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Abstract
In this paper we apply the promising iVector extraction tech-
nique followed by PLDA modeling to simple prosodic contour
features. With this procedure we achieve results comparable to
a system that models much more complex prosodic features us-
ing our recently proposed SMM-based iVector modeling tech-
nique. We then propose a combination of both prosodic iVec-
tors by joint PLDA modeling that leads to significant improve-
ments over individual systems with an EER of 5.4% on NIST
SRE 2008 telephone data. Finally, we can combine these two
prosodic iVector front ends with a baseline cepstral iVector sys-
tem to achieve up to 21% relative reduction in new DCF.
Index Terms: speaker verification, prosody, JFA, iVector,
SMM, fusion

1. Introduction
High-level information has been used for over a decade to fur-
ther enhance short-time, cepstral-based speaker verification sys-
tems. Many approaches make use of acoustic attributes of
speech prosody that mainly involve variations in syllable length,
loudness, and pitch. In recent NIST Speaker Recognition Eval-
uations [1, 2], two families of prosodic feature sets were pre-
sented. One family corresponds to syllable-based, non-uniform
extraction region features (SNERFs) [3], which are highly com-
plex prosodic features originally proposed by SRI. These fea-
tures in combination with specialized parameterization methods
and support vector machine (SVM) modeling [4] result in a very
good prosodic system.

Another family of systems uses a set of very simple
prosodic features, originally proposed for language identifica-
tion [5]. These features model the temporal trajectory of pitch
and energy over the time span of a syllable. Joint Factor Anal-
ysis (JFA) modeling for these features was originally proposed
by [6] and showed very promising results. This framework for
prosodic modeling has been adopted by several sites and inves-
tigated thoroughly [7, 8]. The main reason for its success lies
in JFA modeling, which is capable of coping with the problem
of speaker and session variability in Gaussian mixture model
(GMM)-based speaker verification [9] and has become the de
facto standard for modeling low- and high-level features.

Moreover, excellent results on cepstral features were ob-
tained with a simplified variant of JFA [10], where separate

This work was funded by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA), through the Army Research Laboratory (ARL). All state-
ments of fact, opinion, or conclusions contained herein are those of the
authors and should not be construed as representing the official views
or policies of IARPA, the ODNI, or the U. S. Government. The work
was also partly supported by Czech Ministry of Education project No.
MSM0021630528, and Grant Agency of Czech Republic project No.
GP102/09/P635. Marcel Kockmann was supported by SVOX Deutsch-
land GmbH.

subspaces for channel and speaker variability are replaced by a
single subspace covering the total variability. This model can be
used to extract compact low-dimensional feature vectors repre-
senting a whole utterance, often called iVectors. Based on this
idea, we proposed a framework where the subspace modeling
technique normally used to model means of GMMs is adapted
to model occupation counts using a multinomial model. This
so-called Subspace Multinomial Model (SMM) [11] is applica-
ble to the complex SNERFs to extract iVectors.

Probabilistic Linear Discriminant Analysis (PLDA) [12]
has been proposed to model the speaker and channel variability
in both types of iVectors, directly generating likelihood ratios
for the trials [13, 14]. iVector modeling of SNERFs by SMMs
with successive PLDA has been shown to give the best results
for a prosodic speaker verification system so far [15].

To date, the iVector approach – using a total variability sub-
space followed by PLDA – has not been used (to our knowl-
edge) for the simple prosodic features that are usually modeled
by JFA.

In this paper, we present results on the prosodic JFA system
as presented by Brno University of Technology in SRE 2010
and apply iVector modeling and PLDA back end to the same
features. We show that the iVector approach is superior to the
standard JFA modeling even for simple prosodic features.

In this way we have two diverse prosodic systems that
achieve similar performance on our test sets: an iVector sys-
tem that models means of GMMs based on simple well-defined
prosodic features and an iVector system that models counts of
multinomial distributions based on SNERFs. A combination of
both systems seems relevant due to their complementary nature
in terms of features and modeling. We propose an elegant way
of combining these systems by simple concatenation of indi-
vidual iVectors followed by a single joint PLDA model. This
combination achieves an equal error rate (EER) of 5.4% on our
NIST SRE 2008 telephone test set, a 23% gain over the best of
the two systems.

Justification for use of a higher-level systems usually lies
in an overall improvement by fusion with a cepstral baseline
system. Usually, combination of low- and high-level systems
is done by score-level fusion using a separate development set
to train the fusion parameters. As the best-performing cepstral
systems to date are also based on iVector modeling followed by
PLDA modeling [13, 14, 16], we are inspired by the success-
ful combination of two prosodic iVector front ends to further
combine the cepstral and prosodic systems in the same manner.
We achieve a relative reduction in terms of the challenging new
detection cost function (DCF) [2] of 17% for SRE 2010 data
and 21% for SRE 2008 data. The iVector combination consis-
tently outperforms standard score-level fusion (11% and 13%)
with no need for a separate development set to train the fusion
parameters.
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2. Prosodic features
This section describes the two prosodic feature sets used in the
paper.

2.1. DCT contour features
The DCT contour feature generation closely follows the de-
scription in [7]. The features incorporate duration, pitch and
energy measurements. Pitch and energy values are estimated
every 10 ms, and energy is further normalized by its maximum.
The temporal trajectory of pitch and energy is modeled by a
discrete cosine transform (DCT), over a fixed frame long tem-
poral window of 300 ms, with a 50 ms frame shift. The first
six DCT coefficients of both pitch and energy trajectories form
a fixed-length feature vector. Only voiced frames (where pitch
is detected) are used to estimate the DCT. Duration informa-
tion measured as the number of voiced frames within the 30-
frame interval is appended and treated as a continuous value
when modeling the distributions.

2.2. SNERF features
We use SNERFs, which are syllable-based prosodic features
based on estimated pitch, energy, and duration information.
Characteristics like minimum, maximum, mean, and slope of
pitch and energy trajectories are extracted for each detected syl-
lable in an utterance and its nucleus, as well as duration of onset,
nucleus, and coda of the syllable. All values are further normal-
ized with different techniques and form several hundred fea-
tures for each syllable. The used syllable segmentation is gen-
erated from the output of a large-vocabulary continuous speech
recognition (LVCSR) system using a simple maximum onset al-
gorithm (Section 3.4.1 of [17]) on the phone-level alignments.
Detailed information on SNERFs is given in [3].

We use 182 basic features that are extracted for each sylla-
ble. Furthermore, temporal dependencies are modeled by con-
structing small vectors concatenating features from consecutive
syllables and pauses. These so-called tokens are formed for
each basic feature by concatenating as many as three values
(feature values and duration of pauses; more details are given
in [4]). Nine different n-gram tokens are used.

The SNERFs are parameterized by use of GMMs. This can
be seen as a soft binning of each SNERF value into a meaning-
ful set of discrete classes and makes it possible to accumulate
soft counts for all SNERFs and tokens extracted for one utter-
ance (for details see [4]).

3. Subspace models for prosodic features
The basic assumption in subspace modeling is that the natural
parameters of a model usually live in a much smaller subspace
than the full parameter space. This subspace can be learned by
introducing latent variables in the model.

3.1. iVectors based on GMMs
The classical formulation of JFA for speaker verification [9] as-
sumes that the concatenated mean vectors φGaussJFA of a GMM
are distributed according to a subspace model with separate sub-
spaces for speaker and channel variability:

φGaussJFA = m+Vy +Ux, (1)

where m is a speaker- and channel-independent supervector,
and V and U span linear subspaces (for speaker and channel
variability) in the original mean parameter space. The compo-
nents of y and x are the low-dimensional latent variables corre-
sponding to the speaker and channel subspaces.

A simplified variant of JFA [10] assumes that speaker and
channel subspaces are not decoupled and uses only one sub-
space covering the total variability in an utterance:

φGaussIV = m+Tw. (2)

Again, T spans a linear subspace in the original mean parameter
space and the components of w are the low-dimensional latent
variables corresponding to the total variability subspace. The
low-dimensional vectors w are also known as iVectors.

In the latter approach, the JFA-like model serves only as
the extractor of the vectors w, which can be seen as low-
dimensional fixed-size representations of utterances, and which
are in turn used as inputs to another classifier.

Both techniques, the JFA (GaussJFA) as well as the iVec-
tor modeling (GaussIV), are applicable to mean supervectors
of GMMs trained on the low-dimensional well-defined DCT
features as presented in Section 2.1. All model parameters are
trained using an expectation-maximization (EM) algorithm [9].

3.2. iVectors based on multinomial distributions
The weights of a GMM can also be modeled under the sub-
space paradigm. To do this, we consider the individual mix-
ture components in the GMM to be discrete classes which can
be modeled using a multinomial distribution. Similar to Gaus-
sIV, SMM assumes that there is a low-dimensional subspace
of the parameter space in which the parameters of the multino-
mial distributions for individual utterances live. The probability
φMultinIV of cth class of the multinomial distribution is given by

φMultinIV =
exp(m+ tcw)

∑
C

i=1
exp(m+ tiw)

, (3)

where w is a latent variable and tc is the cth row of subspace
matrix T, which spans a linear subspace in the log-probability
domain. Due to the softmax function, this corresponds to a pos-
sibly nonlinear subspace in the simplex that the multinomial
distributions live in.

Given the parameters m and T we can extract w vectors
(which we will also call iVectors) for new data. Similar to the
GaussIV system, the SMM is used as a feature extractor and
each iVector can be seen as a low-dimensional representation of
the whole utterance.

This technique (MultinIV) can be used to model soft counts
of high-dimensional, heterogeneous SNERFs as presented in
Section 2.2. See [11] for further details of how all SNERFs can
be represented using a single low-dimensional iVector and how
the model parameters are trained using an iterative optimization
scheme.

3.3. PLDA modeling of iVectors
The fixed-length iVectors extracted per utterance (from the
GaussIV as well as from the MultinIV model) can now be used
as input to a pattern recognition algorithm. Note that unlike
in the standard JFA, where two subspaces are used to account
for speaker and intersession variability, the iVector variant uses
a single subspace accounting for all the variability. Therefore,
the extracted vectors w are not free of channel effect, and in-
tersession compensation must be eventually considered during
classification.

For speaker verification a PLDA model [12] has been
proposed to provide a probabilistic framework for modeling
speaker and intersession variability in the iVector space. Model
parameters can be trained using an EM algorithm [13]. Using
the PLDA model, one can directly evaluate the log-likelihood
ratio for the hypothesis test corresponding to “the two iVectors
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were generated by the same speaker or not”. This can be evalu-
ated analytically, and scoring can be performed very efficiently
as described in [14].

4. Experiments
This section describes the experimental setup and results for the
individual prosodic systems and for the combination of these
systems with each other and with a baseline cepstral system.

4.1. Data
Results are presented on the telephone core conditions of the
NIST Speaker Recognition Evaluations 2008 [1] (dev) and
2010 [2] (eval). Trials involve English conversational speech
recorded over various telephone channels. Our development set
is based on the original NIST SRE 2008 evaluation set, but was
extended to include about two orders of magnitude more impos-
tor samples, to adjust for the new DCF point. It includes 1,154
target and 1,516,837 nontarget trials. Our evaluation set corre-
sponds to the official extended condition 5 of NIST SRE 2010
and contains 7,169 target and 408,950 nontarget trials.

Training of background, subspace, and PLDA models is
performed on data from Switchboard corpora as well as NIST
SRE 2004 – 2006 corpora. This set includes 13,482 recordings
from 752 male and 16,782 recordings from 963 female speak-
ers.

4.2. Prosodic systems
Experiments are carried out to evaluate the performance of the
iVector modeling approach for the simple DCT features. For
both, the GaussJFA and the GaussIV systems, we extract 13-
dimensional DCT contour features (1 duration, 6 pitch and 6
energy values) and train gender-dependent multivariate univer-
sal background models (UBMs) with 512 Gaussian components
and diagonal covariances. TheGaussJFA and theGaussIVmod-
els are trained using sufficient statistics extracted for all back-
ground data using the same UBMs. For theGaussJFAmodel we
train 100-dimensional speaker subspace V and 50-dimensional
channel subspace U. For the GaussIV model we train 300-
dimensional total variability subspace T on the same data.
These subspace sizes were found optimal in earlier experiments.
The GaussJFA model is evaluated directly by log-likelihood ra-
tio using a fast scoring technique [18] followed by zt-norm. The
extracted DCT iVectors for all background data are used to train
a full rank PLDA model. The PLDA model is then used to eval-
uate the log-likelihood ratio for speaker trials. Figure 1 shows
results for the two DCT-based systems (green markers). The
DCT-GaussIV system with PLDA (square) clearly outperforms
the DCT-GaussJFA system (triangle) on all operating points on
both test sets.

To compare the simple DCT-GaussIV system with the best
prosodic system presented so far [15], we train a SNERF-
MultinIV system on the same setup. The SMM models an en-
semble of 1,638 multinomial distributions representing 9 differ-
ent n-gram tokens of 182 individual SNERFs. We obtain 300
dimensional iVectors. While the SNERF-MultinIV system (blue
diamonds in Figure 1) is still superior on both test sets for EER
and old DCF, we achieve better results with the DCT-GaussIV
system on both test sets in terms of new DCF.

As both prosodic systems perform very well, but are sig-
nificantly different in terms of features as well as modeling ap-
proach, a combination of both seems natural. Since both model-
ing techniques translate the long-temporal prosodic feature vec-
tors of variable size to a single fixed-length feature vector per
utterance (what we call iVector), it is possible to simply con-

catenate the iVectors resulting from these diverse models and
to model them jointly with a PLDA model. We train a single
full-rank PLDA model on 600-dimensional iVectors. The ef-
fectivity of the joint modeling of complementary iVectors can
be observed in Figure 1. The combination of DCT-GaussIV and
SNERF-MultinIV iVectors (cyan hexagons) results in significant
improvement over the best individual system on all operating
points on both test sets, achieving an EER of 5.4% and a new
DCF of 0.72 on 2008 data, which are (to our knowledge) the
best results reported for a purely prosodic system.

4.3. Combination with cepstral baseline system
Our baseline system is a cepstral iVector system followed by
a PLDA model (CEP-GaussIV). This system was the best-
performing individual system from the ABC NIST SRE 2010
submission [16]. It is based on 60-dimensional cepstral features
and a 2048-component full covariance UBM. Four hundred-
dimensional iVectors are used and the dimension is further re-
duced to 200 by standard LDA and normalized by their length1

before PLDA modeling. The first row of Table 1 gives the re-
sults for our two data sets2.

Again, the iVector nature of our baseline system allows
us to use a novel way of combining low- and high-level sys-
tems by simple concatenation of their iVectors and joint PLDA
modeling. First, we apply an LDA reduction to 200 dimen-
sions and length normalization to both 300-dimensional sets of
prosodic iVectors. In this way we have three same sized sets
of 200 dimensional iVectors (one cepstral and two prosodic).
Next, we concatenate the cepstral iVectors separately with each
of our prosodic iVectors to obtain two sets of four hundred-
dimensional iVectors. Then we train a standard PLDA model
with full rank of 400 for each type of combination. The sec-
ond and third row of Table 1 give the results for these combi-
nations. We see that we can achieve significant improvements
for both iVector fusions of cepstral and prosodic features. Fi-
nally, we concatenate all three iVector types (one cepstral and
two prosodic) and train a PLDA model with full rank of 600.
The fourth row of Table 1 gives the results for this combination.
We achieve further improvements leading to reductions as high
as 21% relative on the challenging new DCF measure.

As a last experiment we compare this approach to the con-
ventional score-level fusion. For this purpose we train a lin-
ear logistic regression [19] to fuse the three individual system
scores on the development set and apply this fusion to the eval-
uation set. The last row of Table 1 indicates that consistent
gains are also achieved by score-level fusion (as high as 13%
on new DCF), but joint PLDA training of concatenated iVectors
remains superior. iVector fusion of the cepstral system and the
simple prosodic DCT-GaussIV system already outperforms the
score-level fusion of all three systems.

5. Conclusions and Lookout
We present the first results on the use of total variability model-
ing of the mean supervector space for a set of prosodic features.
We show that this iVector approach outperforms the standard
JFA approach originally proposed for these features. We note
that this improvement over JFA is observed only when the iVec-
tors are modeled using the PLDA back end. No gain was ob-
served during SRE 2010 system development [16] when iVec-
tors were modeled with simpler scoring techniques [6].

1This pre-processing of iVectors is very helpful for cepstral iVectors
but did not show any improvement for our prosodic iVectors

2We are aware that better results are reported in the literature, simply
by training the PLDA on more data, which we did not have for SNERFs.
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Figure 1: Results for SRE 2008 (dev) versus SRE 2010 (eval) in terms of EER, old DCF and new DCF, from left to right, for three
different prosodic systems and combination of the two best.

System DEV SRE 2008 EVAL SRE 2010

EER old DCF new DCF EER old DCF new DCF

Cepstral iVector system CEP-GaussIV 2.02 0.090 0.471 3.14 0.155 0.504
Concatenated CEP-GaussIV + DCT-GaussIV 1.69 0.080 0.400 2.72 0.136 0.431
Concatenated CEP-GaussIV + SNERF-MultinIV 1.65 0.080 0.389 2.74 0.134 0.444
Concatenated CEP-GaussIV + DCT-GaussIV + SNERF-MultinIV 1.70 0.075 0.368 2.63 0.129 0.421
Score fusion CEP-GaussIV + DCT-GaussIV + SNERF-MultinIV 1.92 0.078 0.406 3.09 0.149 0.447

Table 1: Results for single cepstral baseline system (CEP-GaussIV) and for combinations with one or two prosodic iVector systems.

Furthermore, we present combination results of two
prosodic systems, one where iVectors based on GMMs are used
to model simple DCT features extracted from uniform regions
and another one where iVectors based on multinomial distribu-
tions are used to model a complex set of syllable-level features.
These two systems are different at both the feature and model-
ing levels. We show gains on the order of 20% when combining
these two systems with respect to the single best. The combina-
tion is performed using an iVector-level fusion: the individual
iVectors for the two systems are concatenated and the joint iVec-
tor is modeled using PLDA. An important advantage of iVector-
level fusion compared to score-level fusion is that it can make
use of the full information encoded in the iVectors while for the
score-level fusion all information is already reduced to a single
number.

The iVector-level fusion technique followed by PLDA mod-
eling can also be applied to fuse heterogeneous features, such
as low-level cepstral and high-level prosodic features. Using
this procedure we achieve 20% relative improvement on new
DCF over a cepstral iVector baseline, significantly outperform-
ing score-level fusion. These are, to our knowledge, the largest
relative gains obtained in speaker recognition from combination
of cepstral systems with prosodic features in several years.
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