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ABSTRACT

We describe recent progress in the field of prosodic modeling for
speaker verification. In a previous paper, we proposed a technique
for modeling syllable-based prosodic features that uses a multino-
mial subspace model for feature extraction and within-class covari-
ance normalization or linear discriminant analysis for session vari-
ability compensation. In this paper, we show that performance can
be significantly improved with the use of probabilistic linear discrim-
inant analysis (PLDA) for session variability compensation. This
system does not require score normalization. We report an equal er-
ror rate below 7% on a NIST 2008 task. To our knowledge, this is the
best reported result to date for a prosodic system for speaker recog-
nition. Fusion of this system with a state-of-the-art acoustic baseline
system yields 10% relative improvement in the new detection cost
function (DCF) as defined by NIST.

Index Terms— Prosodic speaker verification, SNERFs, MSM,
iVector, PLDA

1 INTRODUCTION

Using high-level information to further enhance short-time, cepstral-
based speaker verification systems has been popular for several
years. In [1], several high-level features (phonetic, prosodic, lin-
guistic, etc.) were leveraged to enhance the Equal Error Rate (EER)
on the NIST 2001 speaker recognition evaluation task up to 70% rel-
ative. This gain from using high-level features was enabled by the
introduction of evaluation conditions with large train and test dura-
tions (of 2.5 minutes for testing and up to 8 times that amount for
training). High-level features are sparser than lower-level acoustic
features and, hence, benefit more from large amounts of data. Dur-
ing subsequent NIST evaluations, challenging new corpora and rapid
performance improvements for systems using standard cepstral fea-
tures generally made gaining an advantage from the fusion of high-
level features difficult [2].

Nevertheless, in 2004, high-level features were shown to provide
performance gains greater than 30% when combined with a baseline
acoustic system on the NIST 2004 tasks [3]. The success was mainly
due to SRI’s newly proposed, syllable-based, non-uniform extraction
region features (SNERFs) [4]. These features in combination with
specialized parameterization methods and Support Vector Machine
(SVM) modeling [5] resulted in the best-performing prosodic system
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at the time. But, the SNERF system was complex and for this reason,
was not broadly adopted by the community.

The introduction of joint factor analysis (JFA) [6] for speaker
verification brought the performance of acoustic systems for speaker
recognition to a new level, leading to improvements on the order
of 50% over previous state-of-the-art systems. As a consequence of
these dramatic improvements in the baseline performance of speaker
recognition systems, obtaining gains from high-level features, par-
ticularly if they could not capitalize on the JFA improvements ob-
tained for acoustic systems, was increasingly difficult. A first step in
using JFA for prosodic systems was proposed by [7] for a set of very
simple prosodic features. This framework for prosodic modeling has
been adopted by several sites and investigated thoroughly [8, 9].

Unfortunately, the JFA framework cannot be directly applied to
the SNERFs due to their high dimensionality and to the existence
of undefined values. In [9], we showed that the SNERF system still
outperforms a simpler set of features modeled with JFA. This was
our motivation for trying to transfer the underlying idea of JFA — to
model speaker and intersession variability in low-dimensional sub-
spaces — to a model that can handle SNERFs. Recently, we pre-
sented a theoretic framework for the modeling of SNERFs using a
multinomial subspace model (MSM), which achieved very promis-
ing results [10].

This paper describes our latest progress in using Probabilistic
Linear Discriminant Analysis (PLDA) modeling for session variabil-
ity compensation of features obtained with MSM. Significant gains
are achieved over previous performance, resulting in an equal error
rate (EER) of 6.9% on the telephone data of the NIST 2008 Speaker
Recognition Evaluation [11]. To our knowledge, these are the best
results in the literature for a prosodic speaker verification system.
Furthermore, no score normalization techniques are needed. In ad-
dition, we present fusion experiments with a state-of-the-art acoustic
JFA system showing gains of up to 10% in detection cost function
(DCF). A major goal of this paper is to clearly describe the complex
system-building process. All important steps — from raw SNERF
features to final PLDA modeling — are explained in Section 2. In
Section 3, our experimental setup is described and different prosodic
systems are evaluated and compared. Fusion results with a baseline
acoustic system are also shown. We present our conclusions in Sec-
tion 4.

2 SYSTEM

This section describes the five major steps of the system-building
process. All steps are explained using a simplified example. Please
refer to the citations for algorithmic descriptions.

2.1 Syllable-based NERFs (SNERFs)

We use SNERFs [4], which are syllable-based, non-uniform extrac-
tion region features based on F0, energy, and duration information.
Characteristics like minimum, maximum, mean, and slope of the
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Fig. 1. Top row: Extraction of three SNERF parameters from a speech segment containing 10 single-syllable words: Syllable duration
(determined by black vertical lines), mean pitch value per syllable (blue squares), and mean energy per syllable (red stars). Middle row:
Parameterization of SNERF sequences: Small GMMs are trained on background data for each individual SNERF. Two mixtures are used
for duration, three mixtures for pitch, and four mixtures for energy. Occupation counts for the values extracted in the top row (here as bars)
are collected using the GMMs. Bottom row: Multinomial model spaces for duration, pitch, and energy. The colored lines show various
one-dimensional iVectors (the values are mapped to colors) projected to the full ensemble of multinomial spaces.

pitch and energy trajectories are extracted for each detected syllable
in an utterance and for its nucleus, as well as the duration of on-
set, nucleus and coda of the syllable. All values are further normal-
ized with different techniques, resulting in a few hundred features
for each syllable (174 in our current implementation). The syllable
segmentation is generated from the output of a large vocabulary con-
tinuous speech recognition (LVCSR) system. The phone alignments
of the recognized words are used to generate English syllables. De-
tailed information on SNERFs is given in [4].

Temporal dependencies are modeled by concatenating features
from consecutive syllables and pauses. New vectors are formed for
each basic feature by concatenating consecutive values. If a pause
is found within the sequence, the length of the pause is used as a
feature. For each sequence length, each feature, and each pattern of
pause/non-pause, we obtain a separate feature vector. For example,
for trigrams, we obtain five different vectors: (S, S,S), (P, S,S),
(S,P,S), (S,S,P), (P,S, P) for each feature. Each pair {feature,
pattern} determines what we call a token (see [5] for details). Our
current implementation uses sequences of lengths 1, 2, and 3. The
first line of plots in Figure 1 shows an example of the feature extrac-
tion process. The segments are given by the syllables found from the
ASR output. The pitch (blue curve) and energy (red curve) signals
are estimated from the waveform. For our example, we assume that
we extract only three features per segment: its duration (from one
vertical black line to the next), the mean pitch value (blue squares),
and the mean energy value (red stars).

2.2 Background GMMs

For each token, we train a separate Gaussian Mixture Model (GMM)
with a small number of mixture components on the background data.
Because basic features may be undefined (e.g., when no pitch is de-
tected or when the syllable lacks onset or coda), a special GMM is
needed using an additional parameter for the probability of a feature
being undefined. In the first pass, all GMMs are trained using frames
with defined features only, where the additional parameter is set to
one and the model falls back to a standard GMM. The GMMs are
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then retrained with all feature vectors, allowing the new parameter to
adapt to the data. Details of the modified expectation-maximization
algorithm are given in [12]. The second line of Figure 1 shows a toy
example in which three small GMMs are trained on a background
data set. A two-component model is trained for the syllable dura-
tions, a three-component model for mean pitch values, and a four-
component GMM for means of syllable energies.

2.3 Parameterization of SNERF sequences

After training the background models for each token, we gather
Gaussian component occupation counts for each utterance (zero or-
der sufficient statistics from the modified EM algorithm [12]). These
are accumulated soft counts describing the responsibilities of each
individual mixture component toward generating the frames in the
utterance. Using these parameters, we transform the sequence of
SNERFs (one feature vector per syllable) to fixed length vectors (one
vector of statistics per utterance). The values from the exemplified
feature extraction process (syllable duration, mean pitch, and mean
energy) are further depicted as bars in the middle row of Figure 1.
The occupation counts (the numbers next to the mixtures) are the re-
sponsibilities for each Gaussian component in generating these val-
ues. Each Gaussian component can be seen as a discrete class and
the occupation counts can be seen as soft-counts of discrete events.

2.4 Multinomial Subspace Model

As a generative model, a multinomial distribution appears as a natu-
ral choice for modeling the counts resulting from the previous step.
More precisely, a set of £/ multinomial distributions is required, one
for each GMM in the ensemble. Each multinomial distribution cor-
responds to a set of C. probabilities, one probability ¢.. for each
Gaussian ¢ in the GMM e. For each frame, each GMM is expected
to generate a feature by one of its components with probability given
by the multinomial distribution. This corresponds to co-occurring
events that should be modeled by separate multinomial distributions
(as all tokens are modeled independently of each other). Each multi-
nomial distribution lives in a n-dimensional simplex and the space



of all parameters is the cartesian product of all the simplexes. The
bottom row of Figure 1 illustrates this for our toy example where
the parameters of the duration model exist on a line; the pitch model
parameters, in a 2D simplex; and the energy parameters, in a 3D
simplex space.

We use a Multinomial Subspace Model (MSM) [10] where we
assume that the multinomial distributions differ from utterance to ut-
terance. In the case of SNERFs, we need to estimate parameters of
many multinomial distributions. Therefore, we search for a way to
estimate all the parameters robustly given a limited amount of data
available for each utterance. With MSM, we assume that there is a
low-dimensional subspace of the parameter space in which the pa-
rameters for individual utterances live. For this reason we introduce
an explicit latent variable w through which the probability ¢.. of cth
class of each multinomial distribution e in the ensemble is given by

tec
¢ec = ES:{p( W)

i=

1
L exp(teiw) ’ M
with t.. being the cth row of eth block of subspace matrix T (size
EeEzl Ce x r) which spans a linear subspace that might be non-
linear in the original parameter space due to the softmax function.
Figure 1 shows how the subspace restricts the movement in the full
parameter-space in a non-linear way (colored lines). By drawing val-
ues for a one-dimensional variable w from minus infinity to infinity
we move in all three simplexes simultanuously along the non-linear,
low-dimensional manifolds. Now, all the multinomial distributions
corresponding to one utterance can be represented by a low dimen-
sional vector w. This way, we can (1) reduce the number of free
parameters to efficiently model differences between individual utter-
ances, and (2) learn dependencies between the individual SNERFs.

The MSM parameters are estimated by iteratively re-estimating
the latent variables w for each utterance in the training data to max-
imize the likelihood function based on the current estimate of T' and
vice-versa. Using the final estimate of T we can extract w vectors
(which we will call iVectors) for new data. This way, the MSM is
used as a feature extractor and each iVector can be seen as a low-
dimensional representation of the whole utterance.

2.5 PLDA modeling

For verification of speaker trials we use a special case of Proba-
bilistic Linear Discriminant Analysis (PLDA) [13], a two-covariance
model, providing a probabilistic framework where speaker and inter-
session variability in the iVectors is modeled using across-class and
within-class covariance matrices X,. and X,,.. We assume that la-
tent vectors y representing speakers are distributed according to

p(y) = N(y; 1, Zac) @
and for a given speaker y the iVectors are distributed as
p(wly) = N(w;y, Zwe). 3)

Model parameters p, 3, and X, are trained using an EM algo-
rithm [14]. Using the PLDA model, one can directly evaluate the
log-likelihood ratio for the hypothesis test corresponding to “the two
iVectors were generated by the same speaker or not™:

J p(wily)p(w2|y)p(y)dy
p(w1)p(w2)

The numerator gives the marginal likelihood of producing both iVec-
tors from the same speaker, while the denominator is the product of
the marginal likelihoods that both iVectors are produced from differ-
ent speakers. The integrals can be evaluated analytically and scoring
can be performed very efficiently as described in [15].

s = log

“)
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3 EXPERIMENTS AND RESULTS

This section describes our results for three individual prosodic sys-
tems, including two previously-proposed systems. We also show
results when fusing the prosodic systems with a state-of-the-art cep-
stral system.

3.1 Data

The task used to present results uses data from the NIST 2008
speaker recognition evaluation. The original NIST tasks are ex-
tended to include two orders of magnitude more impostor samples.
This was done to support the new DCF metric introduced by NIST
for the 2010 evaluation [16]. In this paper, we show results only for
the telephone condition, in which both training and test samples are
given by telephone conversations recorded over a telephone channel.
The number of target and impostor samples for this task are 1,108
and 1,453,237, respectively. As background data to train UBMs,
JFA, MSM and PLDA we use data from the 2004 and 2005 SRE,
2008 interview development data and from the Switchboard-1I cor-
pus.

3.2 Prosodic systems

We evaluate three different prosodic systems: (1) a system based
on JFA-modeling of means of low-dimensional polynomial features
(Prospol) describing pitch and energy trajectories, originally pro-
posed in [7] and further extended and improved as described in [9];
(2) the baseline SNERF system with SVM modeling (SNERF-
SVM) of the counts as originally described in [5]; and (3) the re-
cently introduced subspace model [10] with additional PLDA mod-
eling applied to the SNERF counts (SNERF-IV-PLDA).

The Prospol system models a small set of 13 features, includ-
ing polynomial approximations of the pitch and energy profiles and
the duration of the region for three different region definitions: (1)
energy valleys (as originally proposed in [7]); (2) uniform windows
of 300 msec shifted by 10 msec (as proposed in [8]); and (3) syl-
lable regions (identical to those used for the SNERFs). Further, se-
quences of length 2 are also modeled. For each region and each
sequence length, a separate system is created. The resulting scores
are combined with fixed weights determined empirically from de-
velopment data. The baseline SNERF system directly uses the oc-
cupation counts (divided by the number of frames) as features for an
SVM model (steps 2.1-2.3). Session variability compensation can
be applied to this model using nuisance attribute projection [17], but
we found no significant gains from this approach. For the SNERF-
IV-PLDA system the occupation counts are used to train an MSM
with a subspace dimension =200 following [10]. Next, iVectors are
extracted using this model for all background, training and test ut-
terances. The PLDA model is then trained' on iVectors extracted
for all background data and is used to perform verification between
speaker trials. Figure 2 shows the DET curves for the three prosodic
systems. Both SNERF systems outperform the Prospol system at all
operating points of interest. Further, the proposed modeling tech-
nique for the SNERFs is significantly better than the older method
based on SVMs for most operating points resulting in an EER of
6.9%. Moreover, the PLDA modeling significantly outperforms the
cosine distance scoring with LDA as used in our previous work with
MSMs (9% EER) [10].

3.3 Acoustic system

The cepstral GMM baseline system uses a 300-3300 Hz bandwidth
front-end consisting of 24 Mel filters to compute 20 cepstral coeffi-

'We thank Niko Briimmer for providing his PLDA implementation.



Table 1. Relative improvement over cepstral JFA baseline [%].

System new DCF old DCF  EER
£ Baseline+Prospol 6.25 -1.37 -5.26
'z Baseline+SNERF-SVM 7.21 3.70 10.53
B~ Baseline+SNERF-IV-PLDA 9.62 5.08 5.27

cients with cepstral mean subtraction, and their delta, double delta
coefficients, producing a 60-dimensional feature vector. The result-
ing features are mean- and variance-normalized over the utterance.
The feature vectors are modeled by a 1024-component, gender-
independent GMM. We use a full Joint Factor Analysis model (JFA)
in which 600 eigenvoices are trained and 250 eigenchannels are
trained separately for telephone and interview data and are concate-
nated. The diagonal term is trained with the same data as used
to train the speaker factors. Scores are normalized using gender-
dependent ZTnorm, resulting in an EER of 1.65%, an old DCF of
0.073, and a new DCF of 0.42.

3.4 Fusion

Fusion results are obtained using a cross-validation paradigm. To
this end, the complete set of speakers is split into two disjoint sets.
The trials involving only speakers from each of these sets are then
selected. In the process, half of the impostor trials (those correspond-
ing to one speaker from one set and another speaker from the other
set) are discarded. The fusion parameters are then trained using stan-
dard linear logistic regression on one of the sets and then applied
to the other set, and conversely. The results shown in Table 1 are
computed on the concatenation of these two sets. The fusion results
show that the SNERF systems result in larger and more consistent
gains over the baseline. This justifies using the SNERF features over
the simpler polynomial features. Further, even though both SNERF
systems give somewhat similar gains in combination, the proposed
modeling technique should be more robust to noisy conditions and
other types of variabilities, because the SNERF-SVM approach does
not implement any kind of session variability compensation.

4 CONCLUSION

We have proposed a technique for modeling complex prosodic fea-
tures, such as SNERFs, using a multinomial subspace model for fea-
ture extraction and probabilistic linear discriminant analysis for ses-
sion variability compensation. The proposed system achieves more
than 20% relative improvement with respect to the current prosodic
systems on EER and old DCF metrics. An interesting finding is that
the large gains from the proposed modeling technique decrease as
the cost metric moves toward the low false acceptance region. In
fact, at the recently introduced new DCF metric, which corresponds
to very low false acceptance rates, both SNERF systems perform
similarly. Comparing the performance of the polynomial prosodic
features to the SNERFs, we see that SNERFs greatly outperform
the simpler features. This behavior requires further investigation to
understand whether it is due to the difference in the nature of the fea-
tures, to the new modeling technique, or to both factors. Although
SNERFs cannot be modeled with JFA, polynomial features could be
modeled using the proposed MSM/PLDA technique. However, ini-
tial results in this direction did not show gains with respect to JFA
modeling for these features.

In the future, we plan to investigate the performance of prosodic
systems on diverse channel conditions and for different speech styles
(interview conversations and telephone calls recorded over micro-
phones other than telephone handsets). Further investigation is also
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Fig. 2. DET curves for the three prosodic systems. The three mark-
ers in each line correspond to the new DCF, the old DCF, and the
EER (as used by NIST to evaluate SRE 2008 [11] and 2010 [16]),
from left to right.

needed to understand the influence of the subspace size. Finally, we
plan to explore the use of heavy-tailed distributions in PLDA [14],
which has been shown to give significant improvements for acoustic
systems.
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