
Brno University of Technology System for Interspeech 2009 Emotion Challenge
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Abstract

This paper describes Brno University of Technology (BUT) sys-
tem for the Interspeech 2009 Emotion Challenge. Our sub-
mitted system for the Open Performance Sub-Challenge uses
acoustic frame based features as a front-end and Gaussian Mix-
ture Models as a back-end. Different feature types and mod-
eling approaches successfully applied in speaker- and language
recognition are investigated and we can achieve an 16% and 9%
relative improvement over the best dynamic and static baseline
system on the 5-class task, respectively.

Index Terms: Emotion recognition, GMM, MMI, JFA

1. Introduction
Gaussian Mixture Modeling has become the standard mod-
eling approach in tasks like Speaker, Gender and Language
Identification (SID/GID/LID). Universal Background Model-
ing (UBM) with adaptation to target model [1] is the stan-
dard in speaker verification. Discriminative training techniques
such as training based on Maximum Mutual Information (MMI)
have been applied very successfully to classification tasks like
Gender- or Language Identification [2]. An eternal problem in
all these tasks is the diversity in channel and acoustic condition
between training and test data. Joint Factor Analysis [3] has be-
come the standard to cope with this mismatch recently, even on
small amounts of training and test data.

Our goal is to apply features and modeling techniques that
are used in SID/LID to the related problem of emotion recogni-
tion. As it is mentioned in [4], Support Vector Machines (SVM)
are mostly used to classify on a high dimensional chunk based
feature. These techniques have also been applied in the field
of SID and LID and combination with GMM based approaches
gains huge improvements.

Our submission is for the Open Performance Sub-
Challenge (recognizing 2 and 5 emotion classes with own con-
tribution of features and classifier) [4]. Section 2 describes the
system development and gives information on the acoustic and
prosodic features we use as well as the modeling techniques for
Gaussian mixtures we want to adapt to this task. We also pro-
vide experimental results on a development set and section 3
presents results for our final selected submission on the real test
set. In section 4 we draw conclusions to our approach.

This work was partly supported by European project AMIDA (FP6-
033812), by Grant Agency of Czech Republic project No. 102/08/0707,
by Czech Ministry of Education project No. MSM0021630528 and by
Czech Ministry of Trade and Commerce project No. FT-TA3/006.

2. System development

2.1. Features

2.1.1. MFCCs

The most widely used features in speech processing are Mel-
Frequency Cepstral Coefficients (MFCC). They have been ap-
plied successfully for speech recognition as well as for speaker
recognition and language identification. We will use them as
our basic features for the emotion recognition task. MFCC vec-
tors are generated every 10ms on a 20ms Hamming window. A
Mel filter bank with 25 bands is used to create features with 13
coefficients including C0. Then, mean subtraction is applied on
each coefficient per utterance. As audio files are provided at
16kHz sampling frequency, we create two sets of features. One
with full resolution and one down-sampled to 8kHz and filtered
from 300-3400 Hz (as it is common for telephone applications).

2.1.2. RASTA filter

The temporal trajectories of individual cepstrum feature vec-
tor coefficients are filtered using standard RelAtive SpecTrAl
(RASTA) filter [5] to remove slow and very fast spectral
changes which do not appear to be characteristic for natural
speech.

2.1.3. VTLN

Like in language identification, we do not want to model the
characteristics of the individual speaker and the position of the
formants based on the length of the vocal tract. We use Vo-
cal Tract Length Normalization (VTLN) [6] for simple speaker
adaptation. Warping factors for training and test data are esti-
mated using GMM trained on all unnormalized training data.
Warped MFCCs are created for all files with warping factors in
a range from 0.80-1.12 with a step-size of 0.02. The optimal
warping factor per chunk is obtained by scoring all warped in-
stances against the unnormalized GMM and selecting the maxi-
mum. We use a linear piecewise warping function with a warp-
ing cutoff of 0.875×Nf , which is the Nyquist frequency.

2.1.4. Temporal context

Simple MFCCs do not model any temporal characteristics
which might be a discriminative feature for this task. For this
purpose, we generate delta, double and triple delta coefficients
of the static features. This results in 26, 39 and 52 dimensional
feature vectors containing information spanning a context of 5,
9 and 13 frames, respectively.
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2.1.5. SDC

The importance of even a broader temporal information has
been shown for LID [2]. The Shifted Delta Cepstra (SDC)
features are created by stacking delta-cepstra computed across
multiple speech frames. The SDC features are specified by the
number of cepstral coefficients (7), the advance and delay for
the delta-computation (1), the number of blocks whose delta-
coefficients are concatenated to form the final feature vector (7),
and the time shift between consecutive blocks (3). The features
in our system are 7 MFCC coefficients (including coefficient
C0) concatenated with delta cepstra which totals in 56 coeffi-
cients per frame, spanning a context of 21 frames.

2.1.6. Voice Activity Detection

For all our features, non-speech frames are discarded and only
speech frames are considered in the following stages of train-
ing models and verification. Speech/non-speech segmentation
is performed by our Hungarian phone recognizer [9], where all
phoneme classes are linked to speech class.

2.1.7. Syllable Contours

Prosodic information based on a lexical context might be useful
for this task and are complementary to the acoustic short time
features. For this purpose, we use our detector of syllable based
feature contours as presented in [7], based on classical prosodic
features like duration, pitch and energy in a syllable-like tem-
poral context. The trajectories of each feature are continuously
modeled over the time span of a syllable and are represented by
discrete cosine transformation (DCT) coefficients. Addition-
ally, we also capture the contours of MFCCs and form a single
feature vector out of duration, pitch, energy and the MFCC con-
tours. Frame based pitch and energy is generated and are mean
subtracted over the voiced part of the utterance before approx-
imating the temporal trajectory. We use the syllable duration
(number of frames) and 6 coefficients per feature contour which
results in 13 dimensional vectors for the prosodic and 85 dimen-
sional vectors for the combined prosodic and MFCC contours.

2.2. Classifier

2.2.1. GMM-UBM System

The baseline GMM system is based on standard Universal
Background Model-Gaussian Mixture Modeling (UBM-GMM)
paradigm [1]. Weights, means and variances of the UBM are
trained iteratively prior to any class model on data from all
classes by Expectation-Maximization (EM) and class models
are derived via relevance Maximum-a-Posteriori (MAP) adap-
tation. Instead of frame-based full log-likelihood evaluation, we
perform an approximate fast linear scoring based on utterance
statistics [8].

2.2.2. Maximum Mutual Information

MMI is a discriminative training technique often applied to clas-
sification tasks similar to emotion recognition [2]. For this ap-
proach, an initial set of models is trained per class under con-
ventional Maximum Likelihood (ML) framework, as for the
UBM. These serve as a starting point for further discriminative
re-estimations of means and variances using Maximum Mutual
Information criterion.

Unlike in the case of ML training, which aims to maximize
the overall likelihood of training data, MMI objective function
to maximize is the posterior probability of correctly recognizing

all training segments (chunks):

FMMI(λ) =

RX
r=1

log
pλ(Or|sr)P (sr)P
∀s pλ(Or|s)P (s)

, (1)

where pλ(Or|sr) is the likelihood of r-th training segment,Or ,
given the correct transcription (in our case the correct emotion
class identity) of the segment, sr , and model parameters, λ. R is
the number of training segments. The denominator represents
the overall probability density, pλ(Or) (likelihood given any
emotion class). We consider the prior probabilities of all classes
(emotions) equal and drop the prior terms P (sr) and P (s).

In this approach, verification is done frame-by-frame with
full log-likelihood computation.

2.2.3. Joint Factor Analysis

Joint factor analysis is a model recently introduced to cope with
the problem of speaker and session variability in GMM-based
speaker verification [3]. We explain the basic concept in terms
of SID and show how to adapt it to the emotion classification
problem. The basic assumption is that the model M can be
decomposed into a speaker s- and channel c- dependent part

M = s + c, (2)

which can be represented in low dimensional spaces. The first
term on the right hand side of (2) is modeled by assuming that
if s is the speaker super-vector for a randomly chosen speaker,
then

s = m + Vy + Dz, (3)

where m is the speaker- and channel-independent super-vector
(UBM), V is a rectangular matrix of low rank (eigenvoices), D
is a diagonal matrix (which covers the residual speaker variabil-
ity) and the components of y and z are respectively the speaker
and common factors.

The channel-dependent part c, which represents the channel
effect in an utterance, is assumed to be distributed according to

c = Ux, (4)

where U is a rectangular matrix of low rank (known as eigen-
channel matrix) and the components of x are the channel fac-
tors.

The underlying task in JFA is to train the hyperparameters
U, V, and D on a large training set which represents subspaces
in which speaker and channel can be rapidly adapted.

In the task of emotion recognition, the eigenvoices can be
seen as a low dimensional subspace modeling the properties
of the different emotion classes and the “channel” covers un-
wanted attributes like the individual speaker and other session
variability.

2.3. Experiments on Development Set

2.3.1. Setup

As there is no official development set we take a subset of the
training data for system development. To get expressive results,
we use a full jackknifing approach for the whole training set.
13 splits are created out of the training set, each excluding 1
male and 1 female, resulting in ca. 9000 chunks. Results are
presented in terms of recognition rate (percentage of correctly
recognized chunks, in total for all chunks and averaged over the
classes). In this section, they will be presented for the 5-class
task (Anger, Emphatic, Neutral, Positive and Rest) only.
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Table 1: Results for plain MFCCs, with RASTA and VTLN [%].

feature avg tot A E N P R
8kHz 35.6 37.1 48.9 28.7 40.2 52.7 7.3

RASTA 38.8 40.2 55.1 27.4 44.3 61.8 5.3
VTLN 36.3 38.4 48.4 28.7 42.5 56.8 4.9
16kHz 36.4 40.4 45.9 23.1 48.2 58.8 6.4

RASTA 37.4 40.9 55.2 30.6 45.7 50.5 5.0
VTLN 36.8 40.2 44.1 27.5 46.2 59.4 6.7

Table 2: Results with longer temporal context [%].

feature avg tot A E N P R
8k ∆ 40.6 41.1 56.8 30.4 43.9 66.2 5.7
∆ ∆ 40.7 42.2 54.8 29.4 46.4 68.5 4.3
∆∆∆ 41.0 40.6 56.3 30.4 42.7 70.4 4.9
SDC 42.2 41.3 54.8 44.6 39.3 68.7 3.6

16k ∆ 41.8 41.3 59.3 33.3 42.7 69.6 4.1
∆∆ 43.5 42.9 60.8 36.5 43.6 71.4 5.3

∆∆∆ 42.6 40.7 58.1 38.9 39.2 72.2 4.8
SDC 41.9 41.0 52.6 46.7 38.4 68.2 3.7

2.3.2. Features

First experiments are carried out with the simple GMM-UBM
system to find well performing features. Preliminary experi-
ments indicated that a size of 64 Gaussians performs the best
in average. Due to the unbalanced amount of class affiliation in
the training data, it is important to define a balanced set for the
UBM training. Results for different feature types are presented
in table 1.

For the MFCC that are generated from the 16kHz data as
well as from the downsampled audio, we achieve improvements
through the RASTA filter. With VTLN, we gain less improve-
ment. The plain 16kHz MFCCs perform better than the 8kHz
ones, but better results are achieved with RASTA on the 8kHz
data.

After filtering the MFCC features, we augment them with
their derivatives up to third order to cover temporal context. Al-
ternatively, we use SDC features with even a longer temporal
context.

From table 2 it can be seen that the performance clearly
benefits from adding the dynamic information. Here, the 16kHz
data gains much more from the delta coefficients and the double
deltas outperform the triple deltas as well as the SDC features.

Our last feature experiment is carried out on features that
are generated for each syllable in the utterance. The duration
and contours of pitch, energy (DPE) and optionally MFCCs
(DPEC) are modeled by these features. Table 3 indicates that
they perform quite worse compared to the frame based acoustic
features, while they still might contain complementary informa-
tion. A problem for statistical modeling is that we get very few
feature frames for the short test utterances, often none at all (as
there might be no detected pitch).

2.3.3. Classifier

As a second step, we use our best performing features on more
sophisticated modeling approaches as presented in section 2.2.

For the discriminative training, we use ML-trained models
as initial models for each class, and we retrain them using MMI
training in 10 iterations.

Table 3: Results for syllable based feature contours [%].

feature avg tot A E N P R
DPE 32.3 39.6 43.3 23.8 49.2 35.6 9.7

DPEC 36.0 38.3 47.7 30.9 41.7 48.7 10.9

Table 4: Results for ML and MMI systems [%].

feature avg tot A E N P R
ML 44.0 49.2 51.5 45.0 54.1 46.3 23.1

MMI 43.7 49.5 49.5 45.1 55.0 44.0 24.8

Although the ML trained models perform slightly better
than the UBM-GMM system, the performance even slightly de-
grades for the MMI trained system, as shown in table 4. This
might be due to overtraining on the relatively small amount of
data. Anyway, this system might give complementary informa-
tion to the GMM-UBM system as can be seen e.g. from the
much higher recognition rate for class R.

Starting point for our JFA experiments is the GMM-UBM
system as JFA is an expansion to this system. Initially, the low
dimensional sub-spaces that model the attributes of the class
and the ”channel” have to be estimated. The estimation of
eigenvoices does not promise much gain in performance in this
case, as only 2 or 5 classes are available for training the sub-
space and the space is estimated on the same data as used for
the model training itself.

More interesting is the question how to estimate the ”chan-
nel” matrix. One can assume to model the variability over all
chunks (which would cover the speaker as well as general chunk
variability) or to sum up all statistics belonging to one speaker.
After preliminary tests, we use the second case where the ”chan-
nel” represents the dimensions of unwanted variability caused
by the individual speaker.

We initialize V and U by PCA [10] and iteratively retrain
first V, then U, and then D. For small amounts of test data, the
integrative scoring over the channel distribution [8] has proved
to be beneficial. On this task, we have an average of 80 frames
of speech per test utterance (0.8s) which is extremely little data
for statistical adaptation.

Table 5 shows some experiments to find suitable numbers of
eigenvoices (V) and eigenchannels (U). As we use small mod-
els and have very little adaptation data, we get only some im-
provement with one eigenchannel. Increasing the number even
degrades the performance. Also, the use of more eigenvoices
decreases the recognition rate.

Although we get some improvement, this is negligible com-
pared to the improvements of over 50% relative gained in
SID [10]. This is mainly due to the small amount of adapta-
tion data for the channel estimate.

2.4. System Calibration/Fusion

Finally, we use multiclass linear regression tool [11] to perform
calibrated fusion of our systems.

Fusion parameters are trained directly on the development
set. Improvement is gained through all performed fusions of 2
systems, see Table 6. Combination of two JFA systems with
different feature types results in the best performance.
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Table 5: Results for different JFA system configurations [%].

V U avg tot A E N P R
0 0 43.5 42.9 60.8 36.5 43.6 71.4 5.3
1 1 44.4 47.1 52.8 42.3 50.3 57.3 19.6
1 2 43.0 41.4 53.5 43.2 39.2 58.1 21.3
1 3 42.9 42.4 55.5 43.0 41.4 53.7 20.9
5 1 43.0 46.5 52.1 42.9 49.9 53.4 16.8
0 1 44.2 47.2 52.8 42.1 50.6 56.7 19.0

Table 6: Results for fusion of 2 systems [%].

System 1 System 2 avg
GMM-UBM JFA 45.3

MMI JFA 46.65
ML JFA 46.45

MFCC RASTA ∆ ∆ SDC 47.18

3. Submission
This section shows the results for the systems we have selected
to submit for the official Open Performance Challenge [4]. Re-
sults are presented with the official metric on the 2- and 5-class
task.

3.1. Systems

We have selected the four different modeling approaches (ML,
MMI, GMM-UBM, JFA) we used in the system development
for the best performing features on the test set. They are based
on MFCCs generated from 16kHz data with RASTA filter and
double deltas.

Table 7 shows results for the 2-class task. Consistent to
our development set, we get the best results for the JFA system,
while the others perform approximately the same. On the pri-
mary measure, the unweighted average recall (UA), we achieve
only a minor 3%/1% relative improvement to the dynamic and
static modeling, respectively, which was provided as a base-
line [4].

Table 8 shows results for the 5-class task. Like for the 2-
class, we achieve the best results for the JFA system. Surpris-
ingly, the ML and the MMI system perform worse, unlike than
on the development set. This might indicate that even the ML
trained model is already over-adapted to the training data. On
the UA, we achieve a 15%/8% relative improvement to the dy-
namic and static modeling, respectively, which was provided as
a baseline [4].

Our final submission is a fusion of the two JFA systems
fused in table 6, based on the averaged parameters trained on the
splits of the development set. This sub-optimal fusion results in
further improvement to 41.7% for 5-class task.

4. Conclusions
For our submitted systems, we could achieve relative improve-
ment of 16% over the low-level descriptor baseline system and
9% relative improvement to the static modeling baseline using
supra-segmental information for the 5-class task.

Although we could not achieve great benefit from applying
MMI or JFA, we could show that a GMM-based approach with
relatively ”simple” features containing only acoustic informa-
tion on a frame level can yield to a comparable or even better

Table 7: Submitted systems for 2-class task [%].

System UA WA
GMM-UBM 67.8 64.2

JFA 68.3 65.8
ML 67.5 63.8

MMI 67.65 64.1

Table 8: Submitted systems for 5-class task [%].

feature UA WA
GMM-UBM 40.8 41.0

JFA 41.3 43.9
ML 38.5 45.4

MMI 38.7 46.0

performance than using much higher dimensional chunk-based
features.

As we have observed in other areas, the small benefit from
MMI and JFA is often due to small amount of training and test
data. The benefit from JFA that can be in the range of 50% rel-
atively for several minutes of speech (typical SID task) reduces
to less than 10% for a few seconds of speech. This becomes
even more dramatic for the syllable based contour features.

Also, appropriate feature type still has to be found. Stan-
dard features like MFCCs do work, but it is obvious that for de-
tecting emotions in speech a simple ”acoustic fingerprint” may
not be sufficient, especially if the emotion covers only a few
words.
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