s) = Qx(X|s,xs) − Qx(X|UBM,xUBM), (13)

wherexUBM is a channel factor estimated using UBM, andxs is a
channel factor estimated using speakers.

2.4. UBM Channel Point Estimate

In [3], the authors assumed, that the shift of the model caused by the
channel is identical both to the target model and the UBM3. There-
fore, thex factor for utteranceX is estimated using the UBM and
then used for scoring. Formally written:

LLRLPT(X|s) = Qx(X|s,xUBM)

−Qx(X|UBM,xUBM) (14)

3The authors identified themselves under abbreviation LPT, therefore we
will refer to this approach as to LPT assumption



Note, that when computing the LLR, theUx in the linear term
of (11) will cancel out, leaving the compensation to the quadratic
term of (11).

2.5. Linear Scoring

Let us keep the LPT assumption and letmc be the channel compen-
sated UBM:

mc = m + c. (15)

Furthermore, let us assume, that we move the origin of supervector
space tomc.

M̄ = M − mc (16)

F̄ = F− Nmc. (17)

Eq. (12) can now be rewritten to

Qxmod(X|M̄,x) = M̄
∗

Σ
−1

F̄

+
1

2
M̄

∗

NΣ
−1

M̄. (18)

When approximating (18) by the first order Taylor series (as afunc-
tion of M̄), only the linear term is kept, leading to

Qlin(X|M̄,x) = M̄
∗

Σ
−1

F̄ (19)

Realizing, that the channel compensated UBM is now a vector of
zeros, and substituting (19) to (14), the formula for computing the
LLR simplifies to

LLRlin(X|s,x) = (Vy + Dz)∗Σ−1(F − Nm− Nc). (20)
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Fig. 1. An illustration of the scoring behavior for frame-by-frame,
LPT, and linear scoring.

Given the fact, that thẽP -function is a lower bound approxima-
tion of the real frame-by-frame likelihood function, thereare cases,
when the LPT original function fails. Fig. 1 shows that the linear
function can sometimes be a better approximation of the fullLLR.

3. EXPERIMENTAL SETUP

3.1. Test Set

The results of our experiments are reported on the Det1 and Det3
conditions of the NIST 2006 speaker recognition evaluation(SRE)
dataset [9].

The real-time factor was measured on a special test set, where
49 speakers were tested against 50 utterances. The speaker models
were taken from the t-norm cohort, while the test utteranceswere
chosen from the original z-norm cohort, each having approximately
4 minutes, totally giving 105 minutes.

3.2. Feature Extraction

In our experiments, we used cepstral features, extracted using a
25 ms Hamming window. 19 mel frequency cepstral coefficients
together with log energy are calculated every 10 ms. This 20-
dimensional feature vector was subjected to feature warping [10]
using a 3 s sliding window. Delta and double delta coefficients were
then calculated using a 5 frames window giving a 60-dimensional
feature vectors. These feature vectors were modeled using GMM
and factor analysis was used to treat the problem of speaker and
session variability.

Segmentation was based on the BUT Hungarian phoneme rec-
ognizer [11] and relative average energy thresholding. Also short
segments were pruned out, after which the speech segments were
merged together.

3.3. JFA Training

We used gender independent Universal Background Models, which
contain 2048 Gaussians. This UBM was trained using LDC releases
of Switchboard II, Phases 2 and 3; switchboard Cellular, Parts 1 and
2 and NIST 2004-2005 SRE. The (gender independent) factor anal-
ysis models were trained on the same quantities of data as theUBM.

Our JFA is composed by 300 speaker factors, 100 channel fac-
tors, and diagonal matrixD. WhileU was trained on the NIST data
olny, D andV were trained on two disjoint sets comprising NIST
and Switchboard data.

3.4. Normalization

All scores, as presented in the previous sections, were normalized by
the number of frames in the test utterance. In case of normalizing the
scores (zt-norm), we worked in the gender dependent fashion. We
used 220 female, and 148 male speakers for t-norm, and 200 female,
159 male speakers for z-norm. These segments were a subset ofthe
JFA training data set.

3.5. Hardware and Software

The frame-by-frame scoring was implemented in C++ code, which
calls ATLAS functions for math operations. Matlab was used for
the rest of the computations. Even though C++ produces more opti-
mized code, the most CPU demanding computations are performed
via the tuned math libraries that both Matlab and C++ use. This
fact is important for measuring the real-time factor. The machine
on which the real-time factor (RTF) was measured was a Dual-Core
AMD Opteron 2220 with cache size 1024 KB. For the rest of the
experiments, computing cluster was used.

4. RESULTS

Table 1 shows the results without any score normalization. The rea-
son for the loss of performance in the case of LPT scoring could pos-
sibly be due to bad approximation of the likelihood functionaround
UBM, ,i.e., the inability to adapt the model to the test utterance (in
theU space only). Fig. 1 shows this case.



Table 1. Comparison of different scoring techniques in terms of EER
and DCF. No score normalization was performed here.

Det1 Det3
EER DCF EER DCF

Frame-by-Frame 4.70 2.24 3.62 1.76
Integration 5.36 2.46 4.17 1.95
Point estimate 5.25 2.46 4.17 1.96
Point estimate LPT 16.70 6.84 15.05 6.52
Linear 5.53 2.97 3.94 2.35

Table 2 shows the results after application of zt-norming. While
the frame-by-frame scoring outperformed all the fast scorings in the
un-normalized case, normalization is essential for the other methods.

Table 2. Comparison of different scoring techniques in terms of EER
and DCF. zt-norm was used as score normalization.

Det1 Det3
EER DCF EER DCF

Frame-by-Frame 2.96 1.50 1.80 0.91
Integration 2.90 1.48 1.78 0.91
Point estimate 2.90 1.47 1.83 0.89
Point estimate LPT 3.98 2.01 2.70 1.36
Linear 2.99 1.48 1.73 0.95

4.1. Speed

The aim of this experiment was to show the approximate real time
factor of each of the systems. The time measured included reading
necessary data connected with the test utterance (features, statistics),
estimating the channel shifts, and computing the likelihood ratio.
Any other time, such as reading of hyper-parameters, models, etc.
was not comprised in the result. Each measuring was repeated5
times and averaged. Table 3 shows the real time of each algorithm.
Surprisingly, the integration LLR is faster then the point estimate.

Table 3. Real time factor for different systems
Time [s] RTF

Frame-by-Frame 1010 1.60e−1

Integration 50 7.93e−3

Point estimate 160 2.54e−2

Point estimate LPT 36 5.71e−3

Linear 13 2.07e−3

This is due to implementation, where the channel compensation term
in the integration formula is computed once per an utterance, while
in the point estimate case, each model needs to be compensated for
each trial utterance.

5. CONCLUSIONS

We have showed a comparison of different scoring techniquesthat
different sites have recently used in their evaluations. While, in most
cases, the performance does not change dramatically, the speed of
evaluation is the major difference. The fastest scoring method is
the Linear scoring. It can be implemented by a simple dot product,
allowing for fast scoring of huge problems (e.g., z-, t- norming).

6. ACKNOWLEDGMENTS

This research was conducted under the auspices of the 2008 Johns
Hopkins University Summer Workshop, and partially supported by
NSF Grant No IIS-0705708 and by a gift from Google Inc. It was
also partly supported by European projects AMIDA (FP6-033812)
and MOBIO (FP7-214324), by Grant Agency of Czech Republic un-
der project No. 102/08/0707, by Czech Ministry of Educationunder
project No. MSM0021630528 and by Czech Ministry of Defense.
The hardware used in this work was partially provided by CESNET
under project No. 201/2006. Lukáš Burget was partly supported by
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