
NEURAL NETWORK BASED LANGUAGE MODELS FOR HIGHLY INFLECTIVE
LANGUAGES

Toḿaš Mikolov, Jǐrı́ Kopecḱy, Luḱaš Burget, Onďrej Glembek and Jan “Honza”̌Cernocḱy

Speech@FIT, Faculty of Information Technology, Brno University of Technology, Czech Republic
{imikolov|kopecky|burget|glembek|cernocky}@fit.vutbr.cz

ABSTRACT

Speech recognition of inflectional and morphologically rich
languages like Czech is currently quite a challenging task,be-
cause simple n-gram techniques are unable to capture impor-
tant regularities in the data. Several possible solutions were
proposed, namely class based models, factored models, de-
cision trees and neural networks. This paper describes im-
provements obtained in recognition of spoken Czech lectures
using language models based on neural networks. Relative re-
ductions in word error rate are more than 15% over baseline
obtained with adapted 4-gram backoff language model using
modified Kneser-Ney smoothing.

Index Terms— language modeling, neural networks, in-
flective languages.

1. INTRODUCTION

Statistical language models play important role in many ap-
plications, like machine translation, optical character recog-
nition and speech recognition. The ultimate goal in language
modeling is language understanding - however, current tech-
niques are still quite far from it. The basic reason is that mod-
els like backoff n-grams can not describe some relationships
in the data effectively. The other reason is that advanced tech-
niques that are able to describe these relationships are com-
putationally expensive and their training is still a big problem
- even if the existence of solution is guaranteed, it may be
practically impossible to find it using naive approaches. Soin
practice, basic trigrams are still commonly used for practical
reasons.

On the other hand, n-gram backoff models do not work
as well for inflectional languages as they work for English. It
is easy to see that if we place several independent data into
one symbol (like stem and ending to one word), n-grams will
require much more parameters to estimate than is actually
needed. This leads to techniques that try to decompose words
into morphological parts. Still, this step may require devel-

This work was partly supported by Ministry of Trade and Commerce
of Czech Republic under project FT-TA3/006 and by Ministry of Interior of
Czech Republic under project VD20072010B16. The hardware used in this
work was partially provided by CESNET under project No. 201/2006.

opment of a tagger and one may ask, whether it is actually
needed.

The original idea of using neural networks that project
words onto continuous space to reduce number of parame-
ters that are needed to be estimated comes from Bengio [1].
Probably first results in speech recognition were produced by
Schwenk [2]. In our approach, we use neural network to learn
word structure in unsupervised manner, while learning bi-
gram model. This structure is then used to learn n-gram neural
network model. While computational requirements for neu-
ral network training are quite high, we train it on all data that
are available and relevant for our task - recognition of sponta-
neous spoken lectures. Neural networks can be then applied
to speech recognition in two ways: n-best list re-scoring (or
lattice rescoring) and additional data generation. In thispa-
per, we will discuss n-best list re-scoring, as it gives us the
best results. Additional data generation by neural network,
which can be seen as conversion of neural network model to
standard backoff n-gram model, provides worse results, but
is easier to use in practical recognizers - there is no need for
re-scoring.

2. ARCHITECTURE

The first step in our architecture is training of bigram neural
network. The task is relatively simple: given wordw from vo-
cabularyV , estimate probability distribution of the next word
in text. We use neural network with input and output layer of
the size|V |, where wordw in the input layer uses ”1 of n”
coding (all input neurons are set to 0 except the one that cor-
responds to wordw , which is set to 1). One hidden layer of
variable size (usually 20-60 neurons) ensures that words that
predict similar probability distribution in the output layer will
share some of this distribution, because they will be automat-
ically placed ”near” in the highly dimensional space. Without
hidden layer, no clustering would occur. In the hidden layer,
sigmoid activation function is used. The output layer uses
softmax that normalizes values of output neurons to sum up
to 1.

2.1. Training algorithm
For training, standard back-propagation algorithm is used.
Although [1] and [2] suggest that using weight decay is

Fig. 1. Neural network architecture.

needed, in our early experiments weight decay improved re-
sults only slightly and we decided not to use it, because it
requires additional parameter tuning.

After probability distribution is computed in the output
layer (normalization is ensured by softmax), error vector is
generated asE = D − O, whereE is error vector,O output
vector andD desired vector. VectorD is encoded as ”1 of n”
and represents the next word. Error is then back-propagated
through network and weights are modified according to stan-
dard back-propagation algorithm.

After each training epoch, neural network is used to com-
pute probability of the validation data. If the probabilityin-
creases, training continues. If the probability does not im-
prove significantly (less than 1%), learning rate is halved and
training continues. After learning rate is halved once, it is au-
tomatically halved in each following training epoch. When
probability of training data does not rise again, training is
stopped to prevent over-fitting. Usually it takes 10-20 epochs
to train the neural network. Starting learning rate is 0.1.

N-gram network is trained in the same way, except that
the input vector does not encode just previous word in history
using 1 ofV coding, but is formed by usingN − 1 projec-
tions from bigram network. To compute projection of word
w onto continuous space of dimensionalityD, half of the bi-
gram network (first two layers) is used to compute values in
hidden layer. Values from hidden layer of bigram network are
used to form input layer of n-gram network. AsD is around
20-60, it is possible to represent input for 4-gram network
using less than 200 input neurons. In the following experi-
ments, we will describe results obtained with n-gram neural
networks and 4-gram backoff LMs.

Note that Bengio [1] claims that training word features
together with neural network language model is better than
independent training of features and n-gram NN LM. In our
approach, we consider the first network as a feature extractor
and do not train it together with the n-gram net. We suppose
that this can prevent word features from learning cache-like
relationships in the data, which tend to heavily optimize per-
plexity, but not recognition accuracy (Goodman [8]).

Data source # words

Spontaneous speech 5 001 000
Technical lecture data 2 084 000
Lecture transcriptions 185 000

Table 1. Training data.

To improve speed of training, all words that occur in the
training data less times than some threshold value are merged
into one token in the same way as [1] does. This step effec-
tively reduces size of the vocabulary, speeding up the train-
ing phase usually 3× - 5× (depends on threshold value) with
only small impact on the final perplexity: words that occur
very rarely in the training data can be hardly mapped onto the
continuous space correctly without any additional informa-
tion (for example POS tags). In the following experiments,
words that occur less than 5 times are merged into one sym-
bol, unless stated otherwise. This step reduces the vocabulary
size from 204K words to 56K, resulting in 4× speed-up. By
merging all words that occur less than 10 times, vocabulary
can be further reduced to 36K.

3. TRAINING DATA AND TEST DATA

Language modeling of spontaneous lecture speech in Czech is
a challenging task, because commonly used corpora are based
on newspaper articles / web data and are almost useless in
our case. We needed to cover specific speaking style, non-
literary words and technical terms. We were able to cover
all these domains to some degree, as can be seen in Table 1
(overally we have 6 different corpora to cover these domains).
However, the amount of data is quite small.

Note that by using additional text corpora based on web
data and written out-of-domain text, less than 0.5% improve-
ment in accuracy of the final recognizer can be obtained,
while size of the language models rises dramatically. Our
baseline adapted 4-gram language model is obtained by in-
terpolating language models based on each corpora using in-
terpolation weights chosen to minimize perplexity on valida-
tion data. We obtain perplexity 366 and OOV rate 1.9%. Al-
though using modified Kneser-Ney smoothing reduces per-
plexity significantly against models that use Good-Turing
smoothing, we observed no significant improvement in WER.
Still, we use modified KN smoothing for baseline models as
it is considered as the best smoothing method.

As test data we used half of a Systems and signals lecture
(1.1 hour, 873 sentences total). The same setup was already
used by Oparin [7] who worked on morphological random
forests.

For decoding, we used acoustic models trained on
Speecon and Temic databases (for more details, see [5]) and
in-house STK decoder that is able to handle large vocabular-
ies.

4. EXPERIMENTS AND RESULTS

In our experiments, we run decoder with bigram backoff LM
and produce first-pass lattices. These lattices are then ex-
panded by 4-gram LM with Kneser-Ney smoothing using SRI
LM toolkit [6] to obtain baseline results. Neural networks are
used to re-score N-best lists generated from first pass lattices
(N=500 unless stated otherwise) and their score is interpo-
lated with baseline LM score, withλ value of 0.6 for NN LM
score (λ value was determined in previous work [3] and works
well in most cases, as NN based LMs work better than backoff
LMs). Neural network LMs are always trained on the same
data as standard backoff LMs to provide fair comparison.

We are not going to perform advanced study on perplexity,
as we are more interested in recognition accuracy. As neural
networks are trained on data that are not shuffled, they tend to
overfit data that are at the end of training corpora (lecture tran-
scriptions). Direct comparison between neural network (PPL
342) and standard unadapted 4-gram LM (PPL 528) shows
big improvements in perplexity in favor of neural network.
On the other hand, correctly weighted 4-gram LM (PPL 366)
performs only slightly worse on perplexity than unadapted
NN LM. Still, recognition accuracy is significantly higher
with unadapted NN LM than with adapted 4-gram backoff
LM. Simple experiments with NN LM adaptation by creat-
ing separate models for each corpus lead nowhere: while per-
plexity decreases as can be expected, recognition accuracy
after interpolation with adapted LM decreases too. It seems
that adapting just backoff LM is enough, as the final model
is usually interpolation between NN LM and backoff LM. In
previous work [3], we were able to obtain more than 20% im-
provement in PPL with NN LM against backoff LM when we
trained models on homogeneous data.

4.1. Experiments with re-scoring
As our task involves relatively small amount of training data,
it is possible to train neural network model directly on whole
corpora. Still, our first experiments were performed on small
subsets of the data, to better understand behavior of NN-based
LMs. By adding more data, it is interesting to see that NN
LMs provide more improvement (see Table 2).

In our experiments, we observed that the more training
data we have, the bigger network must be used to obtain the
best possible results. While for experiments with 0.1M and
0.2M words, 20 30 4 network configuration worked the best,
for 1M words the best results were obtained with bigger net-
works.

Table 3 presents results obtained on full training data. As
we expected, bigger networks work better. We performed ex-
periments with order of n-gram NN language model - as can
be seen, going from trigrams to 5-grams doesn’t provide any
improvement with 20 30 network configuration. While NN
LMs were originally proposed to solve the data sparsity prob-
lem for long contexts [1], in our case, it is clear that improve-
ment provided by NN LMs comes not from the long context,

Model Accuracy

0.1M words backoff LM 63.8%
20 30 4 neural network 64.8% (+1.0%)
0.2M words backoff LM 65.6%
20 30 4 neural network 67.2% (+1.6%)
30 50 4 neural network 67.3% (+1.7%)
1M words backoff LM 67.1%
10 15 4 neural network 68.8% (+1.7%)
20 30 4 neural network 69.5% (+2.4%)
30 50 4 neural network 69.9% (+2.8%)
50 80 4 neural network 69.9% (+2.8%)

Table 2. Models with various training data sizes and topolo-
gies: 20 30 4 neural network means that bigram NN has hid-
den layer with 20 neurons, n-gram NN 30 neurons and order
of model is 4-gram. In these experiments, NNs are interpo-
lated with 4-gram backoff baseline LM.

Model Accuracy Accuracy after
interpolation

7.3M words LM (all data) 70.7% 70.7%
5 5 3 NN 69.1% 71.7% (+1.0%)
20 30 3 NN 71.4% 73.2% (+2.5%)
20 30 4 NN 71.2% 72.9% (+2.2%)
20 30 5 NN 71.6% 73.1% (+2.4%)
40 60 5 NN 71.9% 73.3% (+2.6%)
90 90 4 NN 72.6% 73.1% (+2.4%)
60 90 4 NN (mincount 10) 73.1% 73.9% (+3.2%)
60 150 4 NN (mincount 10) 72.9% 73.9% (+3.2%)

Table 3. Models trained on full data (except model 90 90
4), accuracies for standalone models and models interpolated
with baseline 4-gram backoff LM.

but from the short context information.
While larger networks perform better, it takes much more

time to train them - training 40 60 network is two times more
time consuming than training 20 30 network. To compensate
this, we tried to reduce vocabulary even more than we did in
the previous experiments - instead of discarding words that
occur less than 5 times, we discarded words that occur less
than 10 times. This reduced vocabulary from 56K words to
36K. We expected that results should be a little worse, but this
didn’t happen: in fact, results of standalone models are a little
better and after interpolation, we obtain the best results with
these models. Possible explanation of this effect is that words
that occur rarely require many parameters of the network to
be estimated, and that cannot be done correctly with so little
amount of training data. This assumption should be investi-
gated in the future, as it may be possible to obtain even larger
improvements than we present here. Other explanation might
be that models with lesser vocabulary take big advatnage from
using larger hidden layers.

Ultimately, we have taken four largest networks (see Table

N RT Accuracy

1 - 70.2%
10 0.07 73.3%
100 0.6 73.8%
500 2.0 73.9%
3000 5.0 74.0%

Table 4. Real time factor for re-scoring N-best lists with 60
150 4 network interpolated with 4-gram backoff LM; 1-best
corresponds to best path in lattices decoded with bigram back-
off model.

LM Accuracy LM size

backoff 4-gram (gzipped) 70.7% 37M
20 30 3 network 71.4% 17M
60 150 4 network (mincount 10) 72.9% 39M

Table 5. LM sizes.

3) and combined their score using loglinear interpolation.We
assigned the same weight to each network (0.25 in this case).
We re-scored 3000 best lists to obtain the best possible results
- 74.6% accuracy. After adding information from backoff 4-
gram baseline LM, accuracy didn’t go much higher - only to
74.7% with the best interpolation weight of 0.05. This means
that in our case adapted backoff LM is so much worse than
mix of NN LMs that it is almost useless, even if it contains
adaptation information that is unknown to NN LMs.

4.2. Real-time factor
Many promising language modeling techniques are not
widely used because of their high computational require-
ments. Our implementation of training phase is not optimized
in any way, except vocabulary size reduction by merging rare
words. Training times are thus quite high: still, we are ableto
train full NN LM model in less than 2 weeks, the biggest 60
150 4 network was trained in approximately 4 weeks. More
important factor for practical use is time needed to re-score
N-best lists - see Table 4.

To obtain reasonable re-scoring times, two level cache
was implemented. Since N-best variants of utterances share
large amount of n-grams that need to be estimated, it is use-
ful to remember already computed n-gram probabilities. The
second level of cache is storing computed probability distribu-
tions - this cache is more memory hungry and so the number
of stored entries is much smaller. With our cache model, we
obtain cache hit 68% when rescoring 10-best lists and 92%
when re-scoring 3000 best list.

Another interesting fact is that neural networks may take
less disk space than conventional backoff LM (Table 5).

5. CONCLUSION

In our experiments, we compared adapted 4-gram backoff
language model with modified Kneser-Ney smoothing that
is currently considered as standard baseline language model

against mix of neural networks. Absolute improvement 4.0%
in accuracy (more than 15% reduction of WER) is quite high,
in comparison to usual improvements obtained by using ad-
vanced language modeling techniques. We performed man-
ual comparison of recognition results to see where neural net-
works help this much. It was no surprise that some improve-
ment comes from fixing endings of words. Recognized text
after neural network re-scoring is much more smooth and un-
derstandable than baseline results.

Neural networks seem to be very useful for tasks where
we struggle with inflectional languages and limited data
amounts. While performance of our implementation is not
high, [2] presents various optimization techniques that lead to
significant improvements in required computational time for
training and lattice re-scoring.

Future work should be focused on speeding up training
phase, which is currently our worst problem. To improve re-
sults further, it may be also meaningful to use morphological
information, which can allow neural network to ”understand”
even rare words.

6. REFERENCES

[1] Yoshua Bengio, Réjean Ducharme and Pascal Vincent.
2003. A neural probabilistic language model. Journal of
Machine Learning Research, 3:1137-1155

[2] Holger Schwenk and Jean-Luc Gauvain. Training Neu-
ral Network Language Models On Very Large Corpora.
in Proc. Joint Conference HLT/EMNLP, October 2005.

[3] Tomáš Mikolov: Language Modeling for Speech
Recognition in Czech, Master’s thesis, Brno, FIT BUT,
2007

[4] Tomáš Mikolov: Language Models for Automatic
Speech Recognition of Czech Lectures, in Proc. EE-
ICT 2008, Brno,https://wis.fit.vutbr.cz/
FIT/db/vav/view_pub.php?id=8749

[5] Jiřı́ Kopecký, Ondřej Glembek and Martin Karafiát: Ad-
vances in Acoustic Modeling for the Recognition of
Czech, in Proc. Text, Speech and Dialogue (TSD) 2008,
Brno, Czech Republic, September 2008, pp. 357 – 363.

[6] Andreas Stolcke: SRILM - an extensible language mod-
eling toolkit. in Proc. ICASLP, Denver, Colorado, USA,
2002.

[7] Oparin Ilya, Glembek Ondřej, Burget Lukáš,Černocký
Jan: Morphological random forests for language mod-
eling of inflectional languages, in Proc. 2008 IEEE
Workshop on Spoken Language Technology, Goa, IN,
IEEESP, 2008

[8] Goodman Joshua T. (2001). A bit of progress in lan-
guage modeling, extended version. Technical report
MSR-TR-2001-72.

