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ABSTRACT

This work presents a new approach to discriminative speaker

verification. Rather than estimating speaker models, or a

model that discriminates between a speaker class and the

class of all the other speakers, we directly solve the problem

of classifying pairs of utterances as belonging to the same

speaker or not.

The paper illustrates the development of a suitable Sup-

port Vector Machine kernel from a state–of–the–art genera-

tive formulation, and proposes an efficient approach to train

discriminative models.

The results of the experiments performed on the tel–tel ex-

tended core condition of the NIST 2010 Speaker Recognition

Evaluation are competitive or better, in terms of normalized

Decision Cost Function and Equal Error Rate, compared to

the more expensive generative models.

Index Terms— Discriminative Training,Two–covariance

Kernel, Support Vector Machines, i–vectors

1. INTRODUCTION

Recent trends in speaker recognition have seen the develop-

ment of Bayesian generative models. This has been made

possible by advances in the representation of speech seg-

ments by means of low dimensional feature vectors referred

to as i–vectors [1]. These techniques aim at modeling the

i–vectors by decomposing them into a speaker and a channel

component whose underlying distributions are then estimated

using expectation–maximization. The most effective current

flavours of these approaches are the Gaussian (G–PLDA)

or Heavy–Tailed Probabilistic Linear Discriminant Analysis

(HT–PLDA) [2] and the Two–covariance model, a linear–

Gaussian generative model introduced in [3]. The advantage

of a Bayesian approach in speaker recognition is that, in

principle, it produces likelihood ratios that do not need to be

normalized [4]. In [2] this has been confirmed in the case

of telephone speech, for heavy–tailed distributions, whereas

normalization was needed for Gaussian distributions. A com-

plete symmetry of the train and test segments is another

interesting characteristic of these approaches.

In this work, we illustrate a fast discriminative training

procedure for a linear–Gaussian model. In this new approach,

we do not model speaker classes anymore, but we build a bi-

nary classifier which simply classifies a pair of utterances as

either target (same speaker) or non–target (different speak-

ers) [5]. Training is performed by means of Support Vector

Machines (SVMs), using a suitable kernel derived from the

two–covariance generative model. The advantage of this ap-

proach is that while training is more expensive compared with

the Gaussian PLDA approach, testing is extremely fast (as in

G–PLDA) and results are comparable with those provided by

HT–PLDA.

The paper is organized as follows: Section 2 describes

the SVM classifier, focusing on the properties that the train-

ing algorithm should have in order to make our task feasi-

ble. Section 3 briefly summarizes the Two–covariance and

the PLDA generative models. The steps necessary to derive a

discriminative solution for the former model by means of an

appropriate expansion of i–vector pairs are given in Section 4

together with the procedure to efficiently train the SVM. The

experimental results comparing the performance of the dis-

criminative and generative models are given in Section 5 and

conclusions are drawn in Section 6.

2. SVM

A Support Vector Machine is a two–class classifier which

looks for the hyperplane that best discriminates two given

classes of patterns according to a maximum separation mar-

gin criterion.

The separation hyperplane is obtained by solving an un-

constrained regularized risk minimization problem

min
w

1
2
‖w‖2 + C ·

n∑
i=1

max(0, 1 − ζiwT xi) (1)

where vector w is the vector representing the hyperplane and

the second term is the (L1–)loss function

lL1(w,x, ζ) = max(0, 1 − ζwT x) (2)

evaluated on training patterns xi ∈ R
d with associated class

label ζi ∈ {−1, +1}.
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Non–linear classification can be obtained by expanding

the feature patterns into a high dimensionality space where

linear classification is carried out. The kernel trick allows

solving the SVM problem without explicitly constructing the

expanded features, provided that the dot–products in the ex-

panded space can be evaluated.

Many algorithms exist that solve problem 1, providing

both primal and dual solutions [6]. The scale of the classifi-

cation problem we address in this paper does not allow for an

explicit construction of the kernel matrix, which would have

a size O(n4), n being the number of i–vectors in the training

set. However, we will show that, by using an appropriate fea-

ture expansion, the loss function and its gradient with respect

to the hyperplane parameters in the expanded space of the

i–vector pairs can be evaluated without explicitly expanding

the i–vector pairs. Deriving a formulation for the dot–product

in the expanded space we can efficiently train our models by

using a primal SVM solver such as the one proposed in [7].

3. GENERATIVE MODELS

I–vectors are a recently proposed compact representation of

speaker segments which boosted the study of Bayesian gen-

erative models [1, 3]. The procedure for extracting i–vectors

has been described and effectively used in [8, 9].

3.1. Two–covariance model

We need to briefly recall in this subsection the two–covariance

modeling of [3] because we derive our expression for the

SVM dot–product in the expanded space from its formula-

tion. The i–vectors are assumed to be features produced by

a linear–Gaussian generative model M. In particular, an i–

vector φ can be decomposed into a speaker y and a Gaussian

distributed channel component z:

φ = y + z (3)

P (φ|y,M) = N (φ|y, W−1) (4)

where W−1 is the within–speaker covariance matrix.

If we assume the prior for y is Gaussian distributed

P (y|M) = N (y|μ, B−1) (5)

with (between–speaker) covariance matrix B−1 then the pos-

terior, given a set S of n i–vectors associated to speaker iden-

tity y, is also normal:

P (y|S,M) = N (y|L−1γ, L−1) (6)

L = B + nW γ = Bμ + W
∑

φ∈S φ (7)

Since our problem is to decide whether two spoken segments

belong to the same or to different speakers, we have three sets,

S1, S2 if the two i–vectors are in different sets; otherwise both

belong to set S1,2 = S1 ∪ S2 .

The resulting formulation for the speaker detection log–

likelihood was given in [3]

log l =
1
2
(log |B| − μT Bμ + log |Λ̃| + γT

1,2Λ̃γ1,2)

− 1
2
(2 log |B| − 2μT Bμ + 2 log |Γ̃|

+ γ1
T Γ̃γ1 + γ2

T Γ̃γ2) (8)

where

Λ̃ = (B + 2W )−1 Γ̃ = (B + W )−1

γ1,2 = Bμ + W (φ1 + φ2) γi = Bμ + Wφi

3.2. PLDA model

The two covariance model can be seen as a particular case of

the more general framework of Probabilistic Linear Discrim-

inant Analysis [4, 2], where an i–vector is represented as

φ = U1y + U2x + z (9)

where x represents “channel factors” and z is the residual er-

ror. The matrices U1 and U2 constrain the speaker and chan-

nel spaces to be of lower dimension than the i–vector space.

4. DISCRIMINATIVE MODEL

We are not interested in exactly evaluating (8) to perform dis-

criminative training — we derive instead a formally equiv-

alent expression that can be transformed into a valid dot–

product.

By dropping the 1
2 factor and collecting in a constant k̃ all the

i–vector independent terms in the sum, (8) can be rewritten

as:

log l = k̃ + γT
1,2Λ̃γ1,2 − γ1

T Γ̃γ1 − γ2
T Γ̃γ2 (10)

Replacing (7) in (10) we obtain:

log l = (Bμ + W (φ1 + φ2))
T Λ̃(Bμ + W (φ1 + φ2))

− (Bμ + Wφ1)
T Γ̃(Bμ + Wφ1)

− (Bμ + Wφ2)
T Γ̃(Bμ + Wφ2) + k̃ (11)

which we rewrite as:

log l = φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2

+ (φ1 + φ2)
T
c + k (12)

with

Λ = WT Λ̃W Γ = WT (Λ̃ − Γ̃)W
c = 2WT (Λ̃ − Γ̃)Bμ k = k̃ + (Bμ)T (Λ̃ − 2Γ̃)Bμ

To demonstrate that (12) is a dot–product in some i–vector

pairs expanded space, we recall that the computation of a bi-

linear form xT Ay can be expressed in terms of the Frobenius
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inner product as xT Ay = 〈A, xyT 〉 = vec(A)T
vec(xyT ),

where the operator vec(A) is the operator that stacks the

columns of A into a column vector. Hence, the expression for

the speaker detection log–likelihood can be rewritten as

log l = 〈Λ, φ1φ
T
2 + φ2φ

T
1 〉 + 〈Γ, φ1φ

T
1 + φ2φ

T
2 〉

+ cT (φ1 + φ2) + k (13)

Thus, if we stack the parameters as:

w =

⎡
⎢⎢⎣

vec(Λ)
vec(Γ)

c
k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

wΛ

wΓ

wc

wk

⎤
⎥⎥⎦ (14)

and we expand the i–vector pairs as

ϕ(φ1, φ2) =

⎡
⎢⎢⎣

vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ϕΛ(φ1, φ2)
ϕΓ(φ1, φ2)
ϕc(φ1, φ2)
ϕk(φ1, φ2)

⎤
⎥⎥⎦ (15)

the scoring given by (12) can be expressed as a dot–product

as

S(φ1, φ2) = log l

= SΛ(φ1, φ2) + SΓ(φ1, φ2)
+ Sc(φ1, φ2) + Sk(φ1, φ2)

= wT
ΛϕΛ(φ1, φ2) + wT

Γ ϕΓ(φ1, φ2)

+ wT
c ϕc(φ1, φ2) + wT

k ϕk(φ1, φ2)

= wT ϕ(φ1, φ2) (16)

The terms SΛ, SΓ, Sc, Sk represent the contributions of the

different terms of w to the final score.

4.1. Fast scoring

Since the number of i–vector pairs is of the order of hundreds

of millions in our experiments, the evaluation of a Gram ma-

trix would be clearly unfeasible. However, if we use a primal

SVM solver, we need only to evaluate the SVM loss function

and its gradient with respect to the hyperplane. Both evalu-

ations require, in principle, a sum over all the i–vector pairs,

but in the next two subsections we show that given the dot–

product in (16) the loss function and the gradient evaluations

can be done without an explicit expansion of all the i–vector

pairs.

4.2. Loss function evaluation

Let us denote by D the matrix of all stacked i–vectors φi

D = [φ1φ2 . . . φn]

Let Θ ∈ {Λ, Γ, c, k} be a component of the hyperplane, and

let SΘ, the score matrix of training patterns due to component

Θ, be defined as: SΘi,j = SΘ(φi, φj). From (16) and (12)

the score matrices can be evaluated as:

SΛ(φ1, φ2) = φT
1 Λφ2 + φT

2 Λφ1 ⇒ SΛ = 2DT ΛD (17)

SΓ(φ1, φ2) = φT
1 Γφ1 + φT

2 Γφ2 ⇒ SΓ = S̃Γ + S̃Γ
T

(18)

Sc(φ1, φ2) = cT (φ1 + φ2) ⇒ Sc = S̃c + S̃c
T

(19)

Sk(φ1, φ2) = k ⇒ Sk = k · 1 (20)

where

S̃Γ = [dΓ . . . dΓ︸ ︷︷ ︸
n

], dΓ = diag (DT ΓD),

S̃c = [dc . . . dc︸ ︷︷ ︸
n

], dc = DT c

diag is the operator that returns the diagonal of a matrix as a

column vector, 1 is an n × n matrix of ones.

Denoting by S the sum of these partial score matrices, the

SVM loss function can be summarized as:

L(D,Z) = C
∑
i,j

max(0, 1 − ζi,jw
T ϕ(φi, φj)

= C〈1, max(0,1 − (Z ◦ S)〉 (21)

where 0 is an n× n matrix of all zeros, Z is the n× n matrix

of labels for trials (φi, φj), Zi,j = ζi,j ∈ {−1, +1}, and ◦ is

the element–wise matrix multiplication operator.

4.3. Gradient Evaluation

The gradient of the loss function can be evaluated from its

derivative with respect to the m–th dimension of w as

∂L

∂wm
=

∑
i,j

∂lL1(w, (φi, φj), ζi,j)
∂(wT ϕ(φj , φj))

∂wT ϕ(φj , φj)
∂wm

=
∑
i,j

gi,j
∂Si,j

∂wm
=

∑
i,j

gi,jϕ(φi, φj)m (22)

where gi,j is the derivative of the loss function with respect to

the dot product

gi,j =

{
0 if Si,jζi,j ≥ 1
−ζi,j otherwise

Let G be the matrix Gi,j = gi,j , then

∇L =

⎡
⎢⎢⎣
∇ΛL
∇ΓL
∇cL
∇kL

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

vec
(∑

i,j gi,j

(
φiφ

T
j + φjφ

T
i

))
vec

(∑
i,j gi,j

(
φiφ

T
i + φjφ

T
j

))∑
i,j gi,j (φi + φj)∑

i,j gi,j

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

2 · vec
(
DGDT

)
2 · vec

(
[D ◦ (1AG)]DT

)
2 [D ◦ (1AG)]1B

1T
BG1B

⎤
⎥⎥⎦ (23)

where 1A is a d×n matrix of ones and 1B is a size n column

vector of ones. Again, no explicit expansion of i–vectors is

necessary for this evaluation.
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Table 1. EER, DCF as defined in SRE 2008 (oldDCF), minimum

DCF (minDCF) and actual DCF (actDCF) as defined in SRE 2010

for the extended tel–tel core condition (condition 5) of NIST SRE10

Male Set

System EER oldDCF minDCF actDCF

G–PLDA 3.82% 0.165 0.401 0.442
G–PLDA+AT–norm 2.11% 0.106 0.309 0.374
HT–PLDA 1.55% 0.082 0.313 0.364
2C–SVM 1.50% 0.074 0.308 0.355

Female Set

System EER oldDCF minDCF actDCF

G–PLDA 4.08% 0.179 0.448 0.531
G–PLDA+AT–norm 2.54% 0.122 0.438 0.454
HT–PLDA 2.29% 0.118 0.412 0.415
2C–SVM 2.35% 0.108 0.394 0.398

All

System EER oldDCF minDCF actDCF

G–PLDA 4.21% 0.183 0.470 0.498
G–PLDA+AT–norm 2.39% 0.118 0.420 0.422
HT–PLDA 1.98% 0.102 0.379 0.393
2C–SVM 1.94% 0.095 0.373 0.378

5. EXPERIMENTS

Three systems were trained on SRE pre–2010 data and tested

on the extended tel–tel core condition (condition 5) of SRE10

[10]: a Gaussian PLDA (G–PLDA), a Heavy–Tailed PLDA

(HT–PLDA) and the discriminative Two–covariance SVM

system (2C–SVM). The 2C–SVM is compared with G–PLDA

because PLDA is a more general framework than the two–

covariance model, from which the discriminative approach

has been derived, and both rely on Gaussian distribution of

i–vectors and noise. Moreover, we compare 2C–SVM with

HT–PLDA, which assumes heavy–tailed distributions for the

priors, and has shown impressive performance improvement

with respect to G–PLDA [2].

Even if the expression given in (12) can be directly used

to train an SVM, the lack of normalization of the i–vector

dimensions results in poor classification performance, due to

the presence of the SVM regularizer term. Thus, the SVM

is trained by centering the i–vectors and scaling the i–vector

space to whiten the within–speaker covariance matrix. Class

balancing is then performed to optimize for an operating point

near the 2008 SRE DCF one by artificially lowering the con-

tribution to the loss function of miss–classified targets.

The results are given in terms of EER and normalized

minimum and actual Decision Cost Functions as defined by

NIST for SRE08 and SRE10 [10]. The scores were calibrated

on the SRE08 data [11]. Both PLDA systems were trained

with 200 speaker factors and 400 channel factors. 400–

dimensional i–vectors were extracted via a 60–dimensional

features, full–covariance, 2048 Gaussians UBM [9].

Table 1 summarizes the results obtained for the female

and male speakers separately, and pooled together.

As pointed out in [2], G–PLDA requires score normaliza-

tion, which has been performed in our experiments by means

of Adaptive T–norm [12], whereas no normalization is re-

quired for heavy–tailed PLDA and for the 2C–SVM systems.

Discriminative training not only performs better than

generative modeling under the assumption of Gaussian dis-

tributed i–vectors, but its performance is even slightly better

than that of the Heavy–Tailed PLDA.

As far as training complexity is concerned, less than 3

hours was needed to train the female system (21663 utter-

ances — more than 450 million trials) and even less for the

male system (16969 utterances, approximately 290 millions

of trials) on a HP DS160G5 server equipped with two Xeon

X5472 3 GHz quad–core processors and 32 GB of DDR2–

800 RAM. Testing all test segments against all the other test

segments is done in less than 2 seconds.

6. CONCLUSIONS
A fast discriminative training approach for speaker verifica-
tion based on i–vectors has been presented. On NIST tele-
phone evaluation data, the resulting models perform better,
without the need for normalization techniques, than the gen-
erative ones, even compared with heavy–tailed models.
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