Odyssey 2010
The Speaker and Language Recognition Workshop
28 June — 1 July 2010, Brno, Czech Republic

PCA-based Feature Extraction for Phonotactic Language Recognition

Tomds Mikolov, Oldrich Plchot, Ondrej Glembek, Pavel Matéjka,
Lukds Burget and Jan “Honza” Cernocky

Brno University of Technology, Speech@FIT, Czech Republic
{imikolov|iplchot |glembek|matejkap|burget |cernocky}@fit.vutbr.cz

Abstract

Phonotactic language recognition is one of major tech-
niques used for automatic recognition of spoken lan-
guages. We propose a feature extraction technique based
on PCA to be used with SVM-based systems. This
technique improves speed of the training, in some cases
more than 1000 times, allowing systems to be effectively
trained on much larger data sets. Speed-up of the test
phase can be even greater, which makes the resulting sys-
tems much more useful for processing large amounts of
data. We report our results on NIST LRE 2009 task.

1. Introduction

For language recognition (LRE) task, two major ap-
proaches proved efficient and complementary in evalu-
ations organized by NIST: acoustic modeling, which re-
lies on short context information, and phonotactic mod-
eling that tries to capture longer patterns in speech [1].
In our work, we investigated discriminative phonotactic
models based on support vector machines (SVM), which
are reported to be performing better than parallel phone
recognition followed by language modeling (PPRLM)
approach [2].

The first step in phonotactic-SVM LRE is the fea-
ture generation. Phoneme recognizers [3] can be used
to produce 1-best strings or lattices from training seg-
ments. From lattices, feature vectors with fixed length
are constructed. Each element in feature vector is ex-
pected N-gram count in given segment. Usually, 3-grams
or 4-grams are used as features. For example, if phoneme
recognizer has phoneme set of size 40, full feature vector
size would be 402 = 64000. Note, that each segment
is represented by fixed length feature vector, with fixed
position for each N-gram feature.

The second step consists of building a discriminative
classifier. This usually involves feature normalization and
selection of the suitable type of the classifier - most fre-
quently, support vector machines with linear kernel are

This work was partly supported by US Air Force European Office
of Aerospace Research & Development (EOARD) Grant No. 083066,
European project MOBIO (FP7-214324), Grant Agency of Czech Re-
public project No. 102/08/0707, and Czech Ministry of Education
project No. MSM0021630528.

251

used. For feature normalization, several approaches were
investigated [4]. In our work, we only transform each
feature vector element by square root function, which
squashes the dynamic range of feature vector compo-
nents [5]. Selection of optimal trade-off between train-
ing error and the margin while training SVMs (parameter
C in LIBSVM [6] and SVMTorch [7]) is crucial. The
final system then consists of /N support vector machines,
where N is number of languages - all SVMs are trained in
one-versus-all manner and solve two-class decision prob-
lem.

Search for optimal parameters can be very time con-
suming, as it takes large amount of time to train the classi-
fiers. With large number of training segments (> 10 000)
and high-dimensional feature vectors (> 50 000), train-
ing and test phases become impractically slow (can take
days); also, memory requirements can be huge. Sev-
eral approaches were attempted to overcome this prob-
lem, mostly based on feature selection: One possibility
is to select features based on their relative frequency, the
other approach is to keep only the most discriminative
features [5]. We have tested using both feature selection
methods, with similar results. In this paper, we report
results obtained with feature selection based on relative
frequency of N-grams.

The novel approach in context of phonotactic lan-
guage recognition, presented in this paper, is to include
a dimensionality reduction transform in the feature ex-
traction step. It can be seen that the data in the feature
vectors are very correlated, as they are generated from
lattices that represent several hypothesis, which are gen-
erally very similar. In our work, we have used Princi-
pal Component Analysis (PCA) for feature extraction to
reduce the dimensionality of feature vectors from over
100 000 elements to 100 -4000 features. This allowed us
to train systems much faster (1000 times or more). With-
out this step, it would not even be possible to train certain
systems at all, due to the memory and computational re-
strictions.

As a performance measurement of our systems, we
use NIST-defined average cost performace — Cyq [8].

2. Task specification
2.1. Data Description

The same data as in our NIST LRE2009 submission [8]
were used to train our systems. Our data were separated
into two independent subsets, which we denoted TRAIN
and DEV. The TRAIN subset contained 23 target lan-
guages from NIST LRE 2009 task [9] and had 49 190
segments containing 1572 hours of recordings in total,
from which we created smaller subset with 9810 seg-
ments (359 hours of recordings) by limiting the number
of segments per language to 500 at most. The DEV sub-
set had 57 languages (including the 23 target ones) and a
total of about 63 000 segments. The DEV subset was split
into balanced subsets having nominal durations of 3s, 10s
and 30s. The DEV set was based on segments from previ-
ous evaluations plus additional segments extracted from
longer files from standard Continuous Telephone Speech
(CTS) databases (CallFriend, Switchboard, OGI etc. -
see details in [8]) and Voice of America (VOA) data. The
evaluation set - EVAL - was defined by NIST for 2009
LRE evaluation [9].

2.2. System Description

The general architecture of our system is based on our
NIST LRE 2009 submission. We used our TRAIN data
set to train all frontend subsystems, while we used our
DEV data to train the backend and also to test perfor-
mance. To keep backend training and test separate, we
resorted to a jackknifing scheme.

Duration independent backend performs fusion and
calibration. The backend fuses the scores from the fron-
tends and outputs calibrated scores, which function as
multiclass log-likelihoods [8].

All individual frontend subsystems are based on three
phoneme recognizers: two left-context/right-context hy-
brids and one based on GMM/HMM context dependent
models.

2.3. Hybrid Phoneme Recognizers

The phoneme recognizer is based on hybrid ANN/HMM
approach, where artificial neural networks (ANN) are
trained to produce emission probabilities for HMM states
from Mel filter bank log energies using the context of
310ms around the current frame. The expected N-gram
phoneme counts estimated from lattices form the feature
vectors [10]. Hybrid recognizers were trained for Hun-
garian and Russian on the SpeechDat-E databases. For
more details see [11, 3]

2.4. GMM/HMM Phoneme Recognizers

The third phoneme recognizer was based on GMM/HMM
context-dependent state clustered triphone models, which
are trained in similar way as the models used in

252

AMI/AMIDA LVCSR [12]. The models were trained
using 2000 hours of English CTS data from Fisher,
Switchboard and CallHome databases. The features
are 13 PLP coefficients augmented with their first, sec-
ond and third derivatives projected into 39 dimensional
space using Heteroscedastic Linear Discriminant Analy-
sis (HLDA) transformation. The models are trained dis-
criminatively using Minimum Phone Error (MPE) cri-
terion [13]. VTLN and MLLR adaptation are used for
both training and recognition in SAT fashion. The tri-
phones were used for phoneme recognition with a bi-
gram phonotactic model trained on English-only data.

In all subsystems, the expected N-gram phoneme
counts from corresponding phoneme recognizer were
used for subsequent classification by SVM, similarly to
MIT’s work [14].

The number of phonemes for each system was differ-
ent, and so was the feature vector size. Hungarian recog-
nizer used phoneme set of 33 phonemes, English recog-
nizer used 46 and Russian 53.

3. Feature Selection

We started to build our system by using 3-gram and 4-
gram features generated by Hungarian recognizer (HU3
and HU4 systems). These features are square roots of ex-
pected N-gram counts from lattices. The phoneme set
size of HU recognizer was 33 phonemes, resulting in
33% = 35937 possible features for 3-gram system and
33% = 1185921 for 4-gram system. We have used 9 810
training segments out of the 49190 training segments
available (the small TRAIN set, see above).

Direct training of SVM models based on huge amount
of data can be often intractable. In the context of phono-
tactic language recognition, two methods of feature se-
lection, for reducing the dimensionality of the final fea-
ture vector, are usually used: feature selection based on
relative frequency, which discards N-grams with low fre-
quency, or discriminative feature selection, which dis-
cards the least discriminative N-grams [5].

We have used feature selection based on the relative
frequency only for the HU4 system - see table 1. The re-
sults indicate that it is useful to keep as many features as
possible. However, memory and time complexity raises
significantly - it took several days to train the system us-
ing feature vectors containing 80 000 components. Also,
the testing takes large amount of time, making these mod-
els impractical for real applications.

4. Feature Extraction based on PCA

To increase the effectiveness of the SVM phonotactic ap-
proach, we investigated feature extraction' with popular
Principal Component Analysis. We perform the feature

lBy the feature extraction in this context, we mean the dimensional-
ity reduction, which produces a new set of smaller feature vectors.

Table 2: Dimensionality reduction for HU3 system from 35 937 features, times are in seconds. Systems marked with *
were trained on a slower computer (approximately twice) because of memory demands. Note that time to project data
(6th column) involves time needed to project both training and test data.

l Reduction \ DEYV Cavg (30s) \ Training(s) \ Testing(s) \ Computing PCA(s) \ Projecting data(s) \ Total time(s) \ Speedup ‘
— 100 2.83 93 75 104 22 294 1080
— 500 243 423 407 658 108 1596 199
— 1000 2.38 884 946 2609 220 4659 68
— 2000 2.32 2110 2289 11099 399 15897 20
— 4000 2.28 4296 4848 93110* 1743% 103997 3.05
no reduction | 2.33 124 565* 193168* | - - 317733* 1.0

Table 1: Performance of HU4 system with feature selec-
tion on DEV data.

| feature size | DEV Cavg 30s |

5000 4.0
10000 35
20000 3.0
40000 2.8
80000 2.7

extraction step after applying the square root compression
and feature selection (if it is performed). First, we cre-
ate matrix M, where each row contains one feature vec-
tor. For HU3 system based on 35 937 features, this means
that M has size 35937 x 9 810. Next, we compute some
amount (typically 500-2000) of the most important prin-
cipal components. These are then used to project data to
low-dimensional space. SVMs are then trained on these
“compressed” data.

To implement the system, we have used LIBSVM
toolkit [6]2. We used the linear kernel and tuned the pa-
rameters on the DEV set. To compute principal compo-
nents, we used an implementation of Randomized algo-
rithm for principal component analysis [15].

The effect of this dimensionality reduction approach
can be seen in Table 2. As our goal is also to increase the
speed of the system, we report times to compute principal
component analysis, to project training and test data to
low-dimensional space, to train systems and to test them
on the DEV data using only 30s utterances (13331 seg-
ments).

Our approach thus involves the following steps in the
training phase:

1. Compute square root of expected N-gram counts
from each training segment

2. Select appropriate features (most frequent N-
grams)

2To improve speed, we used -m 4000 option to allocate 4 GB of
cache.

253

Create matrix M

>~ »

. Compute the most important principal components

5. Extract new feature vectors from training data set
using these principal components

6. Train SVMs on these reduced feature vectors
In the test phase, we follow these steps:

1. Compute square root of expected N-gram counts
from each testing segment

2. Select the same features as in the training phase

3. Extract new feature vectors from test data using
principal components computed from the training
data

4. Test SVMs on these reduced feature vectors

For example, if we reduce system with 35 937 orig-
inal features to a system with 500 features as shown in
Table 2, the training phase takes 658+(108/2)+423 sec-
onds, while testing phase takes (108/2)+407 seconds.

The results indicate that the feature dimensionality re-
duction from 35937 to 500 features provides 109 times
speedup of the training phase. The test phase is 419 times
faster, with only small degradation in accuracy. Reduc-
tion to just 100 features results in significant decrease of
accuracy, while speedup of the test phase is more than
2200. On contrary, by reducing feature size to 4000,
the accuracy is slightly improved, and the overall perfor-
mance is better than that of the original system. However,
this small improvement in accuracy is not very interesting
and is of small practical importance. Our main motiva-
tion in this work was to speed up training and test phase
to allow systems to be trained on much larger data sets.

As PCA does not need to be estimated from the whole
data set, it is also possible to reduce the computational
time by using only a subset of the data for PCA estima-
tion. Preliminary results indicate that it is possible to do
so with only minimal degradation of accuracy (however,
it is needed to equalize the amount of data from all lan-
guages).

Table 3: Performance of systems trained on feature vectors of different size. All systems were trained on 9810 segments,
except RU3-ALL which was trained on 49190 segments (whole TRAIN set).

system features reduction EVAL

3s | 10s | 30s
HU3 3-gram | 35937 — 500 21.65 | 9.29 | 4.0
HU3 3-gram | 35937 — 1000 21.58 | 9.21 | 3.86
HU3 3-gram | 35937 — 4000 21.51 | 9.18 | 3.85
HU4 4-gram | 80000 — 1000 2238 | 9.75 | 4.09
EN3 3-gram | 63600 — 500 22.16 | 9.13 | 3.50
EN3 3-gram | 63600 — 1000 2230 | 9.17 | 3.48
EN4 4-gram | 100000 — 500 25.12 | 9.67 | 3.64
RU3 3-gram | 115400 — 2000 | 20.11 | 7.76 | 3.26
RU4 4-gram | 150000 — 500 20.16 | 7.62 | 3.37
RU3-ALL | 3-gram | 115400 — 1000 | 19.20 | 6.82 | 3.03

5. Results with multiple systems

Next, we have trained various systems based on the other
phoneme recognizers - English and Russian. Table 3
summarizes results achieved on all conditions used in
NIST LRE 2009. The results have been reported after
duration-independent calibration (see [8] for details). It
can be seen that for EN3 system, the feature reduction
to 500 dimensions is sufficient - for each phoneme rec-
ognizer, the optimal size should be determined on the
development set. It is interesting to see that by using
more training data, it is possible to obtain significant im-
provement (by comparing RU3 system trained on 9810
segments and RU3-ALL system trained on 49 190 seg-
ments). As RU3-ALL system uses 115400 features be-
fore reduction, it would be impractical to train such sys-
tem without dimensionality reduction step in feature ex-
traction.

Table 4 summarizes the results of our systems after
fusion [8] - we have used HU3-4000, EN3-1000, RU3-
2000 trigram systems and HU4-1000, EN4-500, RU4-
500 4-gram systems. It is interesting to see that all sys-
tems based on 4-gram features are contributing very lit-
tle after fusion with trigram systems. One single system
trained on all available data - RU3-ALL-1000 - seems to
provide considerable improvement after fusion with the
other systems.

In our other work[16], we were conducting experi-
ments with calibration, different composition of develop-
ment set and detecting overlapping speakers in the train-
ing and development set. We achieved additional sig-
nificant improvements for all test conditions. The Coyq
performance of fusion of 13 different SVM systems was
1.78, 3.86 and 14.13 for 30, 10 and 3 second condition.

254

Table 4: Fusion of multiple systems

fusion of systems | EVAL 3s [EVAL 10s [EVAL 30s

all 3-gram 15.13 5.01 2.39
all 4-gram 15.85 5.0 2.56
3+4-gram 14.94 4.77 2.34
3+4-gram + RU3-ALL | 14.77 4.65 2.25

6. Conclusion

In our work, we have shown that using dimensionality
reduction as a feature extraction step for phonotactic lan-
guage recognition based on SVM can lead to very ef-
ficient systems. Large speedup can be obtained when
training systems on more features and segments. The
speed of the test phase can allow use of these systems in
real world applications. In some cases, we have achieved
more than 1000 times speedup in comparison to systems
trained without the feature extraction with minor deterio-
ration of accuracy.

Although the feature extraction based on PCA is sim-
ple, it proved to be very efficient. However, future
work can explore more advanced dimensionality reduc-
tion techniques, such as ICA. As the amount of data we
are dealing with is huge, this might not be easy, on the
other hand, we expect further improvements.

7. References

[1] Ondiej Glembek, Pavel Matéjka, Lukas Burget, and
Tomas Mikolov, “Advances in phonotactic language
recognition,” in Proc. Interspeech, 2008, p. 4.

[2] Christopher White, Izhak Shafran, and Jean-Luc
Gauvain, “Discriminative Classifiers for Language
Recognition,” in Proc. ICASSP, 2006, pp. 213-216.

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Petr Schwarz, Pavel Matéjka, and Jan éernocky,
“Towards lower error rates in phoneme recogni-
tion,” in Proceedings of 7th International Confer-
ence Text, Speech and Dialoque, 2004.

A. Stolcke, S. Kajarekar, and L. Ferrer, “Nonpara-
metric feature normalization for svm-based speaker
verification,” in Proc. ICASSP, 2008, pp. 1577-
1580.

E.S. Richardson and W.M. Campbell, “Language
recognition with discriminative keyword selection,”
in Proc. ICASSP, 2008, pp. 4145-4148.

Chih-Chung Chang and Chih-Jen Lin, “LIB-
SVM: a library for support vector machines,”
http://www.csie.ntu.edu.tw/"cjlin/libsvm, 2001.

Ronan Collobert and Samy Bengio, “SVMTorch:
Support Vector Machines for Large-Scale Regres-
sion Problems,” in Journal of Machine Learning
Research, vol 1, 2001, pp. 143-160.

Niko Briimmer, LukadS Burget, Ondfej Glem-
bek, Valiantsina Hubeika, Zdenek Jancik, Martin
Karafiat, Pavel Matéjka, Toma$ Mikolov, Oldfich
Plchot, and Albert Strasheim, “But system descrip-
tion for nist Ire 2009,” in Proc. 2009 NIST Language
Recognition Evaluation Workshop. 2009, pp. 1-7,
National Institute of Standards and Technology.

“The 2009 NIST Language Recognition Evaluation
Plan,” http://www.itl.nist.gov/iad/mig/tests/lre/
2009/LRE09_EvalPlan_v6.pdf.

J.L. Gauvain, Messaoudi A., and Schwenk H.,
“Language recognition using phone lattices,” in
Proc. ICSLP 2004.

Petr Schwarz, Pavel Matéjka, and Jan éernock)’/,
“Hierarchical structures of neural networks for
phoneme recognition,” in Proceedings of ICASSP,
2006, pp. 325-328.

T. Thomas, V. Wan, L. Burget, M. Karafiét, J. Dines,
J. Vepa, G., Garau, and M. Lincoln, “The AMI Sys-
tem for the Transcription of Speech in Meetings,” in
Proc. ICASSP 2007, 2007, pp. 357-360.

D. Povey, “Discriminative Training for Large Vo-
cabulary Speech Recognition,” Ph.d. thesis, Cam-
bridge University, July 2004.

W.M. Campbell, F. Richardson, and D.A. Reynolds,
“Language Recognition with Word Lattices and
Support Vector Machines,” in Proc. ICASSP 2007.

Vladimir Rokhlin, Arthur Szlam, and Mark Tygert,
“A Randomized Algorithm for Principal Compo-
nent Analysis,” Technical report, University of Cal-
ifornia, 2008.

255

[16] Jancik Z., Plchot O., Briimmer N., Burget L.,

Glembek O., Hubeika V., Karafiat M., Matéjka P.,
Mikolov T., Strasheim A., and éernock}’/ J., “Data
selection and calibration issues in automatic lan-
guage recognition investigation with but-agnitio
nist Ire 2009 system,” in submitted to Proc.
Odyssey, July 2010.

