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ABSTRACT

We investigate various ways of generating prosodic syllable con-
tour features that have recently been applied to enhance systems for
speaker recognition. We compare different approaches for segmen-
tation of speech into syllable-like units, techniques for contour mod-
eling and the extraction of pitch and energy, taking into account the
computational complexity and gender dependence. We show that the
performance is especially affected by the segmentation and the qual-
ity of the pitch tracking algorithm and that the features are highly
gender dependent. Still, computationally simple ways of segmenta-
tion of speech can be used to achieve good results, as experiments
on 2006 NIST speaker recognition evaluation task indicate.

Index Terms— Speaker recognition, prosodic features, syllable
contours

1. INTRODUCTION

Recent National Institute of Standards and Technology (NIST) eval-
uation for speaker verification systems has shown that the use of
prosodic information to enhance acoustic state-of-the-art systems
has become very popular [1, 2, 3, 4]. While most participants use
classical prosodic features like duration, energy and pitch in a long
temporal context, the actual realizations diverge.

The way of segmenting speech into units which are suitable for
prosodic modeling differs a lot. Although most use a syllable-like
context, the segmentation techniques span from simple energy-based
decisions [2] up to accurate syllables derived from a speech recog-
nition system [1]. Furthermore, there is a huge disparity in the way
of modeling speech segments. Besides extracting characteristics like
the mean, maximum or minimum [1], continuous feature trajectories
are often modeled by Gaussian Mixture Models (GMM) [2, 3, 4].
Various approaches for curve fitting, as well as different ways of
handling undefined pitch values appear. Finally, the algorithms for
extracting the basic prosodic features differ a lot.

This work takes into account the need for a deeper investiga-
tion into the creation of continuous syllable contour features which
are suitable for Joint Factor Analysis modeling (JFA) [5], and proved
their capability to enhance state-of-the-art acoustic systems [2]. Sev-
eral techniques for segmentation, contour modeling and basic fea-
ture extraction are compared and experimentally evaluated, and we
show huge dispersion in accuracy and computational requirements.
The performances of the proposed systems are presented in terms
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of equal-error-rate (EER) for the text-independent NIST SRE 2006
speaker identification task [6].

The organization of the paper is as follows: Section 2 describes
different configurations for extracting syllable based features, in-
cluding basic prosodic features themselves, the way the utterance
is segmented into syllable-like units and the actual modeling of the
temporal trajectory of the basic features. Section 3 presents the ex-
periments and results, and conclusions are given in section 4.

2. FEATURE GENERATION

Generating prosodic contour features mainly consists of three parts:

1. Extraction of basic prosodic features.

2. Segmentation of speech into syllable-like units.

3. Approximation of temporal feature trajectories.

2.1. Segmentation

Various approaches for segmentation of speech into long-temporal
units are presented, starting from the most computationally complex
to the simplest.

LVCSR syllables: Syllables are created from the word output of
a Large-Vocabulary-Continuous-Speech-Recognition (LVCSR) sys-
tem1 using human-created rules [7]. The phone alignments of the
recognized words are used to generate correct English syllables. The
example in Figure 1 depicts how the recognized word weird, with its
phones w+ih+r+d, leads to a single syllable. This way of segment-
ing is highly language-dependent but the segmentation is accurate.
Compared to other methods, segments are relatively long.

Pseudo syllables: Pseudo syllables are generated from the output of
a phone recognizer as described in [8]. Each vowel serves as nucleus
and surrounding consonants as onset and coda. Our phonetically rich
Hungarian phone recognizer [9] is taken as a language-independent
detector. Segments are also relatively long. In the example in Fig-
ure 1 the resulting segment is nearly the same as for the LVCSR.

Phone boundaries: The boundaries from the phone recognizer are
directly taken as the segments, which results in more shorter seg-
ments. It is doubtful if they are that suitable for prosodic modeling
(see also Figure 1), as they rather represent a trend like falling or
rising, than the character of the whole contour.

Vowel Onset Points: Syllable segments are determined by Vowel

1Many thanks for providing their SNERF features to Luciana Ferrer and
SRI International.
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Onset Points (VOP) as presented in [10]. The strength of excita-
tion shows a significant change at the transition from consonant to
vowel. Source excitation information is approximated by the Hilbert
envelope of the linear prediction residual. The area between two de-
tected VOPs is taken as a syllable, which often results in very long
segments, especially in speech pauses. In Figure 1 it can also be
observed that this method splits connected segments rather inappro-
priately.

Energy valleys: As proposed by [5], the normalized energy is di-
rectly used to segment speech. As indicated in Figure 1, the local
minima of the energy contour determine the segments, with a mini-
mum length of 60ms. This technique also often results in short seg-
ments, due to fluctuations in the energy signal.

Fixed window: Like for standard acoustic features, we propose
a fixed overlapping window, but with a long temporal context of
300ms and a shift of 150ms. For the example in Figure 1, this span
covers nearly the whole word weird, but of course the segmentation
is quite arbitrary, depending on the frame shift.

2.2. Contour modeling

This subsection describes the methods used to actually model the
temporal trajectory of pitch and energy as well as treatment of unde-
fined pitch values in speech segments.

2.2.1. Curve fitting algorithm

As proposed in [8], the trajectory can be modeled by a Discrete
Cosine Transform (DCT). Taking the n leading coefficients gives
de-correlated features independent of the segment length. Another
approach is presented in [5]. The feature segment is modeled by
taking the coefficients of an n-th order Legendre polynomial. Both
methods translate characteristics of the curve, like mean, slope and
finer details into the feature vector. The grade of the detail can be
controlled by using more/less DCT coefficients or in-/decreasing the
polynomial order, respectively. In preliminary experiments, best re-
sults could be achieved with six coefficients.

2.2.2. Voiced/Unvoiced

A specific problem in modeling continuous pitch is that this feature
is undefined in unvoiced regions. The simplest approach is to use
only frames with valid pitch values and collapse these frames before
modeling the contour. With Legendre polynomials, it is also possible
to keep the undefined values as gaps and to model the contour from
the first valid pitch value to the last. Another possibility is interpo-
lation of pitch to close the holes. For energy, one can either take the
same frames as for pitch or the whole segment.

2.3. Basic prosodic features

We investigate three popular pitch tracking algorithms that are im-
plemented in Snack/Wavesurfer [11] and Praat [12]. Snack is used
in two different modes, as they give significantly different results:
ESPS uses the normalized cross-correlation function with dynamic
programming and AMDF stands for Average Magnitude Difference
Function. The algorithm implemented in Praat is also based on auto-
correlation (we will simply call it Praat).

Figure 1 illustrates their general behavior on a simple example.
The ESPS mode gives much smoother values while AMDF produces
rough steps in the pitch contour, due to quantization effect, where
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Fig. 1. Example for different segmentations and pitch extractions for
the word weird. ESPS (blue), AMDF (red) and Praat (green).

the step-size is proportional to the fundamental frequency. Also, we
observe that AMDF tends to produce more halving/doubling. The
Praat output is similar to ESPS, but produces generally less pitch
values. Note that Snack is used with its default settings while we
configure Praat as in [5].

As the range of pitch values is gender dependent, we will also
investigate the effect of normalizing pitch values and the influence
on a gender independent modeling approach.

Furthermore, two energy extraction methods are compared. As
is common use for acoustic features, we compare the usage of nor-
malized energy as in [5] and approximation of energy by the 0th
cepstral coefficient.

3. EXPERIMENTS

3.1. Setup

For all experiments 13 dimensional feature vectors are generated
which comprise segment length (in 10ms frames), and 6 coefficients
for pitch and energy each.

As a back-end, we use a GMM-JFA framework [13] as de-
scribed in [3], which uses low dimensional subspaces to model
speaker- (eigenvoices V) and intersession-variability (eigenchan-
nels U). Prior to estimating the subspaces, gender-dependent Uni-
versal Background Models (UBMs) with 128 Gaussians are obtained
by Expectation-Maximization (EM) Training. Discrete as well as
continuous features are used within one feature vector, so variance
flooring is crucial while EM training. Variances are floored to 1/100
of the global variance.

Our standard configuration uses 50 eigenvoices and 20 eigen-
channels per gender. We initialize matrices V and U by PCA [14]
and iteratively retrain first V and then U. Contrary to [3], we do
not use the residual matrix D, so the speaker is only modeled by the
50 speaker factors. For small amounts of test data, the integrative
scoring over the channel distribution [15], rather than using point es-
timate of the channel, has proved to be beneficial. On this task, we
have only several hundred frames per test utterance (depending on
the type of segmentation), compared to several thousands for acous-
tic short term features. Finally, all scores are normalized with zt-
norm [16] in a gender-dependent way.
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Table 1. Pitch: ESPS, Energy: C0, Modeling: DCT, voiced only.
Different segmentations.

Segmentation EER [%]

Fixed window 12.1
Energy valleys 13.7

Vowel Onset Points 15.8
Phone boundaries 13.2
Pseudo syllables 12.5
LVCSR syllables 11.2

3.2. Data

Experiments are performed on the core condition of the NIST 2006
Speaker Recognition Evaluation (SRE) [6], which contains English
trials only. The 1-side training 1-side test condition is considered,
where approximately 2.5min of speech is available from a 5min tele-
phone conversation to train each speaker and for each test trial. This
set contains 329 female and 248 male training utterances (where
multiple utterances can arise from one speaker) and 23687 test tri-
als. Results are presented in terms of equal-error-rate2. The UBMs
as well as the eigenvoice- and eigenchannel subspaces are trained
on all-English one-conversation utterances from the NIST 2004 and
2005 SRE data sets. 300 z-norm utterances and 100 t-norm models
per gender are taken from NIST 2004 database.

3.3. Results

The first experiments were carried out to compare different segmen-
tation techniques. Snack ESPS pitch and C0 energy were modeled
with six DCT coefficients using only the voiced frames. As shown
in Table 1, the type of segmentation affects the EER about 30% rel-
ative. It is interesting to see, that the complexity of the segmentation
mostly corresponds to the results. The most accurate LVCSR sylla-
bles give the best rate with 11.2%, while the energy performs nearly
the worst. With a huge degradation, compared to all other segmen-
tation methods, the VOPs seem quite unsuitable, probably because
syllable end points are not detected properly. So often, connected
pitch contours over syllables are cut at the VOP (like indicated in
Figure 1) and merged with another fragment over speech pauses.
Surprisingly, the most simple way of fixed windows results in the
second best error-rate of 12.1%. Capturing long context seem to be
important, as all methods that generally result in shorter segments
perform worse. The results of the fixed-frame segmentation may in-
dicate, that long time span is even more crucial than correct phonetic
alignment of the syllable-like units.

The following experiments show the effect of different contour
modeling and further consolidate segmentation results. The setup is
kept, only the curve fitting algorithm is switched from DCT to Leg-
endre polynomials, as described in Section 2.2.1. Results in Table 2
show the same trend, best EER for LVCSR with 11.4%, nearly worst
for energy with 14.1%, while DCT modeling generally leads to little
lower error-rates. The advantage of both methods, compared to, for
instance, a simple polynomial curve fitting is, that they operate on
orthogonal basis functions and result in de-correlated features, nec-
essary for GMMs with diagonal covariances. In preliminary experi-
ments we observed, that even additional de-correlation with Princi-
pal Component Analysis (PCA) could not lead to same performance
for simple polynomial curve fitting.

2Note that evaluation key det3 version 9 from NIST was used to measure
the system performance.

Table 2. Pitch: ESPS, Energy: C0, Modeling: Polynomials, voiced
only. Different segmentations.

Segmentation EER [%]

Fixed window 12.1
Energy valleys 14.1

Vowel Onset Points 17.5
Phone boundaries 13.6
Pseudo syllables 12.6
LVCSR syllables 11.4

Table 3. Pitch: ESPS, Energy: C0, Modeling: Polynomials. Differ-
ent treatment of unvoiced regions.

Treatment of unvoiced EER [%]

Voiced frames only for f0 and energy 11.4
Voiced f0 range, keep gaps, same frames energy 11.1

Voiced f0 range, keep gaps, all energy 11.0
Interpolation of f0, all frames f0 & energy 11.7

In addition to the curve fitting algorithm itself, processing of
undefined values is explored with LVCSR segmentation setup from
Table 2. We compare four ways:

1. Using only voiced frames for pitch and energy.

2. Using pitch from first to last voiced frame in the detected seg-
ment, but keeping possible holes in the pitch trajectory and
using the same frames for energy.

3. The same frames for pitch as in 2., but using all energy in the
segment.

4. Linear interpolation of pitch, using all frames for pitch and
energy.

In Table 3, generally better results are achieved when the contour
is modeled over the gaps, which suggests that preserving the pitch
trajectory structure is important. Best result of 11% is achieved with
third method, so even use of energy in unvoiced regions enhances
the modeling. Interpolation of pitch in unvoiced regions seems to
harm rather than help, mainly due to many segments that will result
in a straight line for pitch.

Furthermore, the influence of the basic prosodic feature gener-
ation is evaluated experimentally, with setup used for Table 1, but
changing pitch and energy extraction methods. Table 4 indicates that
the quality of pitch estimation highly affects the overall EER. While
Praat and ESPS perform equally, the “steps” and general quality of
AMDF contour seem to harm a lot and EER drops to 13.6%.

When comparing the two energy extraction methods experimen-
tally, using normalized log-energy instead of C0 approximation also
decreases the performance (see also Table 4) to 11.8%.

Finally, we apply utterance-based mean-normalization of pitch
values prior to curve fitting, with gender-dependent (same setup as
for Table 1) and gender-independent configuration (same setup, but
identical UBM and JFA-subspaces for male and female), respec-
tively, to investigate the influence of these features on a gender inde-
pendent system. Feature vectors only differ in the first coefficient for
pitch, which represents the mean of the segment. While we get about
10% relatively better performance with a non-normalized feature set
(compared to normalized features) on a gender-dependent system,
the non-normalized features perform approximately 10% relatively
worse when used with a single gender-independent setup. Results
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Table 4. Modeling: DCT, voiced only. Different pitch and energy
extractions.

Pitch Energy EER [%]

Snack ESPS C0 11.2
Snack AMDF 13.6

Praat 11.3

Snack ESPS E 11.8
C0 11.2

Table 5. Pitch: ESPS, Energy: C0, Modeling: DCT, voiced only.
Effect of Normalization and gender dependence.

Normalized Gender dependent EER [%]

No No 14.8
Yes 13.6
No Yes 11.2
Yes 12.5

in Table 5 point out that the features are highly gender-dependent
and that normalization of pitch is crucial to build a single gender-
independent model. Still, when used in a gender-dependent setup,
the un-normalized pitch contours represent the speaker characteris-
tics better.

4. CONCLUSIONS

We have evaluated many different techniques for the creation of
prosodic syllable contour features. It is shown that the quality of seg-
mentation into syllable-like units mostly corresponds to the achieved
error rate. As the computational complexity and the language con-
straints also increase, the proposed fixed-length temporal windows
bear a computationally inexpensive alternative with only 8% relative
degradation in performance, compared to an accurate segmentation
to syllables. Generally, capturing of long temporal units seem to be
very important, probably more than a correct linguistic segmenta-
tion.

For the contour modeling itself, both methods are suitable to ap-
proximate the temporal trajectories of feature streams. An important
attribute is that the algorithm translates the contour to de-correlated
coefficients. Slightly better results are obtained with Legendre poly-
nomials when the original pitch structure is preserved with its gaps,
instead of collapsing the features. Modeling the whole energy in the
speech segment, even where no pitch is detected, further enhances
the performance. This suggests, that also the unvoiced parts of the
speech signal covers speaker information, that can be employed in
a prosodic system (Acoustic systems usually make use of all speech
frames, no matter if voiced or unvoiced).

Both implementations of the examined pitch algorithms based
on auto-correlation perform equally, while the quality of AMDF al-
gorithm is not that suitable for prosodic modeling. Generally we
have observed, that halving/doubling and arbitrary pitch values, pro-
duced in unvoiced regions, highly affect the performance, because
the approximated curves are corrupted in these segments. This has
to be considered when the pitch tracking algorithm is parameterized:
Rather less, but more reliable, than many scattered pitch values. For
energy features, we have observed that 0th cepstral coefficient out-
performs the raw energy, like it is often seen in other speech appli-
cations. The Mel-Filter based weighting of the signal energy seems

to be more appropriate.
Furthermore, syllable contour features are highly gender-

dependent due to different pitch ranges of male and female speakers
which must be considered when building the system in a gender-
independent way. Still, the un-normalized features, namely the
absolute mean of the pitch in the segment, seem to have more
discriminative power, when used in a gender dependent setup.

To summarize, the best examined configuration uses a gender-
dependent system with pitch from Snack in ESPS mode, C0 as en-
ergy feature, Legendre polynomial approximation of pitch and all
energy and an accurate syllable segmentation from an LVCSR sys-
tem, and results in EER of 11% on NIST SRE 2006 task. Com-
pared to the results of the prosodic sub-system in [2], where fusion of
prosodic and high-performing acoustic system resulted in enhance-
ment of over 10% relatively, we obtained slightly better results for
the proposed configuration, while there is still potential to improve,
as our JFA model is trained on much less data.
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