
Parallel Training of Neural Networks for Speech Recognition

Karel Veselý, Lukáš Burget and František Grézl

Speech@FIT, Brno University of Technology, Czech Republic
xvesel39@stud.fit.vutbr.cz, {burget,grezl}@fit.vutbr.cz

Abstract
In this paper we describe parallel implementation of ANN train-
ing procedure based on block mode back-propagation learning
algorithm. Two different approaches to parallelization were
implemented. The first is data parallelization using POSIX
threads, it is suitable for multi-core computers. The second is
node parallelization using high performance SIMD architecture
of GPU with CUDA, suitable for CUDA enabled computers.

We compare the speed-up of both approaches by learning
typically-sized network on the real-world phoneme-state clas-
sification task, showing nearly 10 times reduction when using
CUDA version, while the 8-core server with multi-thread ver-
sion gives only 4 times reduction. In both cases we compared to
an already BLAS optimized implementation. The training tool
will be released as Open-Source software under project name
TNet.
Index Terms: Artificial Neural Network, GPU, CUDA,
Phoneme Classification, Fast Training

1. Introduction
State of the art speech recognition systems are based on
acoustic-phonetic models of the words. Each acoustic unit is
modeled by one or more states of a Hidden Markov Model
(HMM). The systems based on the hybrid paradigm are us-
ing artificial Artificial Neural Networks (ANN) to estimate the
probability density of the acoustic patterns associated to such
HMM states [1]. The crucial advantage of using a hybrid ANN-
HMM approach is that the computation of the posterior proba-
bilities of HMM states takes a small fraction of time compared
to the classical GMM-HMM approach. Moreover, the ANN
models are inherently discriminative.

The most widely used ANNs in speech recognition are
feed-forward Multi Layer Perceptron (MLP) networks. The
MLPs are typically used as phoneme classifiers, where the net-
work input is a vector of features and the output is a vector of
phoneme-class membership probabilities.

These probabilities have been proven to be very useful for
further processing such as direct LVCSR decoding [5], Key-
word spotting [6] or Language identification. The probabilities
can be called posterior features, because they are used as fea-
tures for subsequent systems, or phoneme-state probabilities,
because they correspond to emission probabilities in standard
GMM-HMM approach.

The MLPs are trained by standard block-mode stochastic
gradient descent algorithm with error backpropagation. Fea-
ture vectors together with phoneme labels are used for the train-
ing. The stochastic variant was chosen because it converges in
lower number of epochs on data-sets with redundant data (e.g.
with repeating or very similar segments) compared to the batch
variant. Moreover, stochastic variant gives better possibility of
escaping from local minima [2].

Even when using some degree of MLP training paralleliza-
tion, for example as it is implemented in our current training
tool SNet [4], typically the training time exceeds 24 hours,
due to the huge quantities of training data (hundreds hours of
speech). Such long training periods are uncomfortable for prac-
tical use.

In this paper, we describe TNet – a new faster imple-
mentation of parallel neural network training with two accel-
eration possibilities. The first is data parallelization version,
which is based on POSIX threads. It is suitable for widespread
multi-core computers. The second is node parallelization ver-
sion, which exploits the high performance SIMD architecture
of modern Graphical Processing Units (GPU) with Compute
Unified Device Architecture (CUDA) computing engine; sim-
ilar approach was reported in [9]. The performance of both ap-
proaches is compared on a real-world task.

The paper is organized as follows. Section 2 recalls the
training algorithm and its parallelization methods. Section 3
details key aspects of both acceleration techniques from the im-
plementation point of view. The experimental results are sum-
marized in Section 4. Concluding remarks and future perspec-
tives are reported in Section 5.

2. Feed-forward neural networks
Feed-forward ANN is an adaptive multivariate transform func-
tion with ability to “memorize” patterns by adjusting tunable
parameters (neuron weights). It can be seen as a sequence of
alternating linear and nonlinear transformations. Due to Kol-
morogovs’ theorem [2] we believe that the network is able to
express any possible function when having enough layers and
neurons per layer. In our particular case, we are interested in
classification MLPs, the training algorithm will be explained on
this class of ANN. The Stochastic gradient descent algorithm
with error backpropagation is used for the training, while the
weight update is performed per bunch (a block of N frames).
In the MLP, Sigmoid nonlinearity is used for hidden layer and
Softmax nonlinearity is used for the output layer.

For the sake of simplicity, the training algorithm will be
explained on the case when the bunch has only one input data-
point. The general formula for gradient descent is:

w(t+ 1) = w(t)− µ∇E (1)

which says that the current parameters w are iteratively moved
in the opposite direction of the error function gradient ∇E,
which is scaled by learning rate µ. The gradient ∇E of the
error function E is a vector of its first derivatives with respect
to all the model parameters w:

∇E =

»
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wM

–T

(2)

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

2934



To obtain the gradient, it is necessary to perform data prop-
agation, objective function evaluation and error backpropaga-
tion. The data propagation is done from the first to the last layer.
The linear and non-linear layers are alternating, while the first
layer is linear and last layer is non-linear:

Linearity: yn = Wnxn + bn

Sigmoid: yni = 1
1+exp(−xni)

Softmax: yni = exp(xni)P
j exp(xnj)

(3)

where n is the index of linear or nonlinear transformation, yn is
the output vector, Wn is a neuron-layer weight matrix, xn is the
input vector and bn is the neuron-layer bias vector. Obviously,
the output of the previous transformation is input of the next
transformation, the input of the first transformation being the
input data.

Then the cross-entropy error function is evaluated by using
the MLPs’ output vector yn and desired vector d. To be able to
do the backpropagation, the first derivative of the error function
E with respect to MLPs’ output vector yn must be evaluated.
In the particular case when we have a coupled cross-entropy
with softmax, the derivative of error function E with respect to
softmax input vector xSoftmax leads to trivial solution which is
called global error:

Cross-entropy Global error
E = −

P
j dj ln(yj)

∂E
∂xSoftmax

= en = yn − d
(4)

Now, the error backpropagation can be performed. We start at
the last linearity which precedes Softmax, proceeding through
the layers towards the first layer:

Linearity Sigmoid
en−1 = WT

n en en−1 = yn(yn − 1)en
(5)

Finally the gradient descent update formulas are used:

Weights update: Wn(t+ 1) = Wn(t)− µ enxT
n

Bias update: bn(t+ 1) = bn(t)− µ en

(6)

During one training epoch (pass over whole training data-set),
this procedure is performed for each block of the input data.

2.1. Parallelizations

The Stochastic on-line learning imposes strong data dependen-
cies which makes the parallelization difficult. Two effective ap-
proaches to parallel network training have been reported [3]:

Data parallelization The training data is divided into disjoint
sets. Each thread has its own network instance and works
on its own data-set. Weight synchronization occurs pe-
riodically when N frames are processed. The weight
difference matrices (e.g. error gradients) are gathered,
summed up and a new set of weights is generated and
distributed.

Node parallelization In this case, there is only one instance of
the network. The network layers are divided into disjoint
sets of neurons. Each thread has associated its own set.
This method imposes higher frequency of synchroniza-
tion than data parallelization. The threads are synchro-
nized by a barrier before one can proceed to the next
layer.

Both approaches were tested and compared. First, the multi-
thread data parallelization was implemented, then the node par-
allelization using CUDA was implemented.

The problem of data parallelization is that the algorithm
doesn’t scale ideally and the overhead of weight synchroniza-
tion increases by adding more slave threads.

The problem of CUDA node parallelization is that the data
transfers between the host memory and the GPU memory can
easily become a bottleneck and therefore should be minimized.
However it is more efficient to transfer data in larger segments.

3. Implementation
The design of the tool was chosen with respect to both high
performance and simple extensibility. The tool is capable of
both on-line (Stochastic) and batch gradient descent, the only
difference is that the weight update is not performed per-cycle
but at the end of the epoch.

For the sake of speed, the data matrices are stored in such
way that each matrix row starts on 16-byte aligned address both
in the host memory as well as in the GPU memory.

The TNet is compatible with the HTK data formats. It ac-
cepts STK1 transforms for feature extraction, the network is
stored in it’s own format with possible conversion to the STK
format.

After finishing the TNet development, the tool will be dis-
tributed as Open Source software. The pre-release version can
be downloaded at BUT Speech@FIT web-site2.

Currently, both the multi-threaded data parallelization and
CUDA node parallelization are implemented in TNet, while one
option excludes the other:

3.1. Multi-threaded version

Here, the GotoBLAS3 library is used to accelerate linear algebra
operations. The cblas sgemm function is used for linearity
propagation, backpropagation and for the evaluation of weight
difference matrices. This function represents 80% of training
time in case of single thread training.

The network parameters are shared for all the threads which
improves the processor cache hit-rate.

Figure 1: Thread synchronization (FW - forward pass, BW -
backward pass, CORR - weight difference matrices calculation)

As can be seen in Fig. 1, the training process is divided into
several training threads and two feature extraction threads. The
training cycle consists of three phases:

1. Data distribution
2. Training (forward pass, objective function evaluation, er-

ror backpropagation and evaluation of weight difference
matrices)

1BUT Speech ToolKit http://merlin.fit.vutbr.cz/svn/STK/trunk/src/
2TNet http://speech.fit.vutbr.cz/files/software/tnet/TNet.tar.gz
3GotoBLAS http://www.tacc.utexas.edu/tacc-projects/

2935



3. Merging of weight difference matrices, weight update

The data distribution is done in series, because it is a simpler
and more universal solution. If we did not distribute the data de-
terministically, we would not be able to repeat the training pro-
cedure and obtain the same network, also the merging of weight
update matrices must be deterministic. The training and weight
difference matrix merging is parallel. Two barriers are used to
synchronize, one before the training starts and one before the
merging starts. Partial summing is used for merging; every
thread is responsible for summing several lines of the weight
difference matrices from all the network instances.

The two background threads are loading the training data
and performing STK feature extraction transform till the cache
is full. Two caches are used, one is used for training, while the
second is being filled and randomized on background.

3.2. CUDA version

Here, the CUBLAS library is used to accelerate the linear alge-
bra operations, the nonlinear transformations are implemented
as separate CUDA kernels. Two threads are used, the back-
ground data-preparation thread and the main thread which calls
all the CUDA routines.

The feature extraction is partly done on the CPU in the
background thread, and partly on the GPU in the main thread,
also the feature cache randomization is done in the main thread.

Figure 2: Host to GPU I/O operations

As can be seen in Fig. 2, a block of randomized input data is
uploaded to the GPU by the function cudaMemcpy and prop-
agated through the network. Then, the network output is down-
loaded from the GPU again by cudaMemcpy and the error
is evaluated on host CPU. Then the error is uploaded to the
GPU, backpropagated and finally, the network parameters are
updated.

Currently, the CUDA acceleration is feasible due to its C-
like language interface and availability of CUBLAS and CULA
libraries, alternatives to popular cblas and clapack, which are
very useful for linear algebra acceleration.

The function cublasSgemm is used to accelerate the ma-
trix multiplication, which is used for linearity propagation,
back-propagation and neuron-layer weight update. The nonlin-
ear transformations (sigmoid, softmax) and neuron-layer bias
update have been implemented as CUDA kernels. The kernels
are run as a grid of 16x16-cells blocks or as a grid of 16-rows
blocks. The mode depends on the type of kernel function. From
the integration point of view, the CUDA kernels are wrapped in
C functions and compiled by nvcc as separate C library, which
is then linked to the project. In order to become familiar with
CUDA we suggest to read [10].

4. Experimental results
Database The training set is a subset of AMIDA meeting data
corpus4. The total size of the AMIDA corpus is 150 hours. A
135h subset was taken as training data-set, the cross-validation
was performed on a 15h subset. The corpus is labeled by 45
phonemes. The phonemes are considered context independent
with three sub-states, which leads to 135 classes.

Parameterisation We use the long-context parameterisation
which was proposed in [7]. The parameters are log Mel filter-
bank outputs derived using 25ms window, 10ms shift; 23 filters
were used. Such parameters were normalized by Per-Speaker
Cepstral Mean-Variance Normalization and Vocal Tract Length
Normalization. Then a 51 frames long context (510ms) was
taken for each filter. Each context was separately scaled by
Hamming Window and compressed by Discrete Cosine Trans-
form to 26 coefficients. By re-concatenation we get vectors of
23×26 coefficients. Such network inputs were finally globally
Mean-Variance normalized.

Network structure Two-layer feed-forward MLP with one
hidden layer was used. The layers are fully connected, the di-
mensionality of input is 598, the hidden layer has 1000 neurons,
the output layer has 135 neurons. The activation function of the
first layer was Sigmoid, while activation function of the second
layer was Softmax.

The network has 0.7M tunable parameters and it is a part of
a state of the art speech recognition system [8].

Training Standard backpropagation algorithm with the “new-
bob” learning rate scheduling was used: The learning rate is
kept fixed as long as the increment in cross-validation accuracy
is bigger than a threshold. For the subsequent epochs, the learn-
ing rate is being halved till the cross-validation increment is in-
ferior to some stopping threshold.

The ANN weight update was performed per bunch (fixed-
size block of data-points). In case of multi-thread training, the
slave bunch-size is different for each order of parallelization.
Since the weight update is done per aggregated bunch-size of all
slaves, which is equal to original bunch-size of serial training,
the two training algorithms are equal.

We believe that the optimal aggregated bunch-size is around
1000 frames, but it should be verified for each different training
task. Too small bunch-size causes training slowdown, too big
bunch-size may have impact on the quality of the global minima
which will be found.

Results The performance of the CUDA version was evaluated
on HW setup marked ♥: Desktop PC with 1x Intel Core2Duo
E8400 3.0GHz, 2GB RAM and the NVidia GTX 285 GPU with
240 shaders at 1.476GHz. The system is running CentOS 5.4
64bit Linux.

The performance of the multi-thread version was evaluated
on HW setup marked ♦: Blade server SuperTwin2 6026TT-
TF with 2x Intel Xeon E5520 2.26GHz Nehalem, 12 GB RAM
running also CentOS 5.4 64bit Linux.

For each training configuration, the single-epoch training
time was measured till the network was fully trained, which
took typically 8-10 epochs. The mean training-epoch durations
and the obtained speed-ups are in Tab. 1.

4http://www.amiproject.org/ami-scientific-portal/meeting-corpus

2936



The baseline for the speed-up evaluation is one-thread
CUDA-disabled training on the desktop PC ♥; Tab. 1, line 1.
This was already accelerated by GotoBLAS linear algebra li-
brary with disabled multi-threading, a pure C implementation
would be even approximately 4x slower [9].

Our fastest mutli-thread training is in Tab. 1, line 2. Six
training threads are used together with two background feature
extraction threads; one thread was found to be insufficient. By
profiling we discovered that the data distribution represents 4%
of the running time, the training is 87%, the waiting on barrier
before merging the weight update matrices is 5% and merging
the weight update matrices is 4%. During this experiment we
exploited the whole 8-core machine socketed with two state-of-
the-art Nehalem processors and obtained 4.4x speed-up.

However the CUDA version of the training Tab. 1, line 3
greatly outperformed even the 8-core machine. One main thread
is used for all the CUDA calls and one background thread for
loading data and doing undemanding part of preprocessing. The
speed-up compared to the baseline is very good: 9.7x, the 8-
core machine was outperformed 2.2x. The profiling has re-
vealed that 37% of running time was spent on data preprocess-
ing, 8% on CPU-GPU data transfers, 23% on forward pass, 3%
on objective function evaluation, 5% on backward pass and 24%
on update of network parameters.

Table 1: Training configurations

HW Training Thr- T-epoch Speed-up
Impl. eads h:mm

♥ 1-thread, no CUDA 1+1 4:41 -
♦ Multi-thread 6+2 1:04 4.4x
♥ CUDA 1+1 0:29 9.7x

Scaling on 32 cores A very interesting graph was produced
by running the multi-thread version with different paralleliza-
tions on a 32 core server. For this experiment, we used HP
ProLiant DL785 G5 server, which is fully socketed with 8 quad-
core AMD Opteron 8356 processors and 128GB of RAM, while
running CentOS 5.4 64bit Linux with NUMA optimized kernel.

The server is not equipped with the last generation proces-
sors, but still we can observe here the scaling of multi-thread
version. As can be seen in Fig. 3 the training does not scale
ideally. Adding more cores produces speed-up until the critical
12 cores are reached, then performance degradation occurs.

The bottleneck was identified as RAM to CPU bandwidth,
which is actually limited to 10GB/s. During our benchmark, we
have measured the bandwidth of 90GB/s by considering all the
read and write data-flows, however this number is artificially
“boosted” by the performance of processor cache hierarchy.

5. Conclusion and future work
We have studied and implemented two different approaches to
the parallelization of the ANN training procedure for sequential
patterns. First approach is the data-parallelization optimized
for multiprocessor servers, showing a 4 times reduction of the
training time on an 8-core server. The second approach is the
node-parallelization optimized for a regular PC equipped with
a modern GPU card. This approach showed nearly 10 times re-
duction of the training time. In both cases, we compared to the
BLAS optimized single-thread training without GPU accelera-
tion.

0 4 8 12 16 20 24

0
0.5
1

1.5
2

2.5
3

3.5
4

#Threads

S
p
e
e
d
-u
p

Figure 3: The scaling of multi-thread version on 32-core server.
The y-axis baseline is in Tab. 1, line 1.

The acceleration of the ANN training will not only facili-
tate the generation of the acoustic models, but it will also lead
to even more intensive research activity on finding better net-
work structures and topologies for various speech tasks. Re-
duced training time also allows training of larger models with
huge training corpora. Further work can be focused on scaling
by using more graphic cards in one PC. As reported in [9], it is
feasible to host multiple instances of the CUDA training in one
system, but it might be also possible to accelerate one instance
of the training by multiple cards. For example, when needed,
the time consumed by feature preprocessing can be saved by
using second GPU in order to get even better speed-up.

6. Acknowledgements
This work was partly supported by Grant Agency of Czech Re-
public project No. 102/08/0707, and by Czech Ministry of Ed-
ucation project No. MSM0021630528, and by Czech Ministry
of Interior project No. VD20072010B16.

7. References
[1] Bourlard, H., Morgan, N.: Connectionist Speech Recognition a

Hybrid Approach. Norwell MA USA, Kluwer Academic Publish-
ers 1993, ISBN 0-79-239396-1

[2] Bishop, Ch.: Neural Networks for Pattern Recognition. Oxford
University Press 2004, ISBN 0-19-853864-2

[3] Pethick, M., Liddle, M., Werstein, P., Huang, Z.: Parallelization
of a Backpropagation Neural Network on a Cluster Computer. In
Parallel and Distributed Computing and Systems, IASTED/ACTA
Press, 2003.

[4] Kontár, S.: Parallel training of neural networks for speech recog-
nition. FIT VUT Brno, 2006, diploma project

[5] Kingsbury, B.: Lattice-based Optimization of Sequence Classifi-
cation Criteria for Neural-Network Acoustic Modeling. Proceed-
ings of ICASSP’09, ISBN 978-1-4244-2353-8

[6] Szöke, I., Schwarz, P., Matějka, P., Burget, L., et al.: Compar-
ison of Keyword Spotting Approaches for Informal Continuous
Speech. Proceedings of Interspeech’05 - Eurospeech, ISSN 1018-
4074

[7] Schwarz, P., Matějka, P., Černocký, J.: Towards Lower Error
Rates in Phoneme Recognition. Proceedings of TSD’04, ISBN 3-
540-23049-1

[8] Grézl, F., Karafiát, M., Burget, L.: Investigation into bottle-neck
features for meeting speech recognition. Proceedings of Inter-
speech’09, ISSN 1990-9772

[9] Scanzio, S., Cumani, S., Gemello, R., Mana F., Laface, P.: Par-
allel Implementation of Artificial Neural Network Training. Pro-
ceedings of ICASSP’10, ISSN 0167-8655

[10] Seland, J.: CUDA Programming. SINTEF Winter school,
http://heim.ifi.uio.no/ knutm/geilo2008/seland.pdf

2937


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Lukas Burget
	Also by Frantisek Grezl
	----------

