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ABSTRACT

This paper investigates spoken term detection (STD) from au-
dio recordings of course lectures obtained from an existing
media repository. STD is performed from word lattices gen-
erated offline using an automatic speech recognition (ASR)
system configured from a meetings domain. An efficient STD
approach is presented where lattice paths which are likely
to contain search terms are identified and an efficient phone
based distance is used to detect the occurrence of search terms
in phonetic expansions of promising lattice paths. STD and
ASR results are reported for both in-vocabulary (IV) and out-
of-vocabulary (OOV) search terms in this lecture speech do-
main.

Index Terms— Speech recognition, spoken term detec-
tion

1. INTRODUCTION

The ability to search online media is of value for many ap-
plications including access to recorded lectures, broadcast
news, voice mail messages, and conversational telephone
speech. Spoken document retrieval (SDR) and spoken term
detection (STD) have been active areas of research over the
last decade [1, 2, 3, 4, 5, 6]. Many applications, for exam-
ple, search of recorded audio lectures, involve locating audio
segments within potentially hundreds of hours of audio in
response to queries entered by a user. The requirements of
achieving subsecond response times to these queries for an
unlimited vocabulary of search terms limits the range of STD
approaches that might be considered practical in this scenario.

Many of the systems developed for these applications
begin with a large vocabulary automatic speech recognition
(ASR) system generating word transcriptions or word lattices
from spoken audio documents [1, 4, 5, 3, 6, 7]. It is gen-
erally acknowledged that lattice based techniques for STD
can yield better recall performance, especially when the ASR
word accuracty (WAC) is low [5, 3]. In word based STD and
SDR systems, deriving scores for search terms from decoded
occurrences in ASR word lattices has been shown to improve
performance over systems that rely on a single recognized
string [5]. Furthermore, there have been several proposals for
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extending these approaches to open vocabulary STD by using
efficient means for re-scoring phone level lattices [5].

The interest in this work is in applications which require
subsecond response latencies for locating search terms in
potentially very large audio repositories. It is expected that
any scheme involving exhaustive re-scoring of lattice hy-
potheses as done, for example, in [7] will have unreasonable
computational complexity. To address this issue, an efficient
STD approach is presented in Section 3. Lattice paths that
are likely to contain search terms are identified and a fast
phone based distance measure is used to detect the occurence
of search terms in phonetic expansions of promising lattice
paths. This approach is evaluated in a lecture speech do-
main where recorded course lectures stored in a variety of
formats are made available to users via an online multimedia
server [8]. A description of the recorded audio lectures and
the lecture speech indexing task is provided in Section 2. The
experimental study is presented in Section 5.

The performance of ASR, SDR, and STD in the lecture
speech domain has proven to be problematic relative to other
application domains [2, 3, 9]. Both ASR word error rates
(WER) and languange model (LM) perplexity (PPL) for the
2006 Rich Transcription lecture speech track were higher than
more general spontaneous speech domains [9]. Poorer ASR
and STD performance for lecture speech as compared to other
domains were also found in [3]. To address this issue, acous-
tic and language modeling techniques for ASR are described
in Section 4 and are shown to have considerable impact on
both ASR and STD performance for the lecture speech task
described in Section 2.

2. TASK DOMAIN

The task domain used for this study consists of audio record-
ings of course lectures obtained from the McGill COurses
OnLine (COOL) repository [8]. There are a large number of
course lectures and public speeches in the repository and, as
with many collections of this type, they are collected in a va-
riety of lecture halls often times with microphone and record-
ing equipment provided by the lecturer. This lack of control
over the acoustics and recording equipment results in huge
variability in quality. One can find lectures ranging in quality
from being nearly inaudible in some cases to having reason-
ably high signal-to-noise ratio (SNR) in others. A collection
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of lectures, each slightly over an hour in length, recorded us-
ing lapel microphones were chosen for study in this work.

The STD techniques being investigated here are being ap-
plied to a search engine that accepts typed search terms as
input from a user and returns a list of audio segments of lec-
tures from the COOL website for review by the user. A search
engine has been developed based on a two pass procedure
where searchable indices are first created off-line from audio
files and then search is performed by locating phonetic ex-
pansions of query terms in these indices. Searchable indices
were created for a collection of approximately 20 chemistry
lectures available on the McGill COOL website. These in-
dices form the searchable representation of the lecture audio
for an online search engine hosted by CRIM [10].

3. SPOKEN TERM DETECTION

This section presents an efficient lattice based approach for
estimating word level scores in open vocabulary STD. It is
motivated by lattice re-scoring STD approaches proposed
in [5] and relies on a simple phone based distance measure
similar to that proposed in [6]. ASR is performed offline as
described in Section 4 to produce word lattices for each audio
segment. STD search is performed using an efficient two step
procedure. First, for a given query term, Q, individual paths
in ASR word lattices are selected for further evaluation based
on their proximity to Q. Second, a phonetic expansion is
obtained for the closest scoring path in the word lattice and
this is searched for instances of phone sequences that are a
close match to the phonetic expansion of the query term.

After ASR lattices have been generated off line, inverted
indices are created. For each word, Wi, in the lattice, there is
a list of paths that contain Wi along with the likelihoods for
those paths

Wi : (pi,1, Li,1), (pi,2, Li,2), (pi,3, Li,3), . . . (1)

where pi,j is the jth path index for word Wi and Li,j is the
path likelihood for the jth path that contains Wi.

For in-vocabulary (IV) search terms, finding the lattice
paths that are “close” to the query in the first step of the search
procedure is straight-forward. For an in-vocabulary query
term, Q, index entries î are found such that Wî = Q. For
all j = 1, 2, 3, . . ., path likelihoods, Lî,j , are incremented for
paths containing Wî by an empirically chosen “boosting fac-
tor”, B, to obtain boosted path likelihoods L′

î,j
= Lî,j +mB,

where m is the number of occurrences of Wi in pî,j . The new
highest ranking lattice path is identified based on L′ and a
phonetic expansion is obtained for this path.

In the second step of STD search, search for occurrences
of Q in the phonetic expansion of the top scoring path is
performed using a constrained phonetic string alignment. A
score is computed for the phonetic expansion of the query,
Q = {q0, q1, . . . , qn−1}, with respect to each phone in-
dex, k, in the phonetic expansion of the re-ranked path.
The score is computed for phone sequences of length n be-
ginning in the top ranking phone string at phone index, k:

Hk = {hk, . . . , hk+n−1},

M(Q,Hk) =
1
n

n−1∑

l=0

p(ql|hk+l). (2)

A normalized distance is computed from this score asDk(Q) =
M(Q,Hk)/M(Q,Q). The probabilities p(q|h) are approx-
imated by normalized counts taken from phone confusion
matrices. These are computed using time aligned decoded
and reference phoneme transcriptions obtained from training
speech taken from the lecture domain.

For OOV search terms, the first step of finding the lattice
paths that are close to the search term differs from the IV
case since the process of associating the search term with the
lattice index entries is not as straight-forward. When a search
term, Q, is entered by the user, the index entry, Wî, is found
such that î = arg maxi M(Q,Vi), where Vi is the phonetic
expansion of Wi. The same process as described above for
IV search terms is performed for the OOV terms. Boosted
likelihoods are obtained for the lattice paths associated with
Wî, the paths are re-ordered based on the boosted likelihoods,
and phonetic search is performed on the phonetic expansion
of the top scoring path. In Section 5, STD results are reported
for this approach on a subset of the lecture data described in
Section 2.

4. ACOUSTIC / LANGUAGE MODELING FOR ASR

This section describes the ASR system and its application to
the lecture speech task described in Section 2. The acoustic
and language modeling techniques and the speech and text
corpora used to train them were developed under the AMI
project [9].

4.1. Acoustic Modeling

Acoustic modeling is performed in a hybrid feature space [9].
Perceptual linear prediction (PLP) based acoustic analysis is
performed with first, second, and third difference coefficients
concatenated with static coefficients to obtain a 52 dimen-
sional feature vector. An HLDA transformation is performed
to reduce the feature vector dimensionality to 39 components.
Posterior features are obtained using neural network based
phoneme state posterior estimators. The posterior features are
transformed to a feature dimension of 25 and concatenated
with the PLP features resulting in a combined 64 component
feature vector.

Speaker normalization is performed using vocal tract
length normalization. Speaker and environment adaptation is
performed using unsupervised constrained maximum likeli-
hood linear regression (CMLLR) which is applied as a feature
space transformation. Recognition is performed in multiple
passes. Lattices are generated using a bigram language model
and then the lattices are rescored using the trigram LM de-
scribed in the following section. The acoustic hidden Markov
model (HMM) was trained using discriminative minimum
phone error (MPE) training from approximately 100 hours of
meetings conducted at several sites participating in the AMI
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project [9]. Most of the speakers in the training corpus are
non-native speakers of English.

4.2. Language Modeling

The baseline language model was trained by interpolating lan-
guage models from many different sources including meet-
ings transcriptions and transcriptions of telephone conversa-
tions and news broadcasts [9]. A test set perplexity of 148
was measured on the lecture data. It was found in [9] that the
perplexity of this LM when measured on a variety of meetings
scenarios was approximately 100. However, it was also found
that perplexities as high as 140 were obtained when perplex-
ity was evaluated for a similar language model on data taken
from the NIST RT07 development set lecture scenario. This
agrees with observations made in Section 1 suggesting that
the lectures very often correspond to highly specialized do-
mains that are not well modeled by data collected from more
general domains.

The following scenario was considered for adapting the
above LM to the lecture domain data described in Section 2.
First, additional text data from the chemistry domain was
obtained by locating an online glossary of chemistry related
terms. Second, ten lectures from chemistry courses at McGill
were transcribed by human transcribers. This additional
text amounted to a total of 135,400 words and was used for
training a separate “domain specific” trigram LM. A domain
adapted (DA) LM was obtained by interpolating this new LM
with the baseline LM described above. The total vocabulary
size of the original LM is 50,000 words and the vocabulary
size of the DA LM is 52,800 words. The OOV rate for the
original LM measured on the test transcriptions is 12.2%
which is very high. The OOV rate for the DA LM is 11.2%,
representing only a small reduction. The results presented in
Section 5 show that the reduction in test set perplexity is also
fairly small.

5. EXPERIMENTAL STUDY

This section investigates spoken term detection performance
for the COOL lecture speech domain.

5.1. Test Set and Evaluation Metrics

The test set consists of two of the recorded lectures taken from
the task domain described in Section 2. The two lectures con-
tain a total of 131 minutes of speech data recorded over a
lapel microphone from a single male speaker who speaks En-
glish as his third language. Time aligned reference transcrip-
tions were produced by an automatic segmentation procedure.
These speech segments were then processed separately by the
ASR system. Segments ranged from several seconds to over
two minutes in length. It is expected that any reasonable au-
tomatic segmentation procedure would result in similar per-
formance.

The search terms were chosen based on their frequency
of occurence in the lecture utterances. A set of the 184 most

frequently occurring non-function words were chosen from
the test text transcriptions and used as keywords in the STD
evaluation. Only 150 of these keywords correspond to words
contained in the ASR vocabulary and the remaining 34 words
are out of vocabualry (OOV). There are a total of 2004 key-
word occurrences out of a total of 17,914 words in the test set
text transcriptions.

ASR performance is presented below as word accuracy
(WAC). The STD performance is reported as the recall rate
or the probability of keyword detection, Pd = Nd/Nt, where
Nd correponds to the number of correctly decoded keywords
and Nt = 2004 corresponds to the total number of keywords
in the test utterances. This is reported with respect to the total
number of false detections per keyword that are generated for
the entire test set normalized by the test set duration, T = 2.2
hours.

Figure 1 presents the performance as a plot of Pd versus
false alarms per keyword per hour (fa/kw/hr) which is gen-
erated by applying a threshold to the normalized distance,
Dk(Q), defined in Section 3. A single value for STD perfor-
mance is reported in Table 1 corresponding to Pd evaluated at
10 fa/kw/hr. This is one of many measures used to evaluate
STD performance including the NIST actual term weighted
value measure (ATWV) which is a weighted average of de-
tection and false alarm probabilities [4]. The ATWV was not
used here since there is an interest in looking at the term based
recall and precision performance separately.

5.2. ASR Performance

A study was performed to evaluate the impact of the acoustic
and language modeling techniques described in Section 4 on
both ASR and STD performance. Table 1 summarizes the ex-
perimental results according to three different measures com-
puted on the test set described in Section 5.1 for multiple con-
figurations of the ASR system. ASR performance is reported
as LM perplexity and WAC, and STD performance is reported
as Pd evaluated at 10 fa/kw/hr.

ASR PPL WAC IV Pd at 10 fa/kw/hr
Baseline 148 41.7 -

Enhanced AM 148 53.1 49.8
DA-LM 143 54.5 50.5

DA-LM-LR 143 46.5 61.7

Table 1. Performance for enhanced acoustic model (AM),
domain adapted (DA) LM, and lattice-rescored (LR)

The impact of the acoustic modeling techniques on ASR
WAC can be seen by comparing rows one and two of Ta-
ble 1. The baseline system uses PLP acoustic features, maxi-
mum likelihood trained acoustic HMM models, and the same
trigram LM used for the “enhanced” acoustic model (AM).
Clearly, the combination of the enhanced feature representa-
tion, speaker normalization, speaker and environment adapta-
tion, and discriminative training has significant effect on both
measures. However, the relatively low ASR WAC of 53.1%
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reflects the inherent difficulty of the task. This is consistent
with results reported elsewhere on lecture domain tasks [3, 9].

Comparison of rows two and three of the table shows that
the domain adapted (DA) LM described in Section 4.2 pro-
vides only a small reduction in perplexity and a small increase
in WAC relative to the baseline. It is suspected that this is
partly due to the highly specialized domain and partly due
to the relatively small size of the available domain specific
text. However, it also suggests that improving ASR WAC
for this domain by incorporating more relevant LM training
text is much harder that we expected. The fourth row of Ta-
ble 1, labeled as DA-LM-LR, shows the STD performance
obtained using the lattice re-scoring (LR) procedure described
in Section 3. This has the most significant effect on STD
performance, resulting in an increase of 22% in Pd at 10
fa/kw/hr. Not surprisingly, the WAC for this condition actu-
ally decreases due to the high number of added insertion and
substitution errors.

5.3. STD Performance

Recall (Pd) versus false detection (fa/kw/hr) curves are plot-
ted in Figure 1 for both IV and OOV search terms. The curves
labeled “DA-IV” and “DA-OOV” give the detection charac-
teristic when the phone based distance measure, Dk(Q), is
applied to the most likely word string obtained using the DA-
LM ASR system from Table 1. The left-most point of the
DA-IV curve shows that the ASR system obtains a 34.1% re-
call rate at 1 fa/kw/hr for the IV words. The DA-IV curve
shows that applying a decision threshold to Dk(Q) yields an
increase in recall (Pd) of approximately 13% with respect to
the 34.1% recall rate obtained by the ASR system at only
3 fa/kw/hr. The curves labeled “DA-LR-IV” and “DA-LR-
OOV” give the detection characteristic when Dk(Q) is ap-
plied after the lattice re-scoring procedure described in Sec-
tion 3. For the IV case, the recall obtained for DA-LR-IV is
over 10% higher than that obtained for DA-IV, but only for
false alarm rates greater than approximately 7 fa/kw/hr.

The DA-OOV and DA-LR-OOV curves in Figure 1 follow
similar trends as the IV curves; however, the best recall rate
for OOV queries is about half that obtained for the IV queries.
It is interesting to note that similar gains are obtained for OOV
terms as are obtained for IV terms by applying Dk(Q) after
lattice re-scoring.

6. SUMMARY AND CONCLUSION

A study of ASR and STD performance has been presented
for a task involving lecture speech from audio recordings ob-
tained from an online media repository. An efficient approach
to STD was presented where lattice paths that are likely to
contain search terms are identified and a fast phone based
search algorithm is used for term detection. The approach
is suitable for vocabulary independent tasks that require ex-
tremely fast response times in searching potentially very large
indices. It was found that searching ASR word lattices, rather

Fig. 1. Spoken term detection (STD) performance for in-
vocabulary (IV) and out-of-vocabulary (OOV) search terms
plotted as recall (Pd) versus false detection (fa/kw/hour).

than single best decoded word strings, provides significant in-
crease in query term recall when higher rates of false term
detections are acceptable.
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