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ABSTRACT resented by the means, covariance, and weights of a mixfuté o
The aim of this paper is to compare different log-likelihoscbr- multivariate Gaussian densities defined in some continfeatsire

ing methods, that different sites used in the latest stathepart ~ SPace of dimensiod”. The GMM for a target speaker is obtained
Joint Factor Analysis (JFA) Speaker Recognition systentse a- Py adapting the Universal Background Model (UBM) mean param
gorithms use various assumptions and have been derivecviagm ~ €ters. In Joint Factor Analysis [2], the basic assumptiothat a
ous approximations of the objective functions of JFA. We pare ~ SPeaker- and channel- dependent supervector of mishman be
the techniques in terms of speed and performance. We shat, thd€composed into a sum of two supervectors: a speaker saparve
approximations of the true log-likelihood ratio (LLR) magald to S @nd & channel supervector

significant speedup without any loss in performance. M=s+c, (1)

Index Terms— GMM, fast scoring, speaker recognition, joint

factor analysis wheres andc are normally distributed. In[5], Kenny et al. described

how the speaker dependent supervector and channel dependen
pervector can be represented in low dimensional spaces.fifEhe
1. INTRODUCTION term in the right hand side of (1) is modeled by assuming fhats

) ) the speaker supervector for a randomly chosen speaker then
Joint Factor Analysis (JFA) has become the state-of-théeah-

nique in the problem of speaker recognitiot has been proposed s =m+ Vy + Dz, 2)

to model the speaker and session variabilities in the pasrspace . .

of the Gaussian Mixture Model (GMM) [1]. The variabilitieseade- where m IS the_ speaker and Channel independent _supervector
termined by subspaces in the parameter space, commondyl ¢hé (UBM), D is a dlagopal matrixV is a rectangular matrlx of low
hyper-parameters rank andy apd; are independent random vectors having standard

Many sites used JFA in the latest NIST evaluations, howeveppm.1a| dlstrlbutlons. In other Wo_rds, IS assgmecj to be r:ormally
they report their results using different scoring methof#3, (3], distributed with meamn and covariance matri¥’ V" + DD". The
[4]). The aim of this paper is to compare these techniquesring components ofy andz are respectively the speaker and common
of speed and performance. factors .

The theory about JFA and each technique is given in Sec. 2. The channgl-dependent supervector which reprgsents the
Starting with the conventional frame-by-frame GMM evalaatin _channel effect in an utterance, is assumed to be distritatedrd-
Sec. 2.1, where the whole feature file of each utterance tepred, Ing to
the sections 2.2 to 2.5 describe methods which work with tie ¢ c="Ux, C)
lected statistics only and which differ mostly in the wayytheeat ~ WhereU is a rectangular matrix of low rank (known as eigenchannel
channel compensation. In Sec. 2.2, integration over thdewtiis- matrix), x is a vector distributed with standard normal distribution.
tribution of channel factors for the given test utteranceegfiormed. ~ This is equivalent to saying thatis normally distributed with zero
In Sec. 2.3, the likelihood of each utterance given testinglehis ~mean and covarianc&U”. The components ot are the channel
computed using a channel point estimate. In Sec. 2.4, theneha factors in factor analysis modeling.

factor point estimate is estimated using UBM only. In Seg the The underlying task in JFAis to train the hyperparametérs/,
formula is further simplified by using the first order Tayleries ~ andD on a large training set. In the Bayesian framework, posterio
approximation. distribution of the factors (knowing their priors) can bemguuted

using the enroliment data. The likelihood of test utteradcés then
computed by integrating over the posterior distributionyofndz,
and the prior distribution ok [6]. In [7], it was later shown, that
using mere MAP point estimates gfandz is sufficient. Still, in-
tegration over the prior distribution of was performed. We will
further show, that using the MAP point estimatexofives compa-
1In the meaning of speaker verification rable results. Scoring is understood as computing theikagiiood

2. THEORETICAL BACKGROUND

Joint factor analysis is a model used to treat the problenpeélker
and session variability in GMMs. In this model, each spe&kezp-




ratio (LLR) between the target speaker modeaind the UBM, for
the test utterancg’.

(note that this was the only place where second order statiap-
peared, therefore are not needed for scoriliy)s aC' F' x 1 vector,

There are many ways in which JFA can be trained and whiclobtained by concatenating the first order statistdss aC'F x CF

different sites have experimented with. Not only the tnagnalgo-
rithms differ, but also the results were reported usingedéht scor-
ing strategies.

2.1. Frame by Frame

Frame-by-Frame is based on a full GMM log-likelihood evéilom
The log-likelihood of utterance&’ and models is computed as an
average frame log-likelihoodl Itis practically infeasible to integrate
out the channel, therefore MAP point estimatexofs used. The
formula is as follows

log P(X|s) = Zlongc (ot py, Be) s (4)

whereo. is the feature vector at frame 7" is the length (in frames)
for utteranceX’, C' is number of Gaussians in the GMM, and,

3., andp, the cth Gaussian weight, mean, and covariance matrix,

respectively.

2.2. Integrating over Channel Distribution

This approach is based on evaluating an objective functagiven
by Equation (13) in [2]:

P(X][s) ©)

= /P(X|S,X)N(X;O,I)dx
As was said in the previous paragraph, it would be difficuléval-
uate this formula in the frame-by-frame strategy. Howe(y,can
be approximated by using fixed alignment of frames to Gauassia
i.e., assume that each frame is generated by a single (l@sigc
Gaussian. In this case, the likelihood can be evaluatedrrstef the
sufficient statistics. If the statistics are collected ia Baum-Welch
way, the approximation is equal to the GMM EM auxiliary func-
tion, which is a lower bound to (5). The closed form (logariib)
solution is then given as:

c
log P(X|s) = ZNclog F/2|2 RE
—1tr(zrls ) — £ IL|
2 A T

(6)

where for the first term(' is the number of Gaussiand]. is the
data count for Gaussian F' is the feature vector siz&;. is covari-
ance matrix for Gaussian These numbers will be equal both for
UBM and the target model, thus the whole term will cancel out i
the computation of the log-likelihood ratio.

For the second term of (6} is the block-diagonal matrix of
separate covariance matrices for each Gauss$ans the second
order moment oft’ around speaket given as

1, _ P
5L V2t n TR,

Ss = S — 2diag(Fs") + diag(Nss"), @

whereS is the CF x CF block-diagonal matrix whose diagonal
blocks are uncentered second order cumul&atsThis term is in-
dependent of speaker, thus will cancel out in the LLR contria

2All scores are normalized by frame length of the tested arttee, there-
fore the log-likelihood is average.

diagonal matrix, whose diagonal blocks advelr, i.e., the occupa-
tion counts for each Gaussiab(is F' x F' identity matrix).
TheL in the third term of (6) is given as

L=I1+U*S"'NU, (8)
wherel is aC'F' x C'F identity matrix,U is the eigenchannel matrix,
and the rest is as in the second term. The whole term, howdwves,
not depend on speaker and will cancel out in the LLR compnati

In the fourth term of (6), leL'/? be a lower triangular matrix,
L

such that
©)
i.e.,L™"/< is the inverse of the Cholesky decompositiorLof
As was said, terms one and three in (6), and second ordes-stati
tics S in (7) will cancel out. Then the formula for the score is given
as

_ L1/2L1/2*
1/2

Qint(X|s) = tr(Eildiag(Fs*))

—&—%tr(E*ldiag(Nss*))

1

+5 LT PO ST R (10)

2.3. Channel Point Estimate

This function is similar to the previous case, except forfdwt, that
the channel factok is known. This way, there is no need for inte-
grating over the whole distribution &f, and only its point estimate is
taken for LLR computation. The formulais directly adopteahfi [8]
(Theorem 1),

log P(X|s, x)

Z N, log

—%tr(ZT

F/2|2 |1/2
IS)
+M*2*1F+%M*N2*1M, (12)

whereM is given by (1). In this formula, the first and second terms
cancel out in LLR computation, leading to scoring function

Qx(X]s,x) = M*'ST'F
+%M*NE’1M, (12)
hence
LLRx(X[s) = Qx(X|[s, xs) — Qx(X|UBM,xuBm),  (13)

wherexugwm is a channel factor estimated using UBM, angis a
channel factor estimated using speaker

2.4. UBM Channel Point Estimate

In [3], the authors assumed, that the shift of the model chbgehe
channel is identical both to the target model and the 3BFhere-
fore, thex factor for utterancet’ is estimated using the UBM and
then used for scoring. Formally written:

LLRLPT(X|S) QX(X|S, XUBM)
—Qx(X|UBM, xuBm)

(14)

3The authors identified themselves under abbreviation LiReFefore we
will refer to this approach as to LPT assumption



Note, that when computing the LLR, tH8x in the linear term The real-time factor was measured on a special test setewher
of (11) will cancel out, leaving the compensation to the gqatid 49 speakers were tested against 50 utterances. The speattelsm

term of (11). were taken from the t-norm cohort, while the test utteranges
chosen from the original z-norm cohort, each having appnaxely
2.5. Linear Scoring 4 minutes, totally giving 105 minutes.

Let us keep the LPT assumption andiket be the channel compen- .
sated UBM: 3.2. Feature Extraction
In our experiments, we used cepstral features, extractad) s

25 ms Hamming window. 19 mel frequency cepstral coefficients
Furthermore, let us assume, that we move the origin of segeov ~ together with log energy are calculated every 10 ms. This 20-

m. = m+ec. (15)

space tam,. dimensional feature vector was subjected to feature wgrfio]
_ using a 3 s sliding window. Delta and double delta coefficentre
M = M-m (16)  then calculated using a 5 frames window giving a 60-dimeraio
F = F—-Nm.. (17)  feature vectors. These feature vectors were modeled usiiyl G
and factor analysis was used to treat the problem of speaier a
Eq. (12) can now be rewritten to session variability.
Qrmod (XM, x) = ML Segmentation was based on the BUT Hungarian phoneme rec-

ognizer [11] and relative average energy thresholding.oAdgort
+11\7I*N2*11\7I. (18) segments were pruned out, after which the speech segmergs we
2 merged together.
When approximating (18) by the first order Taylor series (&sa-
tion of M), only the linear term is kept, leading to 3.3. JFA Training

Qun(XM,x) = M'ES™'F (19)  we used gender independent Universal Background Modelghwh
Realizing, that the channel compensated UBM is now a vedtor ocontain 2048 Gaussians. This UBM was trained using LDC selea
P . of Switchboard II, Phases 2 and 3; switchboard CellulatsPband
ﬁgss,irﬁ;ﬁﬁseibtsétltutmg (19) to (14), the formula for cormgithe 2 and NIST 2004-2005 SRE. The (gender independent) factd+ an
ysis models were trained on the same quantities of data 4$8Me
LLRjin(X]s,x) = (Vy + Dz)*S""(F — Nm — Nc).  (20) Our JFA is composed by 300 speaker factors, 100 channel fac-
tors, and diagonal matril®. While U was trained on the NIST data
olny, D and'V were trained on two disjoint sets comprising NIST

A and Switchboard data.
LLR

) 3.4. Normalization
linear score

77777777777777 All scores, as presented in the previous sections, werealea by
------------ the number of frames in the test utterance. In case of nozinglthe
7777777 scores (zt-norm), we worked in the gender dependent fashidgam
used 220 female, and 148 male speakers for t-norm, and 2Q0dem
159 male speakers for z-norm. These segments were a suliket of

JFA training data set.

3.5. Hardware and Software

target  GMM mean space

model The frame-by-frame scoring was implemented in C++ codechvhi
calls ATLAS functions for math operations. Matlab was used f
the rest of the computations. Even though C++ produces npie o
mized code, the most CPU demanding computations are pextbrm
via the tuned math libraries that both Matlab and C++ use.s Thi
. ~ L . fact is important for measuring the real-time factor. Thechiae
Given the fact, that thé-function is a lower bound approxima- on which the real-time factor (RTF) was measured was a DaaéC

tiohn of thhe [EaTI frame'?);'frame Iifkglliholc:)(_:i fulnctri]on, thﬁm? E::;S’ AMD Opteron 2220 with cache size 1024 KB. For the rest of the
when the original function fails. Fig. 1 shows that t ' experiments, computing cluster was used.

function can sometimes be a better approximation of the iuiR.

Fig. 1. An illustration of the scoring behavior for frame-by-fram
LPT, and linear scoring.

3. EXPERIMENTAL SETUP 4. RESULTS

Table 1 shows the results without any score normalizatidre fEa-
son for the loss of performance in the case of LPT scoringccpas-
The results of our experiments are reported on the Detl an@ De sibly be due to bad approximation of the likelihood functameund
conditions of the NIST 2006 speaker recognition evalua(®RE)  UBM, ,i.e., the inability to adapt the model to the test witere (in
dataset [9]. theU space only). Fig. 1 shows this case.

3.1. Test Set
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Table 1. Comparison of different scoring techniques in terms of EER

and DCF. No score normalization was performed here.

Detl Det3
EER | DCF | EER | DCF
Frame-by-Frame 470 | 224 | 3.62 | 1.76

Integration 536 | 246 | 4.17 | 1.95
Point estimate 525 | 2.46 | 4.17 | 1.96
Point estimate LPT|| 16.70 | 6.84 | 15.05| 6.52
Linear 5,53 | 297 | 3.94 | 2.35

Table 2 shows the results after application of zt-normindnile/
the frame-by-frame scoring outperformed all the fast sgsiin the
un-normalized case, normalization is essential for themthethods.

Table 2. Comparison of different scoring techniques in terms of EER 2]

and DCF. zt-norm was used as score normalization.

Detl Det3

EER | DCF | EER | DCF
Frame-by-Frame 296 | 150 | 1.80 | 0.91
Integration 290 | 148 | 1.78 | 0.91
Point estimate 290 | 1.47 | 1.83 | 0.89
Point estimate LPT|| 3.98 | 2.01 | 2.70 | 1.36
Linear 299 | 1.48 | 1.73 | 0.95

4.1. Speed

The aim of this experiment was to show the approximate rea ti
factor of each of the systems. The time measured includetinga
necessary data connected with the test utterance (fepstméistics),
estimating the channel shifts, and computing the likelthoatio.
Any other time, such as reading of hyper-parameters, mpdéts

was not comprised in the result. Each measuring was repé&ated

times and averaged. Table 3 shows the real time of each tigori
Surprisingly, the integration LLR is faster then the poistimate.

Table 3. Real time factor for different systems

Time [s] RTF
Frame-by-Frame 1010 | 1.60e7!
Integration 50 7.93¢73
Point estimate 160 2.54e72
Point estimate LPT]| 36 5.71e73
Linear 13 2.07e73

This is due to implementation, where the channel compesrstgirm
in the integration formula is computed once per an utterawtde
in the point estimate case, each model needs to be comperisate
each trial utterance.

5. CONCLUSIONS

We have showed a comparison of different scoring technidjuets
different sites have recently used in their evaluationsil®/m most
cases, the performance does not change dramatically, desl sif
evaluation is the major difference. The fastest scoringhaebtis
the Linear scoring. It can be implemented by a simple dot pead
allowing for fast scoring of huge problems (e.g., z-, t- novg).
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