
SIMPLIFICATION AND OPTIMIZATION OF I-VECTOR EXTRACTION

Ondřej Glembek1, Lukáš Burget1, Pavel Matějka1, Martin Karafiát1, Patrick Kenny2

1Speech@FIT group, Brno University of Technology, Czech Republic
2Centre de Recherche Informatique de Montréal (CRIM), Montréal, Canada
{glembek,burget,matejkap,karafiat}@fit.vutbr.cz,

{patrick.kenny}@crim.ca

ABSTRACT

This paper introduces some simplifications to the i-vector
speaker recognition systems. I-vector extraction as well as train-
ing of the i-vector extractor can be an expensive task both in terms
of memory and speed. Under certain assumptions, the formulas for
i-vector extraction—also used in i-vector extractor training—can be
simplified and lead to a faster and memory more efficient code. The
first assumption is that the GMM component alignment is constant
across utterances and is given by the UBM GMM weights. The sec-
ond assumption is that the i-vector extractor matrix can be linearly
transformed so that its per-Gaussian components are orthogonal. We
use PCA and HLDA to estimate this transform.

Index Terms— speaker recognition, i-vectors, Joint Factor
Analysis, PCA, HLDA

1. INTRODUCTION

The i-vector systems have become the state-of-the-art technique in
the speaker verification field [1]. They provide an elegant way of re-
ducing the large-dimensional input data to a small-dimensional fea-
ture vector while retaining most of the relevant information. The
technique was originally inspired by Joint Factor Analysis frame-
work introduced in [2, 3].

The computational requirements for training the i-vector sys-
tems and estimating the i-vectors, however, are too high for certain
types of applications. In this paper we propose simplifications to the
original i-vector extraction and training schemes, which would dra-
matically decrease their complexity while retaining the recognition
performance.

Our main motivation was running robust speaker verification
systems on small scale devices such as mobile phones, as well as
speeding up the process of speaker verification in real-time systems.

This paper is organized as follows: Section 2 introduces theo-
retical background of i-vector extraction and training of the i-vector
extractor, Sections 3 and 4 introduce the proposed methods for i-
vector extraction, Section 5 describes the experimental setup, Sec-
tion 6 presents the recognition, speed, and memory performance,
and Section 7 concludes the paper.

2. THEORETICAL BACKGROUND

Let us first state the motivation for the i-vectors. The main idea is
that the speaker- and channel-dependent GMM supervector s can be
modeled as:

s = m + Tw (1)

wherem is the UBM GMM mean supervector, T is a low-rank ma-
trix representing M bases spanning subspace with important vari-
ability in the mean supervector space, and w is a standard normal
distributed vector of sizeM .

For each observation X , the aim is to estimate the parameters of
the posterior probability of w:

p(w|X ) = N (w;wX ,L
−1
X ) (2)

The i-vector is the MAP point estimate of the variable w, i.e. the
mean wX of the posterior distribution p(w|X ). It maps most of
the relevant information from a variable-length observation X to a
fixed- (small-) dimensional vector. T is referred to as the i-vector
extractor.

2.1. Data

The input data for the observation X is given as a set of zero- and
first-order statistics— nX and fX . These are extracted from F di-
mensional features using a GMMUBMwithC mixture components,
defined by a mean supervector m, component covariance matrices
Σ(c), and a vector of mixture weights ω. For each Gaussian compo-
nent c, the statistics are given respectively as:

N
(c)
X

=
X

t

γ
(c)
t (3)

f
(c)
X

=
X

t

γ
(c)
t ot (4)

where ot is the feature vector in time t, and γ
(c)
t is its occupation

probability. The complete zero- and first-order statistics supervec-
tors are fX =

“
f
(1)
X

′

, . . . , f
(C)
X

′
”
′

, and nX =
“
N

(1)
X

, . . . , N
(C)
X

”
′

.
For convenience, we center the first order statistics around the

UBMmeans, which allows us to treat the UBMmeans effectively as
a vector of zeros:

f
(c)
X

← f
(c)
X

− N
(c)
X

m
(c)

m
(c) ← 0

Similarily, we “normalize” the first-order statistics and the matrixT

by the UBM covaricances, which again allows us to treat the UBM
covariances as an identity matrix1:

f
(c)
X

← Σ
(c)− 1

2 f
(c)
X

T
(c) ← Σ

(c)− 1

2 T
(c)

Σ
(c) ← I

1Part of the factor estimation is a computation ofT′
Σ

−1
f , where the de-

composedΣ
−1 can be projected to the neigboring terms, see [2] for detailed

formulae.

4516978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



where Σ(c)− 1

2 is a Cholesky decomposition of an inverse of Σ(c),
andT(c) is a F ×M sub-matrix ofT corresponding to the cmixture
component such that T =

“
T(1)′, . . . , T(C)′

”′

.

2.2. Parameter Estimation

As described in [2] and with the data transforms from previous sec-
tion, for an observation X , the corresponding i-vector is computed
as a point estimate:

wX = L
−1
X T

′
fX (5)

where L is the precision matrix of the posterior distribution, com-
puted as:

LX = I +
CX

c=1

N
(c)
X

T
(c)′

T
(c) (6)

The computational complexity of the whole estimation for one ob-
servation is O(CFM + CM2 + M3). The first term represents
the T′fX multiplication. The second term represents the sum in (6)
and includes the multiplication of L−1

X
with a vector. The third term

represents the matrix inversion.
The memory complexity of the estimation isO(CFM+CM2).

The first term represents the storage of all the input variables in (5),
and the second term represents the pre-computed matrices in the sum
of (6).

Note that the computation complexity grows quadratically with
M in the sum of (6), and linearily with C. This becomes the bottle-
neck in the i-vector computation, resulting in high memory and CPU
demands.

2.3. Model Training

Model hyper-parameters T are estimated using the same EM algo-
rithm as in case of JFA [2]. Note that our algorithm makes use of
an additional minimum divergence update step [3, 4], which yields a
quicker convergence, but is not described here.

In the E step, the following accumulators are collected using all
training observations i:

C =
X

i

fiw
′

i (7)

A
(c) =

X
i

N
(c)
i

`
L

−1
i + wiw

′

i

´
(8)

where wi and Li are the estimates from (5) and (6) for observation
i. The M step update is given as follows:

T
(c) = CA

(c)−1
(9)

3. SIMPLIFICATION 1: CONSTANT GMM COMPONENT
ALIGNMENT

In this method, we apply the assumption that the GMM component
alignment is constant across segments, i.e. the posterior occupation
probabilities γ(c) in (3) are replaced by their prior probabilities rep-
resented by the UBM GMM weights. The new zero-order statistics
are then:

N̄
(c)
X

= ω
(c)

NX (10)

where ω(c) is the GMM UBM weight of component c, and NX =PC

j=1 N
(j)
X
. Substituting N

(c)
X
in (6) by N̄

(c)
X
from (10), we get

L̄X = I + NXW (11)

where

W =

CX
c=1

ω
(c)

T
(c)′

T
(c) (12)

Exploiting this simplification in the i-vector extractor training
can be done at two stages: substituting Li in (8) by (11), and sub-
stituting N

(c)
i in (8) by (10). Based on our experiments, only the

former turned out to be effective, therefore we will not report any
results with the latter one.

Note that W in (12) is independent of data and can be pre-
computed. Its resulting size isM × M yielding faster computation
and less memory demands. The computational copmlexity of this al-
gorithm reduces to O(CFM + M3) with the dominating inversion
step. The memory complexity reduces to O(CFM + M2).

4. SIMPLIFICATION 2: I-VECTOR EXTRACTOR
ORTHOGONALIZATION

Let us assume, that we can find a linear (orthogonal) transformation
G which would orthogonalize all individual per-component sub-
matrices T(c). Orthogonalizing T would diagonalize LX , which
would need to be rotated back usingG. We can then express (6) as

LX = G
(−1)′

L̂XG
−1 (13)

where

L̂X = G
′
G +

CX
c=1

N
(c)
X

G
′
T

(c)′
T

(c)
G (14)

Assuming that L̂X is diagonal, we can rewrite it as

L̂X = Diag
`
diag(G′

G) + VnX

´
(15)

whereV is aM×C matrix whose cth column is diag(G′T(c)′T(c)G).
Diag(·) maps a vector to a diagonal matrix, while diag(·) maps a
matrix diagonal to a vector. Combining (13) and (5), we get

ŵX = GL̂
−1
X G

′
T

′
fX (16)

The computational complexity of this approach is O(CFM) as we
can effectively simplify the matrix inversion to a vector element-
wise inversion. The memory complexity isO(CFM +M2+CM),
where M2 represents the extra diagonalization matrix G, and CM

represents V from (15).
The task is to estimate the orthogonalization matrix G. Let us

take a look at two approaches we investigated:

4.1. Eigen-decomposition

Let W be the weighted average per-component covariance matrix
from (12). We assume W to be a full-rank matrix with M linearly
independent eigenvectors. ThenW can be factorized as

W = QΛQ
−1 (17)

whereQ is a square M × M matrix whose ith column is the eigen-
vector qi ofW andΛ is a diagonal matrix whose diagonal elements
are the corresponding eigenvalues. Matrix Q clearly orthogonalizes
the space given byW, therefore we can setG = Q.

4517



4.2. Heteroscedastic Linear Discriminant Analysis

If the average covariance matrix W from (12) is close to diagonal,
then the eigen-decomposition is not effective in diagonalizing the
per-component covariances.

HLDA is a supervised method, which allows us to derive such
projection that best de-correlates features associated with each par-
ticular class (maximum likelihood linear transformation for diago-
nal covariance modeling [5]). An efficient iterative algorithm [6]
was used in our experiments to estimate matrix G. In our task, the
classes were defined as Gaussian mixture components. The within-
class covariance matrices were given by T(c)′T(c), and the occupa-
tion counts were provided as the mixture weights ω(c).

Note that the well known Linear Discriminant Analysis (LDA)
can be seen as special case of HLDA, where it is assumed that co-
variance matrices of all classes are the same.

5. EXPERIMENTAL SETUP

5.1. Feature Extraction

In our experiments, we used cepstral features, extracted using a
25 ms Hamming window. 19 Mel frequency cepstral coefficients
together with log-energy were calculated every 10 ms. This 20-
dimensional feature vector was subjected to short time mean and
variance normalization using a 3s sliding window. Delta and dou-
ble delta coefficients were then calculated using a 5-frame window
giving 60-dimensional feature vectors.

Segmentation was based on the BUTHungarian phoneme recog-
nizer and relative average energy thresholding. Also, short segments
were pruned out, after which the speech segments were merged to-
gether.

5.2. System Training

One gender-independent universal background model was repre-
sented as a diagonal covariance, 2048-component GMM. It was
trained using LDC releases of Switchboard II, Phases 2 and 3;
switchboard Cellular, Parts 1 and 2 and NIST 2004-2005 SRE.

One (gender-dependent) i-vector extractor was trained on the fe-
male part of the following telephone data: NIST SRE 2004, NIST
SRE 2005, NIST SRE 2006, Switchboard II Phases 2 and 3, Switch-
board Cellular Parts 1 and 2, Fisher English Parts 1 and 2 giving 8396
female speaker in 1463 hours of speech, and 6168 male speakers in
1098 hours of speech (both after voice activity detection).

Originally, 400 dimensional i-vector extractor was chosen as a
reference. As mentioned later, training of the 800 dimensional sys-
tem got feasible using one of the proposed methods. We trained such
system to demonstrate the potentials of the proposed methods.

5.3. Scoring and Normalization

The same technique as in [1] was used. The extracted i-vectors were
scaled down using an LDA matrix to 200 dimensions, and further
normalized by a within-class covariance matrix. Both of these ma-
trices were gender-dependent and were estimated on the same data
as the i-vector extractor, except the Fisher data was excluded, result-
ing in 1684 female speakers in 715 hours of speech and 1270 male
speakers in 537 hours of speech.

Cosine distance of the two input vectors was used as the raw
score:

score (wtarget,wtest) =
〈wtarget,wtest〉

‖wtarget‖‖wtest‖
(18)

The cosine distance scores were normalized using gender-dependent
s-norm [7] with a cohort of 400 speakers having 2 utterances per
speaker.

5.4. Test Setup

The results of our experiments are reported on the female part of the
Condition 5 (telephone-telephone) of the NIST 2010 speaker recog-
nition evaluation (SRE) dataset [8]. The recognition accuracy is
given as a set of equal error rate (EER), and the normalized DCF
as defined both in the NIST 2010 SRE task (DCFnew) and the pre-
vious SRE evaluations (DCFold).

The speed and memory performance of i-vector extraction were
tested on a set of 50 randomly chosen utterances from the MIXER05
database. The input data (given as a set of fixed-size zero- and first-
order statistics) and all of the input parameters were included in
the general memory requirements. The following algorithm-specific
terms were pre-computed (thus not included in the reported times),
and comprised in the algorithm-specific memory requirements:

• T(c)′T(c) in (6)
• W in (12)
• G and T(c)G in (13) and (16), andV in (15)

The algorithms were tested inMATLAB (R2009b) 64-bit, running in
a single thread and the default double-precision mode. The machine
was an Intel(R) Xeon(R) CPU X5670 2.93GHz, with 36GB RAM.

6. RESULTS

In the following section, we will reference the systems according to
the i-vector dimensionality and to the extraction method used. Base-
line stands for the original method as in Sec. 2.2, and simple 1 and
simple 2 reference to the proposed simplifications.

Table 1 summarizes the systems with respect to verification ac-
curacy. Fig. 1 visualizes the different systems on a constellation plot.
The “800 baseline” system is clearly the winner, however “800 sim-
ple 2 - HLDA” is a tight competitor to the “400 baseline”.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
14

15

16

17

18

19

20

21

22

norm new DCF x 100

no
rm

 o
ld

 D
C

F 
x 

10
0

400 baseline
400 simple 1
400 simple 2 − eigen
400 simple 2 − HLDA
800 baseline
800 simple 1
800 simple 2 − eigen
800 simple 2 − HLDA

Fig. 1. Constellation plot of the individual systems

6.1. Speed and Memory

As described earlier in Sec. 5.4, the computation time does not in-
clude reading of the necessary data and pre-computation of some
terms. The results are reported in Tab. 2. The dominating complex-
ity of matrix inversion makes “simple 2” faster than “simple 1”, as
described in Sec. 3 and 4.

4518



Table 1. Comparison of the proposed i-vector extraction methods in
terms of normalized DCFs and EER

DCFnew DCFold EER

400 baseline 0.5395 0.1651 3.58
400 simple 1 0.6664 0.2124 4.62
400 simple 2 - eigen 0.6627 0.2065 4.40
400 simple 2 - HLDA 0.6236 0.1899 4.19
800 baseline 0.4956 0.1468 3.05
800 simple 1 0.6057 0.1976 4.06
800 simple 2 - eigen 0.5414 0.1879 3.92
800 simple 2 - HLDA 0.5694 0.1822 3.84

Table 2. Comparison of the proposed i-vector extraction methods in
processing speed.

absolute [sec] relative to 400 baseline

400 baseline 13.70 100.00%
400 simple 1 1.01 7.37%
400 simple 2 0.54 3.94%
800 baseline 65.75 480.00%
800 simple 1 3.64 26.57%
800 simple 2 1.11 8.10%

Tab. 3 shows memory allocation for different systems. We see
that for most of the current hardware configurations, the baseline
systems could be a problem.

Table 3. Comparison of the proposed i-vector extraction methods
in memory allocation (in MB). The “constant” term depends on the
i-vector dimensionality.

constant algorithm specific total

400 baseline 422.96 2,500.00 2,923.00
400 simple 1 ” 1.22 424.18
400 simple 2 ” 7.47 430.43
800 baseline 802.84 10,000.00 10,802.84
800 simple 1 ” 4.88 807.83
800 simple 2 ” 17.38 820.23

Note that prior to the scoring, WCCN and LDA dimensional-
ity reduction are applied to the i-vectors (see Sec. 5.3). Projecting
this linear transformation directly into the leftmost G of (16) could
further decrease the complexity of the “simple 2” algorithm.

6.2. Simplification 1 in Training

While none of the simplifications had positive contribution to the
test accuracy, the training phase simplification results in negligible
accuracy changes while exploiting some of the speed and memory
advantages as described in the previous section. Table 4 shows the
difference.

Time and memory complexity of collecting the accumulators A
from (8) is almost identical to the computation of LX in (6). The
proposed method still keeps the same accumulator collection, how-
ever, avoiding the expensive computation of (6) decreases the E step
time and memory complexity by a factor of 2.

Table 4. Comparison of the proposed i-vector extractor training
methods in terms of normalized DCFs and EER

DCFnew DCFold EER

400 baseline 0.5460 0.1722 3.40
400 simple 1 0.5376 0.1729 3.42

7. CONCLUSIONS

We managed to reduce the memory requirements and processing
time for the i-vector extractor training so that higher dimensions can
be now used while retaining the recognition accuracy. As for i-vector
extraction, we managed to reduce the complexity of the algorithm
with sacrificing little recognition accuracy, which makes this tech-
nique usable in small-scale devices.

As a practical result, Simplification 1 was used in the MOBIO
project, when porting a speaker verification system on a mobile
phone platform.

Not only we managed to scale down the complexity of the sys-
tem in terms of real-world applications, but also we have prepared a
set of simplified formulas which could potentially find use in a future
research, such as discriminative training.

8. ACKNOWLEDGMENTS

The work was partly supported by European project MOBIO (FP7-
214324), Grant Agency of Czech Republic project No. 102/08/0707,
Czech Ministry of Education project No. MSM0021630528 and by
BUT FIT grant No. FIT-10-S-2. Great part of the work was done at
the BOSARIS workshop held at BUT in July 2010.

9. REFERENCES

[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-end factor analysis for speaker verification,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol.
PP, no. 99, 2010.

[2] P. Kenny, “Joint factor analysis of speaker and session variabil-
ity : Theory and algorithms - technical report CRIM-06/08-13.
Montreal, CRIM, 2005,” 2005.

[3] P. Kenny, G. Boulianne, P. Oullet, and P. Dumouchel, “Joint fac-
tor analysis versus eigenchannes in speaker recognition,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
15, no. 7, pp. 2072–2084, 2007.

[4] Niko Brümmer, “The EM algorithm and minimum
divergence,” Agnitio Labs Technical Report. Online:
http://niko.brummer.googlepages.com/EMandMINDIV.pdf,
Oct. 2009.

[5] N. Kumar, Investigation of Silicon-Auditory Models and Gener-
alization of Linear Discriminant Analysis for Improved Speech
Recognition, Ph.D. thesis, John Hopkins University, Baltimore,
1997.

[6] M.J.F. Gales, “Semi-tied covariance matrices for Hidden
Markov Models,” IEEE Trans. Speech and Audio Processing,
vol. 7, pp. 272–281, 1999.

[7] N. Brümmer and A. Strasheim, “AGNITIO’s speaker recogni-
tion system for EVALITA 2009,” 2009.

[8] “National institute of standard and technology,”
http://www.nist.gov/speech/tests/spk/index.htm.

4519


