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Abstract

This paper is focused on the incorporation of recent tech-
niques for multi-layer perceptron (MLP) based feature extrac-
tion in Temporal Pattern (TRAP) and Hidden Activation TRAP
(HATS) feature extraction scheme. The TRAP scheme has been
origin of various MLP-based features some of which are now
indivisible part of state-of-the-art LVCSR systems. The modi-
fications which brought most improvement – sub-phoneme tar-
gets and Bottle-Neck technique – are introduced into original
TRAP scheme. Introduction of sub-phoneme targets uncovered
the hidden danger of having too many classes in TRAP/HATS
scheme. On the other hand, Bottle-Neck technique improved
the TRAP/HATS scheme so its competitive with other ap-
proaches.
Index Terms: TRAP processing, Bottle-Neck technique, sub-
phoneme classes, LVCSR features

1. Introduction
Contrary to classical speech recognition schemes where stan-
dard features (such as MFCC or PLP) are fed into one (usually
GMM-HMM) classifier, the TANDEM approach proposed in
[2] treats the outputs of one classifier as features for the second
classifier. The first one is a Neural Network (NN) (or a structure
of several NNs) trained to produce estimates of posterior prob-
abilities of phonetically motivated classes. The second one is
standard GMM-HMM system. As probabilities do not have the
desired Gaussian distribution, they were usually processed by
logarithm and decorrelated by Principal Component Analysis.
The resulting features are called probabilistic features.

In the early days of TANDEM, TempoRAl Patterns (TRAP)
processing [1] was often used to generate phoneme posteriors.
TRAP probabilistic feature extraction consists of two stages of
NNs. The inputs to first stage are derived from long temporal
context (up to 1s) of primary/raw features, mostly outputs of
Mel-filter bank - critical band energies (CRBE). The temporal
evolution of one coefficient (energy in one critical band) forms
TRAP vector. This TRAP vector is converted into phoneme
probability estimates by its own NN (band NN). This is done for
all coefficients/bands. Outputs from all band NNs are concate-
nated into one vector which, after logarithm nonlinearity, forms
input to Merger NN. This NN combines all band-conditioned
estimates into one final set of probability estimates.

Though TRAP probabilistic features neither reached the
performance of standard cepstral features nor the performance
of the probabilistic features derived by a single neural network
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Figure 1: Scheme of basic TRAP architecture.

with cepstral (PLP) features as its inputs, they are comple-
mentary to both of them and were used in the state-of-the-art
LVCSR systems [3].

Several modifications and enhancement were suggested
throughout the years, from which the most promising were di-
mensionality reduction of the TRAP vector and processing of
TRAP vectors from several adjacent bands together [4, 5]. The
NN architecture evolved through Hidden Activation TRAPS
(HATS) and the Tonotopic NN reaching 4-layer (2 hidden lay-
ers) NN with similar performance [6]. HATS architecture
was inspiration for a neural network with a narrow-layer in it
and development of Bottle-Neck (BN) feature extraction tech-
nique [7]. This technique delivers inner product of NN as final
features. Also, significant improvement obtained along the way
origins from training NN towards phoneme-state targets instead
of phoneme ones [8].

All these improvements and simplifications resulted in
abandoning TRAP/HATS architecture which required training
of multiple NNs in the first stage and a merger in the second
one. The handling of whole system was impractical and sim-
pler solutions were preferred.

The enhancements were evaluated on different tasks and
direct comparison between some of them is not possible. We
evaluated them on the same task – meeting speech recognition
as defined by NIST RT’05 and RT’07 evaluations.

Our goal is to put the latest enhancement of MLP-based
feature extraction back into TRAP structure and evaluate if the
approach can be viable once again. The obvious choice of en-
hancements is usage of sub-phoneme NN targets and employing
the Bottle-Neck structure in NNs. Promising TRAP techniques
were identified for: the original TRAP structure is accompa-
nied with TRAP vector dimensionality reduction and one of the
three-band processings.

2. TRAP techniques
We will distinguish between TRAP processing – the processing
done on the TRAP vector(s), and TRAP architecture, which will
refer to specific configuration of NNs.

2.1. TRAP architecture

The architecture was described in Sec. 1 and in [1]. It consists
of two stages with three layer NNs. In the first stage, there are
as many NNs as (processed) TRAP vectors. The scheme can be
seen in Fig. 1.

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy
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Figure 2: Scheme of three band processing.

2.2. Basic TRAP processing
The TRAP vectors are obtained in simple way in this case. Con-
text of ±25 frames of raw features is stacked and then the tem-
poral evolution of each coefficient forms a TRAP vector. There
is no processing between creation of the TRAP vector and NN
input.

2.3. TRAP vector dimensionality reduction
TRAP vector dimensionality reduction is an efficient process-
ing which improves the performance of resulting probabilistic
features. The 51 points of Basic TRAP vector are weighted by
Hamming window and projected on 26 DCT bases including
the 0

th one. We will call this modification TRAP DCT.

2.4. Three-band processing
Three-band processing can be seen as taking three coefficients
of raw features instead of just one. There are quite some possi-
bilities how to process this block of raw features. Many differ-
ent approaches were studied in [9] and the most promising ones
were evaluated on our experimental setup. The best performing
processing selected for further experiments was the following:
Three Basic TRAP vectors are concatenated and the resulting
vector is weighted by Hamming window and projected on 78
DCT bases including the 0

th one. This is done with overlap of
two Basic TRAP vectors. The scheme of three-band processing
is shown in Fig. 2. If the number of coefficients in the raw fea-
tures is N , there is N−2 NNs in the first stage. This processing
will be denoted as TRAP3b DCT.

3. System description
The task is meeting speech recognition as defined by the NIST
RT’05 and RT’07 STT evaluations. The independent head set
microphone (IHM) condition with reference segmentation was
used in our experiments.

The raw features are Critical Band Energies (CRBE) com-
puted from 25ms of speech every 10ms. The speech signal is
sampled at 16 KHz and there are 23 filters in the filter-bank
analysis. CRBE raw features are subject to mean and variance
normalization on speaker basis. When creating the context at
the beginning and end of speech segment, the samples behind
the segment boundary are taken.

The Neural Networks in TRAP processing have the same
number of weights over all experiments. The total number of
weights is 2 000 000. We have experimentally tuned the number
of weights associated to the first and second stage of the Basic
TRAP processing. The best ratio was 0.2:1.8, which means that
all NNs in the first stage have together 200 000 weights. The
number of inputs to the first stage NNs is either 51, 26 or 78

depending, whether the basic TRAP, TRAP DCT or TRAP3b

Class
probabilities
estimations
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Figure 3: Scheme of HATS architecture.

DCT processing is used. The number of outputs is 45 for
phoneme classes or 135 for sub-phoneme classes correspond-
ing to phoneme states. The Merger input size is equal to sum of
all first stage NNs outputs and its output size again depends on
used target classes.

The transcription for NN training were obtained by forced
alignment of training data using enhanced PLP features [10].

Post-processing of Mergers output consists of logarithm
and Heteroscedastic Linear Discriminant Analysis (HLDA)
decorrelation and dimensionality reduction to 30 dimensions.
The HLDA treats every state of corresponding HMM model as
class.

The Recognition system is based on AMI-LVCSR used in
NIST RT’07 evaluation [10] which is quite complex system run-
ning in many passes. For these experiments, the process stopped
after the first decoding pass and estimation of VTLN warping
factor. The system was simplified by omitting the constrained
MLLR adaptation and lattice generation followed by four-gram
Language Model (LM) expansion. Full decoding using bi-gram
LM was done instead. The LM scale factor and the word inser-
tion penalty estimated on RT’05 were used here.

The training set consists of the complete NIST, ISL, AMI
and ICSI meeting data – about 180 hours. The NN were trained
on subset of 173 hours.

The features used in recognition system are the post-
processed outputs from Merger only. Although delta parame-
ters or concatenation with cepstral features improves the perfor-
mance, for the purpose of comparison of individual techniques
it is better to use only outputs from the system under evaluation.

4. Experimental results and discussion
First, the performance of the TRAP architecture with all de-
scribed processing is evaluated. The NN targets are 45
phonemes and this experiments are our baseline. The results
are shown on first line in Tab. 1. We can see that with more
elaborate TRAP processing the WER decreases which confirms
our previous statements.

4.1. HATS architecture

The Hidden Activation TRAPS architecture (Fig. 3) further im-
proved the performance of resulting probabilistic features [11].
As the name suggests, the outputs of NNs hidden neurons (after
sigmoid nonlinearity) are taken to create inputs for merger. The
logarithm between first stage outputs and second stage inputs is
omitted.

The size of Merger input is now given by the size of hidden
layer of NNs in the first stage (with structure 51-90-45 neurons
for Basic TRAP processing), which significantly increases the
Merger input size. We found that changing the ratio of weights
in the first and second stage from 0.2:1.8 to 0.1:1.9 and thus
effectively decreasing the size of hidden layer of the first stage
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Figure 4: Scheme of Bottle-Neck TRAP architecture.

NN improves the system performance. We hyphotetize that this
is caused by the fact, that the hidden layer encodes the infor-
mation about classes as it would be delivered by the final layer.
The increased dimensionality does not bring additional infor-
mation about the classes needed by Merger and it then suffers
from increase of input parameters which do not provide useful
information.

The results for HATS probabilistic features are given on the
second line in Tab. 1. It can be seen that for all kinds of TRAP
processing, the HATS architecture improves by at least 1% ab-
solute over the TRAP architecture.

4.2. Sub-phoneme classes
Training NN for sub-phoneme classes – phoneme states labeled
by three state HMM model – instead of phoneme ones improved
the phoneme recognition accuracy [8]. This can be accommo-
dated by both architectures, TRAP and HATS.

The phoneme state targets were used in the merger at the
beginning. Both architectures were evaluated and results are
given in the third an fourth lines of Tab. 1. Comparing TRAP
and HATS architectures with phoneme states as Merger targets,
we see that HATS still performs better than TRAP but the dif-
ference is decreased. When we compare the systems with dif-
ferent Merger targets, we mostly see degradation of system per-
formance, namely for HATS architecture. This might be caused
by the mismatch between the first and second stage targets –
as the sub-phoneme information is suppressed by the first stage
classifiers, the Merger might not be able to recover it.

In the following experiments, the phoneme states targets
were introduced also into the first stage classifiers. As the in-
crease of target classes decreases the number of hidden units,
the former ratio of 0.2:1.8 between the numbers of first and sec-
ond stage weights was used in HATS architecture.

The results are given in the next two lines of Tab. 1. We
can see that the TRAP architecture degrades drastically. The
degradation can be assigned to the fact that the number of inputs
to Merger increased three times, but the first stage NNs are not
able to provide enough information for sufficient training. On
the other hand, the HATS architecture improves over the system
with phoneme state targets only in Merger. However, it cannot
be said whether it performs better than the original approach
with only phoneme targets as for TRAP DCT processing the
results are better and worse in case of TRAP3b DCT processing.

To understand this behavior, more detailed analysis would
be needed. It would be necessary to take into account the size
of hidden layer in the first stage and to run optimization ex-
periments because the requirements put on the first stage NNs
are contradictory: On one hand, we want a good performance
of these NNs, which requires bigger size of NN and therefore
bigger hidden layer. On the other hand, we want to deliver com-
pact information on Mergers input which requires smaller hid-
den layer.

Table 2: Frame accuracies and number of hidden units of 6
th

first stage classifier and three layer Merger in BN-TRAP archi-
tecture. Phoneme outputs are used in both stages.

first stage Merger
hidden units 6th NN accuracy merger HU accu

46,45,46 31.2 1666 66.7
49,40,49 31.2 1865 67.1
55,30,55 31.0 2449 67.7
63,20,63 31.2 3564 68.2
74,10,74 30.0 6545 67.0
TRAP 90 28.9 1666 65.6
HATS 45 27.7 1759 67.0

4.3. Bottle-Neck approach
The Bottle-Neck (BN) approach [7] was inspired by the HATS
architecture and the idea was following: If the outputs of hid-
den layer can provide better input to Merger than output prob-
abilities, can they also provide better features for GMM-HMM
system then probabilistic features are? And the answer was:
Yes.

The BN approach is introduced in the Merger NN first, thus
it has five layers with a narrow middle layer of size 30 (found
optimal in [7]). The other two hidden layers have the same
size. As in case of HATS, the logarithm is omitted, because the
BN outputs have Gaussian mixture-like distribution. Since the
Bottle-Neck outputs have the desired dimensionality, the fol-
lowing HLDA does not perform dimensionality reduction and
only rotates the feature space to obtain Bottle-Neck features.

The results from the best performing systems are presented
in Tab. 1, Section II. – TRAP and HATS architecture with
phoneme targets in both stages and HATS architecture with
phoneme states targets in both stages. Comparing the corre-
sponding lines, significant improvement can be seen as it was
seen elsewhere when switching from probabilistic to Bottle-
Neck features.

4.4. Bottle-Neck TRAP
At this point we propose new Bottle-Neck TRAP (BN-TRAP)
architecture which introduces Bottle-Neck NN structure also
into the first stage. Thus the problem of contradictory require-
ments set on the HATS first stage discussed in paragraph of
Sec. 4.2 is solved. The scheme of BN-TRAP architecture is
shown in Fig. 4.

The optimal size of bottle-neck in the first stage NN should
be found first. As mentioned above, these NNs are rather small
and we did not know how they would perform. The Basic TRAP
processing and phoneme targets were chosen for this optimiza-
tion experiment. A problem was encountered right at the be-
ginning of our effort – the five layer NN training failed to con-
verge (remember that the NN is trained on single TRAP vector
and generally does not reach high accuracy). This problem was
overcome by training a three layer NN first. Once it was trained,
the structure was split and two randomly initialized layers (1st

hidden to bottle-neck; bottle-neck to 2
nd hidden) were inserted.

Then, the whole structure was retrained. Tab. 2 shows frame ac-
curacies and number of hidden units of 6

th first stage classifier
and three layer Merger in BN-TRAP architecture. The same is
given for TRAP and HATS architectures described above on the
last two lines in Tab. 2. The proposed approach outperformed
both former ones. For further experiments, 45 (for comparison
with TRAP/HATS) and 20 bottle-neck hidden units will be used
in the first stage classifiers.
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Table 1: Performance of different feature extraction techniques. WER [%].
TRAP processing output Basic TRAP TRAP DCT TRAP3d DCT

architecture NN targets features RT’05 RT’07 RT’05 RT’07 RT’05 RT’07
Section I: Probabilistic features for TRAP/HATS architectures

TRAP 45 / 45 probabilistic 28.6 38.7 28.1 38.3 27.3 36.8
HATS 45 / 45 probabilistic 27.2 36.9 27.1 37.0 25.8 35.4
TRAP 45 / 135 probabilistic 28.9 38.5 28.6 38.9 27.0 35.9
HATS 45 / 135 probabilistic 28.2 37.4 28.0 37.1 26.7 35.4
TRAP 135 / 135 probabilistic 29.6 39.3 29.0 39.3 27.9 38.0
HATS 135 / 135 probabilistic 27.5 36.4 27.6 36.9 27.9 38.0

Section II: Bottle-Neck features for TRAP/HATS architectures
TRAP 45 / 45 Bottle-Neck 27.1 36.2 26.8 36.2 25.9 34.9
HATS 45 / 45 Bottle-Neck 26.4 35.3 26.3 35.3 25.2 33.8
HATS 135 / 135 Bottle-Neck 24.7 33.0 25.3 33.6 24.3 32.0

Section III: Bottle-Neck features for BN-TRAP architecture
BN-TRAP 45 135 / 135 Bottle-Neck 26.0 34.5 26.4 35.3 25.7 34.1
BN-TRAP 20 135 / 135 Bottle-Neck 24.3 32.9 24.5 32.8 23.7 31.7

The results obtained with Bottle-Neck features derived
from BN-TRAP architecture are shown in the last two lines
in Tab. 1. Comparing this two lines, it can be seen that BN-
TRAP with smaller bottle-neck layer perform significantly bet-
ter. Comparing over different TRAP processings shows, that
TRAP DCT processing performs similar to Basic TRAP one. It
suggests that the TRAP processing might not be necessary in
BN-TRAP architecture. Additional improvement is achieved
over HATS BN features for all kinds of TRAP processings.

5. Conclusions
The TRAP and HATS architectures with three different kinds
of TRAP processing were evaluated on RT’05 and RT’07 tasks.
First, the phoneme targets were used for all NNs as it was origi-
nally proposed. The best performing feature extraction scheme
was HATS architecture with TRAP3b DCT processing at this
point.

Further, phoneme-state targets were introduced into Merger
NN first, which mostly led into degradation of the system. This
can be caused by the fact that first stage classifiers suppress
information about phoneme states and it is impossible for the
Merger to recover it back. Then, the sub-phoneme classes were
used also in the first stage classifiers. This caused failure of
TRAP architecture because of enormous increase of Merger in-
puts which did not bring discriminative information. The HATS
architecture improved over the previous case but compared to
phoneme targets the results are ambiguous.

The Bottle-Neck technique was applied in Merger NN in
the next step. The best performing feature extraction schemes
from previous part were evaluated. The results showed signifi-
cant improvement in all cases.

Finally, the Bottle-Neck technique was applied also in first
stage NNs and we named the resulting architecture BN-TRAP.
The Bottle-Neck technique separates the number of provided
outputs from the number of training targets which is very useful
here. Thus the Merger can be provided with compact informa-
tion regardless the number of the first stage NNs targets. The
results show that having smaller bottle-neck layer is beneficial.
Note, that the NNs are small and remaining hidden layers are
not much bigger, which might negatively influence the result-
ing performance. Another interesting observation is, that Basic
TRAP processing reached the performance of the TRAP DCT
one, thus suggesting that DCT compression removed informa-
tion which can be utilized now. In all cases, the BN-TRAP
improves over previous approaches.

We conclude that TRAP architecture should still be con-
sidered interesting approach for feature extraction. Compared
to originally proposed BN features (obtained with NN with 2M
weights trained on current training data) with WER of 24.8% on
RT’05 and 33.3 on RT’07 obtained with the same HMM system,
the proposed architecture is superior. During our experiments,
many decisions were made with respect to the original setup (3-
layer NNs, phoneme targets) which might not be optimal for the
system we end up with.
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